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Abstract

The speech enhancement based on the generative adversarial network has achieved excellent results with large
quantities of data, but performance in the low-data regime and tasks like unseen data learning still lag behind. In
this work, we model Wasserstein Conditional Generative Adversarial Network-Gradient Penalty speech enhancement
system and introduce the elastic network into the objective function to simplify and improve the performance of
the model in low-resource data environment. We argue that the regularization is significant in learning with small
amounts of data and the available information of the input data is key in speech enhancement performance and
generalization ability of the model, which means that network parameters and network structure can be set up and
designed according to the characteristics of actual input data. Experiments on the noisy speech corpus show that
the improved algorithm outperforms previous generative adversarial network speech enhancement approach.
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1 Introduction
Speech enhancement is one of the main technologies to
improve the performance of speech systems in noisy en-
vironment [1–3]. Recently, the generation adversarial net-
work has shown great potential in deep learning and has
been applied to the field of speech enhancement with
large quantities of data, which overcomes the limitations
of traditional network for speech enhancement of specific
targets and shows good generalization performance for
unseen environmental noise [4, 5]. But the problems like
instability of learning and mode collapse of generative ad-
versarial network (GAN) affect its practical applications.
Many improved algorithms have been proposed such as
conditional GAN and Wasserstein GAN to solve those
disadvantages. However, those improved GAN algorithms
have not been used in speech enhancement yet and the
performance in low-resource environment still lags.
Goodfellow et al. introduced the generative adversarial

networks (GAN), which formulate a minimax game of a
discriminator D and a generator G [6]. The goal is to
learn a generator distribution that matches the real data

distribution. Martin Arjovsky proposes the Wasserstein
GAN to improve the learning stability [7] and Ishaan
Gulrajani improves the Wasserstein GAN substituting
gradient penalty for weight clipping [8]. Daniel Michel-
santi applies conditional GAN for speech enhancement
(SE) [9] and Santiago Pascual models SE with GAN [10].
They explore the potential of conditional GAN and
GAN for SE and investigate the feasibility and perform-
ance of GAN for speech processing.
Compared with most of the current deep learning

speech enhancement systems based on the spectrum
analysis framework [11–15], GAN and the variant
algorithm of GAN work end-to-end with the raw speech
data without hand-crafted features extracted and as-
sumptions about the raw data utilized. Because further
studies show that outperformance of speech quality is
possible, especially when a clean phase spectrum and
high frequency information are known [16–18], the raw
data retain both phase information and frequency infor-
mation. GAN and the variant algorithm of GAN provide a
sample process without recursive operation in recurrent
neural networks and long short-term memory networks
[19–22]. But the current GAN system performance in the
low-data regime and tasks like unseen data learning still
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lag, because of the instability of training and the problem
of gradient disappearing resulting in an inadequate train-
ing and the overfitting caused by the complex model.
In this paper, we model WCGAN-GP SE system ob-

tain enhanced speech and introduce an elastic network
into the objective function to simplify and improve the
performance of the model in low-data regime. Improved
WCGAN-GP preserves a variety of features in voice data
which is possible to improve the speech quality. And we
focus on measuring the ability of models to generalize
unseen data and to learn from even very little of it. We
explore the factors that influence the enhancement per-
formance of the SE model and the factors related to the
generalization of network.

2 Wasserstein generative adversarial network
Both G and D are parameterized by convolutional neural
networks and the minimax game is given by the follow-
ing expression:

min maxL D;Gð Þ ¼ Ex�pdata xð Þ logD xð Þ½ �
þ Ez�pg zð Þ log 1−D G zð Þð Þð Þ½ � ð1Þ

pdata(x) is the real data distribution and pg(z) is the gen-
erated data distribution, G(z) is the generated samples
by G, x is the real data, and D(·) is the output of discrim-

inator, which is DðxÞ ¼ pdataðxÞ
pdataðxÞþpg ðxÞ . Then, the expansion

of Formula 1 is shown:
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Kullback–Leibler divergence is defined:
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Jensen-Shannon divergence is
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So, the objective function of GAN is as followed:

minmaxL D;Gð Þ ¼ 2JSðPdata j Pg

�� �
−2 log2 ð5Þ

As Jensen-Shannon divergence chose to be a target
function, the gradient may be disappearing when the two

distributions do not overlap, resulting in the generator un-
able to learn to improve. This is the main reason for the
instability of training.
However, Wasserstein GAN has proved that to

minimize reasonable approximation of Earth-Mover dis-
tance is the best way to solve the above problems in
both theory and practice [23]. The Earth-Mover distance
or Wasserstein:

W Pr; P f
� � ¼ inf γ∈Π Pr ;P fð ÞE x;yð Þ�γ x−yk k½ � ð6Þ

Pr and Pf donate the marginal distributions of joint
distributions γ(x, y). The Earth-Mover distance indicates
the cost must be transported from x to y in order to
transform the distributions Pr into the distribution Pf.
The infimum cannot be solved directly, the Lipschitz
continuity which is shown in formulate (7) adding a re-
striction to the continuous function is introduced to the
objective function of neural network.

f xð Þ− f yð Þ≤K x−yj jj j ð7Þ
The Lipschitz continuity theorem restricts the max-

imum local variation of a continuous function. The ob-
jection function of Wasserstein GAN is as follows:

minL D;Gð Þ Dj jL ≤K ¼ Ez�pg zð Þ D zð Þ½ �−Ex�pdata xð Þ D xð Þ½ �
ð8Þ

But weight clipping in the discriminator in Wasser-
stein GAN results in gradient extinction or gradient
explosion, gradient penalty in the discriminator is intro-
duced to make training stability. The gradient penalty is
simply added to the Wasserstein distance in the total
loss function. To circumvent tractability issues, we en-
force a soft version of the constraint with a penalty on
the gradient norm for random samples x̂ � px̂ , The ob-
jection function of Wasserstein GAN-GP is:

min L D;Gð Þ ¼ Ez�pg zð Þ D zð Þ½ �−Ex�pdata xð Þ D xð Þ½ �
þλEx̂�px̂ ∇ zD x̂ð Þk k2−1

� �2h i ð9Þ

min Gloss ¼ −Ez�pg zð Þ D zð Þ½ � ð10Þ

where x̂ represents a soft version of the constraint with
a penalty on the gradient norm for random samples.
px̂ is a uniform sampling distribution along straight

lines between pairs of points sampled from the data dis-
tribution pdata(x)and the generator distribution pg(z).Here,
we set λ = 12, which we found to work well across a var-
iety of architectures and datasets.
However, Wasserstein GAN model learns all the char-

acteristics of the original speech in training data; it is
easy to fall into local optimization, too many local
features and false characteristics caused by noise, which
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results in the generalization and recognition accuracy of
the model almost to a valley. In addition, the complex
models will result in training overfitting in low-data en-
vironment. Accordingly, we propose an improved object
function on WCGAN to reduce the complexity of the
model and improve the generalization performance, and
introduce the Wasserstein conditional GAN SE model in
the next section.

3 Improved Wasserstein conditional GAN speech
enhancement model
The conditional GAN network obtains the desired data
for directivity, which is more suitable for the domain of
speech enhancement. Therefore, we exploit Wasserstein
conditional GAN with GP to implement speech en-
hancement. There are a positive pair (noisy speech and
clean speech) and a negative pair (noisy speech and
generate speech), then the discriminator is to distinguish
between the two pairs. The structure of speech enhance-
ment conditional GAN is shown in Fig. 1:
Recent several studies have proved that the phase

information is significant to improve the effect of the
speech intelligibility and quality when spectrograms are
used to resynthesized back into time-domain waveforms
[24, 25]. As known that the high frequency details of
speech also play an important role in speech intelligibility
and quality, raw waveform contains the phase features and
spectral features of low-frequency and high-frequency of
speech. In previous work, Santiago Pascual proposed an

end-to-end speech enhancement system based on a gen-
erative adversarial network (SEGAN). To research the
potential of the WGAN-GP, we continue to explore and
improve the speech enhancement system with raw speech
data.
The generator is designed to be fully convolution layers

without fully connected layers in an auto encoder struc-
ture, which may well preserve local information to gener-
ate high-frequency components [26]. In the field of ASR,
it has been shown that deep learning-based models with
raw waveform inputs can achieve higher accuracy than
those with hand-crafted features. Therefore, in this paper,
the discriminator and the generator are both all full con-
volutional networks. The fully convolutional layer network
structure of the generator is shown in Fig. 2.
Each output sample in FCN relates only locally to the

neighboring input regions as shown in Fig. 2. That is
distinct from fully connected layers in which the local
information and the spatial arrangement of the previous
features cannot be well preserved.
The Wasserstein distance insteads of the least mean

square error in SEGAN and an elastic network is added
to the generator loss to generalize the network perform-
ance. The L1 norm performs the automatic selection
and sparsity of the features, and the main function of
the L2 norm is to avoid overfitting. Elastic network re-
duces the weight of parameters and simplifies the com-
plexity of models. Ridge regularization keeps more
speech feature information to improve intelligibility and

Fig. 1 The structure of speech enhancement conditional GAN. There are a positive pair (noisy speech and clean speech) and a negative pair (noisy
speech and generate speech), then the discriminator is to distinguish between the two pairs
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speech quality. The objective function can be repre-
sented by the following equations.

min L D;Gð Þ ¼ Exc�pg xcð Þ D G xcð Þ; xcð Þ½ �−Ex�pdata xð Þ D x; xcð Þ½ �

þλExc�pg xcð Þ ∇ zD G xcð Þ; xcð Þk k2−1
� �2h i

ð11Þ
min Gloss ¼ −Exc�pg xcð Þ D G xcð Þ; xcð Þ½ � þ K ½α G x;G xcð Þð Þ−xk k1

þ 1−αð Þ G x;G xcð Þð Þ−xð Þ2�
ð12Þ

where xc represents the noisy speech samples. K is the
punishment factor. We usually set the K weight of elastic
network from 100 to 1000. The constraint condition of
L1_ratio is α. In general, it is set according to the experi-
ence and experiments.
Lasso and Ridge regularization methods are synthe-

sized in elastic network when many of the features of a
data set are interrelated. Elastic network will enhance
the group effect between the multiple interrelated vari-
ables. The advantage of the tradeoff between Lasso and
Ridge is that it allows the stability of Ridge to be inher-
ited during the loop process.

4 Experiments and results
4.1 Experimental setup
In order to evaluate the performance of WCGAN speech
enhancement system, the noisy speech corpus (NOI-
ZEUS) which is developed to facilitate comparison of
speech enhancement algorithms among research groups

is employed to prepare the training and test sets. The
noisy database contains 30 IEEE sentences (produced by
three male and three female speakers) corrupted by eight
different real-world noises (Babble, Car, Exhibition, Res-
taurant, Street, Airport, Station, and Train) at different
signal-to-noise ratios (SNRs) (0, 5, 10, and 15 dB). There
are five sentences for per speaker.
In this study, 1 s of speech with 500 ms overlap was

extracted from the waveforms to form a frame for the
proposed SEWCGAN model, whose sampling rate is
16 KHz. The proposed SEWCGAN model is trained for
50 epochs with RMS prop and a learning rate of 0.0003,
an effective batch size of 100. Due to the addition of the
gradient penalty, there is no batch normalization in net-
work structure. In both train and test, a pre-emphasis
filter of coefficient 0.95 is applied for all input samples
to highlight the high-frequency characteristics to im-
prove the intelligibility and the quality of speech.
Regarding the γ weight of gradient penalty, after some

experimentation, we set it to 10 for the whole training.
We set the K weight of elastic network to 150. Usually,
L1_ratio parameters α(0 < α < 1) are employed to regu-
late the convex combination of L1 and L2. We set it to
0.15 for the whole training. We observed that the G
weight follows normal distribution during updating, so
the elastic network had practical effect on the learning.
As the elastic network value got lower, the quality of the
output samples increased, which we hypothesize helped
G being more effective in terms of realistic generation.
Regarding the architecture, the structure of improved

speech enhancement WCGAN has been shown in Fig. 3.
G is composed of 20 convolutional layers of filter width
31 and strides of N = 2 which is followed by PReLU
activation. The amount of filters per layer increases so
that the depth gets larger as the width gets narrower.
The resulting dimensions per layer is 16,384 × 1,
8192 × 16, 4096 × 32, 2048 × 32, 1024 × 64, 512 × 64,
256 × 128, 128 × 128, 64 × 256, 32 × 256, 16 × 512, and
8 × 1024. It is known that the decoder stage of G is a
mirroring of the encoder with the same filter widths
and the same amount of filters per layer. The residual
network makes training stable and noisy speech vector
makes the number of feature maps in every layer to be
doubled.
We directly handle the original speech signal and avoid

the extraction of acoustic features. Discriminator sent the
update information to generator, which fine-tunes the out-
put distribution toward the real distribution to reduce the
interference signal.
In this paper, to evaluate the quality of the enhanced

speech, we compute the following objective measures.
PESQ [− 0.5,4.5]: perceptual evaluation of speech quality.
SNR [0, ∞): signal-to-noise ratio. segSSNR [0, ∞): seg-
mental SNR.

Fig. 2 Fully convolutional layer network structure. Fully convolutional
network preserves local information to generate high-frequency
components, and each output sample in FCN relates only locally to
the neighboring input regions rather than the total input data
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A. Convergent training dataset

To evaluate the convergence of speech enhance-
ment systems in low-resource environment, 900 utter-
ances were randomly selected and corrupted with
eight noise types at four SNR levels (0, 5, 10, and
15 dB) as a training set to train the SEGAN model
and improved the SEWCGAN model.

B. Generalized training dataset

To explore the influence of the available informa-
tion on the system generalization performance, we
train the improved SE model with different numbers
of noise scenes (two scenes, three scenes, four
scenes, six scenes, and eight scenes) and different
numbers of speakers (two speakers, three speakers,
four speakers, and six speakers) at four conditions of
SNR. The test data consist of unseen speakers ap-
plied by TIMIT database and unseen noisy scenes
applied by NoiseX-92.

Fig. 4 The value of discriminator losses. The point labeled line is the loss function value of SEGAN model and the triangular labeled line is the
loss function value of improved WCGAN model

Fig. 3 The structure of speech enhancement WCGAN. The resulting dimensions per layer is 16,384 × 1, 8192 × 16, 4096 × 32, 2048 × 32, 1024 × 64,
512 × 64, 256 × 128, 128 × 128, 64 × 256, 32 × 256, 16 × 512, and 8 × 1024. The decoder stage of G is a mirroring of the encoder with the same
filter widths and the same amount of filters per layer. The residual network makes training stable and noisy speech vector makes the number of
feature maps in every layer to be doubled
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5 Results and discussion

1. Comparison of convergence performance: The
convergence of loss function is selected to estimate
the convergence of the SEGAN model and
improved SEWCGAN model. The experiment
results are shown in Fig. 4 as follows.

In Fig. 4, the point labeled line is the loss function
value of SEGAN model and the triangular labeled line is
the loss function value of improved WCGAN model. As
shown in the diagram, the triangular labeled line quickly
converges to the stable state near zero, while the conver-
gence rate of the point labeled line is slower. One can
observe that the discriminator successfully learns to dis-
tinguish the generated representations and the ground-
truth in low-resource regime.
Regarding the learning performance of generator, the

histogram of update value of the generator is depicted in
Fig. 5. Panel (a) is the histogram of the update value of
the SEGAN generator, and panel (b) is the histogram of
the update value of the improved WCGAN generator.
The values in panel (b) mainly range from 0 to 2, and
the uneven distribution is easy to cause insufficient
learning in network. Relatively, the distribution of the
value in panel (a) is uniform which ranges from − 4 to 4,
which indicates that the network learning is full and the
system performance is better. Compared with SEGAN,
the learning performance of the new objective function
outperforms the previous one and the convergence rate
is faster under the same data conditions.

2. Comparison and study of generalization
performance: We explore the influence of the
available information on the system generalization
performance. In this paper, the available
information consists of the number of noisy scenes
and the number of speakers’ clean speech. Firstly,
the influence of the number of different training
noisy scenes on the system generalization
performance is studied. Training data set consists of
six speakers’ pure voice with different number of
noisy scenes (two scenes, three scenes, four scenes,
six scenes, and eight scenes) at four different SNR
conditions. Test data is applied with a pure male
speech in TIMIT database with factor floor noise in
NoiseX-92.

Figure 6 depicts the SNR of speech enhancement sig-
nal of test data in improved WCGAN models with dif-
ferent number of scenes and SEGAN model with the
average SNR. In this part, the main purpose is to explore
the impacts of generalization performance, so we show
the average SNR of SEGAN only. We find surprisingly

that, simply by applying elastic network to the WCGAN
models, our improved model achieves mean value 23.65
gain in the SNR on WCGAN and achieves 21.05 gain on
SEGAN. The performance of the four-scene model and
eight-scene model are almost the same, which are better
than other three models. Figure 7 describes the segmented
SNR of enhanced speech in different scenes in two
models. By calculating the mean, the improved model
achieves mean value 4.28 gain in the segSNR on WCGAN
and achieves 1.45 gain on SEGAN. The four-scene model
outperforms the other models in segmented SNR.
According to the two-graph information, it intimates

that the four-scene SE model outperforms the other
scene models. It means that if the number of clean
speech is certain, increasing the noisy training data does

a

b

Fig. 5 The histogram of update value of the loss function for two
models. a The histogram of the update value of the SEGAN generator.
b The histogram of the update value of the improved WCGAN
generator. The values in b mainly range from 0 to 2, and the uneven
distribution is easy to cause insufficient learning in network. Relatively,
the distribution of the value in a is uniform which ranges from − 4 to
4, which indicates that the network learning is full and the system
performance is better
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not play a totally positive role in the enhancement
performance and generalization performance of the
speech system.
Secondly, the influence of the number of speakers’

clean speech on the system generalization performance
is discussed. Training data set consists of four scenes
with different numbers of speakers’ clean speech (two
speakers, three speakers, four speakers, and six speakers)
at four different SNR conditions. Test data is as the
same as the above experiment. The experimental results
are shown in Figs. 8 and 9 as follows.

Figure 8 shows the SNR of enhanced speech of test
data in improved WCGAN models with different
numbers of speakers and SEGAN model with the aver-
age SNR. The Performance of the four-speaker model
and the six-speaker model are almost the same at low
SNR condition. The six-speaker model performs prom-
inently at high SNR conditions. The SEGAN model
works well at 0 dB condition as well. Figure 9 describes
the segmented SNR of enhanced speech in different
models. The four-speaker model shows a better per-
formance than other models in low SNR of input

Fig. 7 The segSNR of enhancement speech. It describes the segmented SNR of enhanced speech in different scenes in two models. By calculating the
mean, the improved model achieves mean value 4.28 gain in the segSNR on WCGAN and achieves 1.45 gain on SEGAN

Fig. 6 The SNR of enhancement speech. It depicts the SNR of speech enhancement signal of test data in improved WCGAN models with different
numbers of scenes and SEGAN model with the average SNR. We find surprisingly that the improved model achieves mean value 23.65 gain in the SNR
on WCGAN and achieves 21.05 gain on SEGAN
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speech but not good enough at 15 dB than the
six-speaker model.
According to the two-graph information, it indicates

that the four-speaker SE model has a better enhance-
ment effect than the other models, which means that
more labeled data plays a positive role to increase the
enhancement and generalization performance of speech
system but is not in the direct ratio when the training
data is fixed.
From Table 1, we notice that improved model achieves

a higher average PESQ score than that by the SEGAN
model, which means added elastic work improves the

intelligibility and speech quality. The PESQ improve-
ments from 5 to 21% are observed. Although the im-
provement of SNR of the two-scene model is not the
best, which means that it retains more voice component
and obtains a highest speech quality score. The PESQ
score of the four-scene model is lower than other situa-
tions but performs best in SNR on an improved model.
While the improvement in SNR of the speech is

higher, relatively, the more voice component loss that
causes a lower speech quality score. So, it is a significant
strategy to balance the relationship between the SNR
and the quality of enhanced speech. Furthermore, the

Fig. 9 The segSNR of enhancement speech. It describes the segmented SNR of enhanced speech in different models. The four-speaker model
shows a better performance than other models in low SNR of input speech but not good enough at 15 dB than the six-speaker model

Fig. 8 The SNR of enhancement speech. It shows the SNR of enhanced speech of test data in improved WCGAN models with different numbers
of speakers and SEGAN model with the average SNR. The performance of the four-speaker model and the six-speaker model are almost the same
at low SNR condition

Qin and Jiang EURASIP Journal on Wireless Communications and Networking  (2018) 2018:181 Page 8 of 10



enhancement and generalization performance of the
speech system works effectively when the training data
and the labeled data meet a certain proportion. We
should train and design the network based on the avail-
able information of the actual data.

6 Conclusions
In this paper, we investigated the use of improved Was-
serstein conditional GAN for speech enhancement in
low-data environment. We add an elastic network to the
generator loss to generalize the network performance
and simplified the SE model. Experiments show that the
convergence performance of the improved algorithm
outperforms SEGAN in low-resource environment. The
available information of input data on the system are
closely related with the generalization performance of
system; furthermore, we can also design the effective
network structure like designing the number of layers,
choosing the activity functions according to the available
information of input data.
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