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Abstract

Indoor robot localization is an indispensable ingredient for robots to perform autonomous services because GPS
(Global Position System) information is not available. Natural features are usually used to implement this task, but it
is difficult to solve the problem of localization robustness. A solution is proposed combining feature clustering and
wireless sensor network to improve the effectiveness of robot localization: firstly, the SIFT (scalable invariable feature
transform) features are extracted with feature clustering algorithm to estimate the robot position; secondly, the
wireless sensor network is constructed to localize the robot from another independent way; finally, EKF (extended
Kalman filter) is utilized to fuse the two kinds of localization results. The experiments demonstrate that this proposed
method is effective and robust.
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1 Introduction
GPS is commonly used to implement robot localization,
but GPS cannot be used in some conditions such as in-
door environments [1]. A common way to implement
indoor localization is to estimate robots’ pose utilizing
inertial sensors; however, this method is difficult to re-
solve the problem of robot’s wheel slor robot localization
combining feature clusteipping, so the accumulated er-
rors impact the estimating accuracy greatly [2]. In maga-
zine [3], the Non-Cooperative Feature Points are
extracted to implement the task of navigation,
which is usually based on the satellite feature points. In
magazine [4], the graph-based methods have been car-
ried out for the robot localization and navigation. In
magazine [5], the whole simulation process of robot
navigation has been implemented. The drawback of the
above methods is that it is difficult to obtain the robust
feature points, which are easy to be affected by light
changes. Recently, wireless sensors are used in mobile
robot navigation as reference nodes; the methods can be
divided into two categories [6–8]: One is to implement
robot localization utilizing wireless sensor networks on
their own sensor nodes [9], and the other is to carry out

that on external targets [10]. This article focuses on the
later that is to implement robot localization utilizing the
external sensor targets. Vision features are another com-
monly used in robot localization and motion estimation.
According to the specific localization mechanism, exist-
ing wireless sensor network localization methods can be
divided into two categories [11]: A range-based method
and a range-free method. The ranging-based positioning
mechanism needs to measure the distance or angle in-
formation between the unknown node and the anchor
node, and then use trilateration, triangulation, or max-
imum likelihood estimation to calculate the position of
the unknown node. The non-ranging-based positioning
mechanism does not require distance or angle informa-
tion, or does not directly measure the information, and
only implements node positioning based on network
connectivity and other information. Localization based
on ranging technology have the advantages that it can
obtain higher accuracy, and the commonly used ranging
technologies are RSSI (received signal strength indica-
tor), TOA (time of arrival), TDOA (time difference of ar-
rival) and AOA [12]. TOA (angle of arrival) is the time
of arrival method. TDOA is the time difference of arrival
positioning method. Both are positioning methods based
on the propagation time of the waves. It is necessary to
have three base stations known at the same time to as-
sist in positioning. The basic principle of TOA is to get
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the distances from the equipment to the three base sta-
tions after getting the three arrival times, and then just
build the equations and solve them according to the
geometry, so as to obtain the location value. TDOA does
not solve the distance immediately, but calculates the
time difference first, then establishes the equation group
through some clever mathematics algorithm and solves,
thus obtains the location value. Since the TOA
calculation is completely time-dependent, the time
synchronization of the system is required to be very
high. Any small-time error will be amplified many times.
At the same time, due to the influence of multipath, it
will bring a great error, so the pure TOA is rarely used
in practice. DTOA can greatly improve the accuracy of
positioning because the ingeniously designed difference
process cancels out a large part of the time error and
multipath effect. Because DTOA has relatively low net-
work requirements and high precision, it has become a
research hotspot. AOA is the angle of arrival method,
which is a two-base station positioning method that per-
forms positioning based on the incident angle of the sig-
nal. It determines the position by intersecting two
straight lines, it is impossible to have multiple intersec-
tions, which avoids the ambiguity of positioning. How-
ever, in order to measure the incident angle of the
electromagnetic wave, the receiver must be equipped
with a highly directional antenna array. RSS positioning
method is based on the strength of the received signal to
achieve positioning. In the positioning process, the sig-
nal intensity of three different reference points is mea-
sured by the device, and three distance values are
calculated according to the physical model. Then, a geo-
metric solution method similar to TOA can be used to
obtain the positioning point. Common RF chips all have
RSSI measurement function, so the RSSI mechanism is
easy to implement. The problem is it is susceptible to
channel and noise, and it has large measurement error
in long-distance positioning, which is mostly used in
small-range positioning [13]. The visual information is
also commonly used to implement the robot
localization. This series of methods can be divided into
monocular visual localization method and stereoscopic
visual localization method [14–16]. The purpose is to
use the robot vision system to sense the environment,
identify the location of the road signs and obtain local
map information, and continuously use the obtained
local map. The main problems existing in visual
localization research are it is difficult to implement fea-
ture extraction and landmark recognition quickly and
accurately through robot vision systems in complex en-
vironments [17, 18]; the amount of image features re-
quired for landmark recognition is too large, especially
in a complex and large-scale environment [19, 20]. In
the case of global maps, there is a problem of

information explosion. This increases the complexity
and uncertainty of the localization task. Wireless sensors
are flexible for robot localization, but it is difficult to
achieve high accuracy only by themselves. On the other
way, vision sensors are easy to be affected by many fac-
tors: the degree of image distortion correction, the track-
ing error of the feature points, and so on [21–23]. To
improve the robustness of the robot localization, SIFT
[24] and super-sphere aggregation algorithm [25] are se-
lected as the vision features. The object of this paper is
to develop a method integrating distinguished features
of indoor environment and wireless sensor network to
improve the effect of robot localization.
This paper is organized as follows: Section 2 described

the main methods; various experiments were imple-
mented to verify the proposed method in Section 3.
Section 4 gives conclusions.

2 Methods
The task of robot localization is to estimate the robot’s
position as well as to set up a map of the surrounding
environment according to the landmarks perceived. For
the convenience of description, m represents landmark
and x represents robot position; u represents the robot
drive. In order to implement robot localization task, the
distance that the robot has moved should be estimated
and the position of the landmark should be calculated
simultaneously. The robot updates the estimated pos-
ition when the new landmark was found in the naviga-
tion process. Apparently, there are some errors in the
robot localization between estimation position and real
position, as well as that in the landmark estimation. The
target of robot localization is to reduce the estimation
errors of the robot position and surrounding
environment.

2.1 Feature clustering for robot localization
Features can be clustered to improve the robustness in
robot localization. The hypersphere soft assignment [25]
is used to cluster the features in our design. The
principle of the hypersphere soft assignment is to con-
struct a hypersphere based on each clustering center in
the feature space, and the feature points are assigned to
the cluster centers corresponding to the hypersphere in
the space position.
The k-means algorithm is used to train K clustering

centers on a sample feature set {c1,…ci,…ck}({ciϵR
k).

When the k-means algorithm converges, the feature
points that are allocated to each cluster center ci can be
obtained xci ¼ fxi1;…xing . In which xin represents the
number of feature points assigned to the cluster center-
ing ci. For each clustering center ci, the Euclidean dis-
tance of all the feature points from ci to xci is calculated
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and the maximum distance is defined as the radius of
the cluster center radiusi:

radiusi ¼ j¼1;2::id ci; xij
� �

max ð1Þ

The hypersphere can be constructed in the feature
space for each clustering center ci, where the radius is
radiusi. The feature points can be assigned to the corre-
sponding cluster center according to the spatial position
relative to all hyperspheres.
For a feature point xj (xjϵR

d), a K dimensional attribu-
tion vector attribj = {attribj1,…, attribjk} is defined, where
attibji indicates whether the feature point xj is allocated
to the clustering center: attribji = 1 represents that xj is
allocated to ci, attribij = 0 represents that it is not allo-
cated to ci. The characteristic this soft allocation mech-
anism of the hypersphere is represented as follows:

attribji ¼ 0 when d x j; ci
� �

> radiusi
1 when d x j; ci

� �
≤radiusi

�
ð2Þ

Only when the Euclidean distance between the feature
point xj and the cluster center ci is less than or equal to
the corresponding radius of the super sphere, xj would
be allocated to ci. The value of component attribji in the
corresponding vector attribj is set to 1.
a, b,…,I are assumed as the clustering centers, and x1,

x2, x3, and x4 are the four feature points to be allocated.
The policy of soft assignment can be described as fol-
lows: firstly, the hypersphere needs to be constructed for
each clustering center, where the clustering center is set
as the center of the corresponding hypersphere. The
clustering centers are assumed as b, c, d, and e with the
corresponding circles; secondly, x1, x2, x3, and x4 will be
assigned to a cluster center according to whether they
are located within the corresponding circle. For example,
x1 is only located within the circle corresponding to b,
so x1 is only assigned to b; feature points as x3 and x4
are located within the circles corresponding to b and c,
so the x3 and x4 are both allocated to b and c; x2 is
located within the circles corresponding to c, d, and
e, it will be allocated to the c, d, and e as three clus-
ter centers.
Given a feature point xj, a K dimension weight vector

wj = {wj1,…wjk} is defined, where the vector component
wji represents the weight of the clustering center ci rela-
tive to xj. It is assumed that the Euclidean distance be-
tween the feature points and the nearest neighbor
clustering center is subject to the Gaussian mixed distri-
bution. Therefore, the weight can be calculated accord-
ing to the formula.

wij ¼ attribij � exp −
d2
ij

2σ2

 !
ð3Þ

dij is defined as the Euclidean distance, which is set
from feature point xj to clustering center ci; σ is the
standard deviation, which is assumed to be Gaussian
mixture distribution. The optimal value can be deter-
mined through experiments. The weight vectors wj

needs to be L1 normalized, so that the weights of the
cluster centers are calculated as follows.

wji ¼

attribji � exp −
d2
ji

2σ2

 !

Xk
i¼1

attribji � exp −
d2
ji

2σ2

 ! when attribji≠0

0 when attribji≠0

8>>>>>><
>>>>>>:

ð4Þ
VLAD is the abbreviation of “vector of locally aggre-

gated descriptors,” which is an image descriptor aggre-
gating the local features of the SIFT in the feature space.
VLAD is proposed on the basis of the method of the
BOF (bag of features) image descriptor, combined with
the idea of the Fisher kernel. Similar to the BOF image
descriptor, VLAD takes the K-means clustering algo-
rithm as a training set to get k clustering centers. Each
cluster center is called a visual word, and the set of K
visual words is called a codebook C = {c1,…ci,…
ck}({ciϵR

k).
The soft assignment method can be combined with

VLAD when it is used to generate the image descriptor
SSA-VLAD (Spherical Soft Assignment vector of locally
aggregated descriptors). The way is similar to VLAD: a
sample set is trained to obtain the codebook, which in-
cludes K cluster centers utilizing the K-means clustering
algorithm. Differing from VLAD, the corresponding ra-
dius needs to be calculated for each visual word (the
clustering center) in the training of C.
For an image, after extracting the local features of the

SIFT X = {x1,…xi,…xk}, the specific steps for its
SSA-VLAD generation are as follows:

Step1: Using the hypersphere soft allocation
method, each SIFT feature xj is assigned to the
adjacent visual words to obtain the attribution
vector attribj.
Step2: Computing the weight vector wj of the
SIFT feature xj relative to the nearest neighbor
visual word.
Step3: The weighted vector residuals, which is the
SIFT feature xj relative to the nearest neighbor
visual words, are calculated.
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Step4: For each visual word Ci, allocate it for aggregation
to the corresponding weighted residuals vector among all
the features xj belonging to the visual word.

Step5: The K aggregation vector vi is connected in
series to form an SSA-VLAD vector {v1,…vi,…vk},
where d is the vector dimension of the SIFT feature.

The vector dimension of SSA-VLAD is the same as
VLAD, which is k × d.

2.2 Robot localization based on wireless sensor network
The centroid localization algorithm is chosen as the auxil-
iary location method, which has the most important ad-
vantages: the little time consumption and the fast location
speed. The essential of centroid algorithm is that the robot
can use the geometric centroid of anchor nodes in the
range of communication as its location estimation. The
concrete process can be described as follows:
Anchor nodes broadcast a beacon signal to neighbor

nodes’ set intervals, which contains ID and location infor-
mation of anchor nodes themselves. When the number of
beacon signals that the robot received from an anchor
node exceeds a predetermined threshold in a fixed period,
the robot is considered to be connected to the anchor
node and its position can be determined as the polygon
centroid composed of all connected anchor nodes. The
geometric center of polygon is called centroid; the coordi-
nates of the centroid are the average value of polygonal
vertex coordinates. Assumed that the vertex coordinates
of polygonal are (x1, y1), (x2, y2)… (xn, yn), respectively, the
centroid coordinates can be calculated as:

Xt;Y tð Þ ¼ 1
n

Xn

i¼1
Xi;

1
n

Xn

i¼1
Y i

� �
þWt ð7Þ

The robot position can be obtained according to the
centroid coordinates, and the error of localization Wt is
assumed as Gaussian distribution.

2.3 Robot localization combing feature clustering and
WSN with EKF
2.3.1 EKF process in robot localization
Kalman filter is usually used as state estimation or par-
ameter estimation for a system, which updates the math-
ematical expectation and covariance of Gaussian

probability distribution under Bayesian theory frame-
work. By minimizing the square of the deviation between
the real state and the estimated state of the system, Kal-
man filter provides an effective estimation method for
the system’s present and future state without the exact
model of the system.
There is a requirement in the classic Kalman filter that

a control system is linear, but most practical control sys-
tems are nonlinear. Therefore, the extended Kalman fil-
ter (EKF) is used in our design, where the nonlinear
control process and the measurement model are linear-
ized to make the traditional Kalman filter be appropriate
for the nonlinear systems.
But EKF has two obvious shortcomings: first, derivation

of the Jacobian matrix and linear estimation of nonlinear
equations may be very complex, contributing to the diffi-
culties in real applications; secondly, when the filter time
step is not small enough, the linearization for nonlinear
equations will lead to system instability.
The EKF extends the motion model and the observa-

tion model of the system to the nonlinear condition, and
its motion model can be expressed as:

xt ¼ f xt−1; ut−1;wt−1ð Þ ð8Þ
where t denotes the discrete time, x denotes robot pos-
ition, and u denotes the distance that robot has run from
the last time step to the current time step. Additionally,
wt − 1 denotes the noise distribution in time t-1. The ob-
servation model can be described as Eq. 9, where vt de-
notes the observation noise and zt denotes the
observation results:

zt ¼ h xt ; vtð Þ ð9Þ
The state prediction and the observation prediction

are defined as follows respectively, where x̂−t denotes the
prediction value of robot position:

x̂−t ¼ f x̂−t−1;ut−1; 0
� � ð10Þ

ẑ−t ¼ h x̂−t ; 0
� � ð11Þ

The EKF filtering algorithm is linearized through Tay-
lor expansion to linearize the nonlinear motion model
and observation model, and then, the update process
can be obtained according to the similar way as Kalman
filtering.
The time update equation in EKF can be represented

as Eq. 12, where P̂
−
t denotes the variance:

P̂
−
t ¼ AtPt−1A

T
t þWtPQt−1W

T
t ð12Þ

And the update equation of observation can be repre-
sented as Eq. 13:

rxji ¼ wji � x j−ci
� �

i ¼ 1…k and wji≠0
� � ð5Þ

v ¼
X

x j such that attribji≠0
rxji ¼

X
x j such that attribji≠0

wji � x j−ci
� �

ð6Þ
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Kt ¼ P−
t H

T
t HtP

−
t H

T
t þ VtRtV

T
t

� �−1
x̂ ¼ x̂−t þ Kt zt−h x̂−t ; 0

� �� �
Pt ¼ I−KtHtð ÞP−

t

8<
: ð13Þ

Considering that the position of the measured land-
mark is not accurate absolutely. The appropriate motion
model and observation model should be set up to
analyze the robot localization error. In our designed ex-
periment, the wheel robots are selected and its driven
model can be set up as follows.

2.3.2 Robot model
Because the robot selected in this paper is a wheel robot,
the model can be described as follows: SL is assumed as
the distance that the left wheel moves, and SR is the dis-
tance that the right wheel moves. Δθ is the wheel axis
rotation angle, and θ represents the intersection angle.
Then, the change of robot poses between the current
one and the last one can be estimated, where Xi(xi, yi, θi)
is the current robot pose, and Xi(xi − 1, yi − 1, θi − 1) repre-
sents the last one. So, the relation between the robot ro-
tation angle and the distance that the robot moves can
be calculated according to Eq. 14. The arc length is the
distance that the robot center has moved, which can be
represented as Eq. 15, and D can be calculated based on
Eq. 16:

Δθ ¼ SL−SRð Þ ð14Þ
S ¼ SL þ SRð Þ=2 ð15Þ
D
.
2
¼ S

.
Δθ

� sin Δθ
.
2

� �
ð16Þ

The current pose update can be described as the Eq.
17. Considering the effect of noise, the formula of the
robot pose can be changed to Eq. 18. Among which Wi

− 1 is the Gaussian noise that is assumed ordinarily:

Xi ¼ Xi−1 þ Δx;Δy;Δθð Þ ð17Þ
Xi ¼ F Xi−1; SLi−1; SRi−1ð Þ þWi−1 ð18Þ

Covariance could be described as a diagonal matrix,
and the diagonal entries are shown in Eq. 19:

Q11 ¼ Kx S cos θð Þj j
Q22 ¼ Ky S sin θð Þj j

Q33 ¼ KSθ Sj j þ K θθ Δθj j

8<
: ð19Þ

Among which Kx and Ky are the robot drift coeffi-
cients, which are along the x-axis and the y-axis simi-
larly, KSθ and Kθθ are the robot drift coefficients of
angles. The values of the coefficients can represent the
error in this model.

2.3.3 Observation model
There are some errors in the estimation of robot move-
ment contributing to the robot movement model, as well
as the observation error. The observation model is an-
other important aspect in robot localization. The obser-
vation position of the ith landmark can be deduced as
Eq. 20:

zi kð Þ ¼ xijθ kð Þ yijθ kð Þ θijθ kð Þ
h iT

¼
cos θr kð Þð Þ sin θr kð Þð Þ 0

− sin θr kð Þð Þ cos θr kð Þð Þ 0
0 0 1

2
4

3
5

�
xi−xr kð Þ
yi−yr kð Þ
θi−θr kð Þ

2
4

3
5þ v kð Þ ð20Þ

In Eq. 20, the observation noise can be ordinarily as-
sumed as Gaussian noise, among which the average is
assumed to zero, and covariance matrix is assumed as
diagonal matrix.

3 Experiment results and analysis
The Institute of Automation of Chinese Academy of Sci-
ences has independently developed a versatile autono-
mous mobile robot platform called AIM based on its
existing technology. The various theories and algorithms
described in this paper are tested on the platform. The
vision sensor is placed on the top of the mobile robot.
The feature clustering algorithms of VLAD [26] and

RNN-VLAD [27] are selected for the better comparison.
The VLAD method is like BOF, which considers only
the nearest cluster center of the feature points that saves
each feature point to its closest cluster center distance.
Like the Fisher vector, VLAD considers the value of each
dimension of the feature points and has a more detailed
description of the local information of the image. The
most advantage in VLAD is that there is no loss of infor-
mation on the VLAD features. The standard deviations
of estimation errors for different algorithms are summa-
rized in Table 1. It is worth noting that each value in this
table averages the whole results. In RNN-VLAD, a set of
descriptors were extracted from each observed image se-
quence, and the deformations of each image sequence
were analyzed. Finally, each descriptor was assigned to
the nearest visual center. The standard deviations were
calculated to compare the effectiveness of motion esti-
mation based on the different kinds of methods. For the

Table 1 Standard deviation of different aggregation algorithm

Type Position (cm) Feature (cm)

VLAD-R 9.5 11.2

RNN-VLAD-R 8.7 10.8

SSA-VLAD-R 7.3 9.2
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convenience of description, the method of robot
localization based on VLAD is represented as VLAD-R,
and RNN-VLAD-R represents the localization method
based on RNN-VLAD. Similarly, SSA-VLAD-R repre-
sents the localization method based on SSA-VLAD. Ac-
cording to comparison results, the standard deviations
of SSA-VLAD are smaller than RNN-VLAD, while the
standard deviations of RNN-VLAD are smaller than ori-
ginal VLAD.
Different dimension lengths have important impacts

on the estimation of feature errors and position errors
for different algorithms. For the better comparison, we

analyze the results of dimension lengths from different
angles. As shown in Figs. 1, 2, 3, and 4. The relation be-
tween the location accuracy and dimension lengths was
analyzed.
The average mean square values of feature error for dif-

ferent algorithms are shown in Fig. 1. The average feature
error is smaller as dimension length increases. Among the
three algorithms, the worst algorithm is the localization
based on original VLAD, which has the largest feature es-
timation error. The best algorithm is the proposed
method based on SSA-VLAD, which has the smallest fea-
ture estimation error for the same dimension length.

Fig. 1 The average values of feature error with different lengths of dimension. Legend: The x-axis denotes the dimension length, and the y-axis
denotes the average values of feature error (cm)

Fig. 2 The average values of position error with different lengths of dimension legend: The x-axis denotes the dimension length, and the y-axis
denotes the average values of position error (cm)
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The average position error values for different algo-
rithms and different dimension length are shown in
Fig. 2. It is shown that the average position errors of
the three algorithms become smaller as dimension
length increases. The worst algorithm is the method
based on original VLAD, which has the largest aver-
age position error. The best algorithm is still the pro-
posed method based on SSA-VLAD, which has the
smallest position estimation error for the same di-
mension length.
Figure 3 shows the impact of different dimension

lengths in maximum mean square estimation of feature,
and Fig. 4 shows that of position. In these conditions,

the method based on SSA-VLAD has the best results
for each same dimension length, and the method based
on RNN-VLAD is better than the method based on ori-
ginal VLAD.

4 Conclusions
In this paper, the robot localization based on feature
clustering algorithm was proposed, and robot
localization utilizing wireless sensor network is inte-
grated to improve the robustness. The performance of
proposed algorithm was verified by reduced feature er-
rors and robot position errors. The various experiment
results show that the localization problem can be solved

Fig. 3 The maximum values of feature error with different lengths of dimension legend: The x-axis denotes the dimension length, and the y-axis
denotes the maximum values of feature error (cm)

Fig. 4 The maximum values of position error with different lengths of dimension legend: The x-axis denotes the dimension length, and the y-axis
denotes the maximum values of position error (cm)
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better, and the efficiency of localization was improved.
Moreover, the proposed algorithm can still achieve satis-
fied estimation accuracy even when either feature cluster-
ing algorithm or wireless sensor network localization
algorithm fails. In future work, the robustness of feature
clustering algorithm will be analyzed further and different
filter algorithms would be implemented to improve the
localization efficacy in distinguished indoor environments.
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