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Abstract

Proactive content caching in small cells (SCs) (i.e., proactive edge caching) can significantly reduce energy
consumption of networks. However, the sleep mode of SCs can make the cached contents in SCs unavailable.
Therefore, a joint optimization of edge caching strategy and sleep scheduling should be conducted to maximize the
effectiveness of edge caching. In this paper, we propose an energy-efficient proactive edge caching with sleep
scheduling (E3CS) where the controller jointly adjusts the caching strategy and the sleep scheduling of SCs by
considering the content popularity dynamics. To optimize the performance of E3CS (i.e., minimize the overall energy
consumption), we formulate a Markov decision process (MDP) and the joint optimal policy on the caching strategy
and sleep scheduling is obtained by a value iteration algorithm. Evaluation results demonstrate that E3CS with the
optimal policy outperforms the comparison schemes in terms of the overall energy consumption.

Keywords: Content caching, Edge caching, Sleep scheduling, Energy, Markov decision process (MDP), Green
networks

1 Introduction
Recent report [1] predicts that mobile data traffic will
grow at a compound annual growth rate of 47% from 2016
to 2021. In addition, it shows that most Internet traffic is
governed by content retrieval applications such as content
sharing and video on demand (VOD) services. In these
applications, users retrieve contents from a remote con-
tent server, which causes a significant amount of traffic
and energy consumption. To alleviate this problem, the
content caching where contents are stored in intermediate
nodes of networks has received a high attention by lots of
network operators. By amplifying the caching efficiency,
contents can be proactively stored on the network edge
(e.g., small cells (SCs)) [2–5].1
Specifically, the energy consumption for content trans-

mission over the backhaul link can be significantly
reduced by means of proactive edge caching in SCs.
Meanwhile, SCs usually use the sleep mode to reduce
the maintenance energy needed to be active. However, it
can make the cached contents in SCs (in the sleep mode)
unavailable. In this case, the contents should be deliv-
ered through the backhaul link from the remote content
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server even though the contents are stored in SCs, which
increases the energy consumption. Therefore, the caching
strategy and sleep scheduling should be jointly adjusted to
reduce the overall energy consumption. However, only few
works consider simultaneously both the caching strategy
and sleep scheduling [6, 7].
The popularity of contents changes dynamically with

temporal patterns [8]. Specifically, contents on micro-
blogging platform such as Facebook and Twitter are very
volatile, and they become popular and fade away in a
matter of minutes. Moreover, their popularity can exhibit
a variety of patterns [9]. Obviously, when the popular
contents are cached, the utility of the cached contents
(e.g., hit ratio) increases. Meanwhile, the content popu-
larity dynamics have strong correlation between short-
term popularity and long-term popularity, and thus, it
can be well-estimated by several methods [10–15]. How-
ever, most of existing cache systems are not designed
by considering the content popularity dynamics, which
is reasonable only when the cache churn time is small
compared with the popularity dynamics.

2 Methods
In this paper, we propose an energy-efficient proactive
edge caching with sleep scheduling (E3CS) where the
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controller jointly adjusts the caching strategy and the sleep
scheduling of SCs by considering the content popularity
dynamics. Specifically, the controller does not command
the sleep mode to SCs having high utility of the cached
contents (e.g., popular contents) and caches proactively
contents estimated to become popular in SCs to reduce
the energy consumption for the content delivery. More-
over, the controller commands the sleep mode to SCs
with low utility of the cached contents (e.g., when there
is no user in the coverage of SC). Then, the energy con-
sumption to maintain the active mode of SCs can be
diminished. To optimize the performance of E3CS (i.e.,
minimize the overall energy consumption), we formulate
a Markov decision process (MDP) and the joint optimal
policy on the caching strategy and sleep scheduling is
obtained by a value iteration algorithm. Evaluation results
demonstrate that E3CS with the optimal policy can reduce
the overall energy consumption by up to 25%.
The contribution of this paper can be summarized as

follows: (1) to the best of our knowledge, this is the first
work to simultaneously optimize the caching strategy and
sleep scheduling with the consideration of the content
popularity dynamics and (2) we present and analyze eval-
uation results under various environments, which provide
guidelines for designing the edge caching systemwith high
energy efficiency.
The remainder of this paper is organized as follows.

Related works are summarized in Section 3 and E3CS
is described in Section 4. After that, the MDP model is
developed in Section 5 and the evaluation results are given
in Section 6, and followed by the concluding remarks in
Section 7.

3 Related works
To improve the energy efficiency of networks by means
of the content caching, there are several works in the
literature [6, 7, 10–26].
To maximize the effectiveness of caching, sociality

between users is exploited in [16, 17]. Nikolaou et al.
[16] proposed two cache placement strategies that take
advantage of known relationships between clients (e.g.,
social links) and the workload on the service. In a sim-
ilar context, Wang et al. [17] analyzed the impact of
social relationships on the performance of edge caching
by means of a Markov chain. Meanwhile, Kakar et al.
[18] introduced the concept of delivery time per bit
and investigated cache-aided heterogeneous wireless net-
works. Since the performance of the caching system can
be improved when the coded contents are cached, some
works focused on the coded contents and introduced
appropriate caching schemes for these contents [19–21].
Maddah-Ali and Niesen [19] proposed a coded caching
scheme to improve substantially the efficiency of content
transmission over un-coded caching. Fadlallah et al. [20]

provided an overview of some caching-aided coded mul-
ticast techniques and then discussed the potential of
caching-aided coded multicast for improving bandwidth
efficiency. Poularakis et al. [21] developed caching algo-
rithms for layered encoding (i.e., scalable video coding
(SVC)) to reduce the average video delivery time. In
[22, 23], it is assumed that the content popularity distri-
bution is fixed, which follows a specific distribution (i.e.,
Zipf distribution). Specifically, Zhou et al. [22] designed a
cache strategy called caching as a cluster where SCs can
exchange contents with each other within the cluster of
SCs, and a probabilistic solution was derived based on
the content popularity distribution to reduce the average
content delivery latency. Meanwhile, Krishnan et al. [23]
studied the effect of retransmissions on the cache strat-
egy for both static and mobile user scenarios with the
fixed content popularity distribution and demonstrated
that the cache strategy is very sensitive to the number
of retransmissions. Since the content popularity is fluc-
tuated, Muller et al. [24] suggested an algorithm which
learns context-specific content popularity by regularly
observing context information of users and updating the
cached contents. However, these works did not take into
account the effect of SCs’ sleep mode on the performance
of the content caching.
Some works analyzed the energy efficiency of edge

caching-enabled networks [25, 26]. Liu and Yang [25]
derived a closed form of the energy efficiency and identi-
fied key impacting factors to the energy efficiency. Simi-
larly, Perabathini et al. [26] analyzed the energy efficiency
and area power consumption based on stochastic geom-
etry and provided the optimal transmission power to
maximize the energy efficiency.
Since the popular contents should be cached to improve

the performance of the caching system, it is important
to estimate the content popularity dynamics. Therefore,
some works focused on the content popularity dynam-
ics estimation [10–15]. Yang and Leskovec [10] studied
on temporal patterns of contents and how the content
popularity grows and fades over time. Similarly, Zhou
et al. [11] analyzed how the content popularity changes
with time, for different types of contents, and then apply
the results to design caching strategies. Meanwhile, some
works developed a prediction model based on empiri-
cal data [12–14]. Szabo and Huberman [12] presented
a model that predicts the long-term content popularity
based on early measurements of user access. Li et al.
[13] proposed a model that can capture the popularity
dynamics based on popularity characteristics (e.g., early
popularity evolution pattern and future popularity burst
possibility). Similarly, Traverso et al. [14] devised a sim-
ple model to capture the dynamics of content popular-
ity. Since most existing popularity prediction models are
based on the big data analytics, their accuracy is highly
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dependent on the size of data sets. To mitigate this prob-
lem, He et al. [15] predicted the viewing probability of
contents from the perspective of individuals by means of
a discrete-time Markov chain.
Few works considered simultaneously both the caching

strategy and the sleep scheduling [6, 7]. Li et al. [6] con-
structed the framework of edge caching with considering
the interaction between caching and sleeping. Specifically,
the content caching problem was formulated to maxi-
mize the average hit rate with an energy consumption
constraint. Meanwhile, Chiang et al. [7] investigated a
multi-cell cooperation-based approach where a cooper-
ative transmission and sleep mode operation are jointly
performed to tackle inter-cell interference while reduc-
ing energy dissipation. However, since these works did
not consider the content popularity dynamics, the optimal
performance of edge caching system cannot be achieved.

4 Energy-efficient proactive edge caching with
sleep scheduling (E3CS)

Figure 1 shows the system model in this paper. We con-
sider a heterogenous networks where a macro cell (MC)
overlays with several SCs which are connected to MC
through an interface (e.g., X2 interface in LTE/LTE-A
networks).
Two types of energy consumption are considered in our

system model: (1) the energy consumption to deliver the
contents and (2) the energy consumption to maintain the
active mode of SCs. The energy consumption to deliver
the contents can be reduced by the edge caching. When
a cached content is requested, SC can provide it and thus
the energy consumption owing to backhaul link transmis-
sions can be reduced.2 To improve this effect, the popular
contents should be previously cached before when these

are requested. That is, contents should be proactively
cached with the consideration of the content popularity
dynamics (i.e., contents should be cached before those
become popular).
Meanwhile, we assume that SCs in the active mode

consume EA energy during the unit time τ . To reduce
this energy consumption, SCs can use the sleep mode.
Since MC generally provides control messages to users,
we assume that MC in our system model does not use
the sleep mode. In the sleep mode, since most func-
tions of SCs are turned off, the energy consumption in
this mode can be negligible. However, the sleep mode
makes the cached contents unavailable. Therefore, the
contents should be delivered from the remote content
server, which increases the energy consumption to deliver
the contents. Especially when SC users in the sleep mode
request excessively, huge energy can be consumed. There-
fore, SCs use the sleep mode only when the utility of
the cached contents is low (e.g., there is no user in the
coverage of SC).
In E3CS, the controller at MC side jointly decides the

caching strategy and conducts the sleep scheduling of SCs
to minimize the overall energy consumption. For this, the
controller maintains some information such as the con-
tent popularity dynamics and the number of users (i.e.,
mobility profiles of users) in each SC. Note that the con-
tent request frequency is dependent on the number of
users in SCs. By using these information, the controller
makes the policy table on the caching strategy and sleep
scheduling and distributes the table to SCs. Basically, we
assume that the library of candidate contents to be cached
is not changed in a short-term scenario,3 and therefore,
we can obtain the optimal policy in an offline manner.
Since newly generated contents are generally not popular

Fig. 1 System model
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at the first time, these contents do not need to be cached
in SCs. Therefore, we believe that our caching scenario
is reasonable. Meanwhile, when some parameters (e.g.,
content popularity) are changed or new contents become
popular, a new policy table should be reconstructed by
the controller to achieve better performance. Since the
complexity of making a policy table is not negligible, too
frequent reconstructions can be huge overhead to the
controller. Therefore, an appropriate frequency should be
determined to balance the tradeoff between the perfor-
mance improvement and the overhead, which is one of our
future works.4 After receiving the policy table, SCs decide
which contents are cached in their storages and whether
to sleep or not by following the distributed policy table. To
obtain the optimal policy table, we formulate MDP which
will be elaborated in Section 5. Since MC has higher com-
putational power than SCs and the policy table is made by
the controller at MC side, the MDP model can be applied
to SCs without any high computation overhead in SCs.

5 Markov decision process (MDP)
To construct the optimal policy table on the caching
strategy and sleep scheduling, we formulate an MDP
model in this section. The MDP model represents a
mathematical framework to model decision making in
situations in which outcomes are partially random and
partially under the control of the decision maker [27].
Therefore, the MDP model appears suitable for simulta-
neously adjusting the cache strategy and sleep scheduling
under the content popularity dynamics. The MDP model
is constructed with five elements: (1) decision epoch, (2)
action, (3) state, (4) transition probability, and (5) cost
functions [28, 29]. Subsequently, we introduce the opti-
mality equation and a value iteration algorithm to solve
the equation. Important notations for the MDP model are
summarized in Table 1.

5.1 Decision epoch
Figure 2 shows the timing diagram for the MDP model.
A sequence T = {1, 2, 3, . . .} represents the time epochs
when successive decisions are made. St and At denote the
state and the action chosen at the decision epoch t ∈ T ,
respectively. τ represents the duration of each decision
epoch.

5.2 State space
We define the state space S as

S = P × M × N ×
NS∏

i
Ci (1)

where P and M denote the state spaces for representing
the popularity of contents and the mode of SCs, respec-
tively. In addition, N means the state space for describing

Table 1 Summary of notations

Notation Description

St State at the decision epoch t

At Action chosen at the decision epoch t

τ Duration of each decision epoch

S State space

P State space for denoting the popularity of contents

M State space for denoting the mode of SCs

N State space for denoting the number of users in SCs

Ci State space for denoting cached contents in SC i

NS Number of SCs

NC Number of contents

MU Maximum number of users in one SC

A Action space

AM Action vector for deciding mode

AC Action vector for deciding whether each content is cached
at SCs

ξ Maximum number of contents which can be cached in SCs

EA Energy consumption of the active mode during τ

Ni,j
R Expected number of requests for content j in SC i

λ Discount factor

the number of users in SCs. Moreover, Ci describes the
state space for representing cached contents of SC i.
Meanwhile, NS is the number of SCs.
P can be represented as

P =
NC∏

j
Pj (2)

where NC is the number of contents. In addition, Pj
denotes the popularity of content j. That is, Pj =
{0, 1, 2, . . . ,MP} where MP is the maximum level of con-
tent popularity. Note that the content popularity can be
quantized by a certain criterion (e.g., the popularity rank-
ing).
Meanwhile,M is described by

M =
NS∏

i
Mi (3)

where Mi denotes the mode of SC i. That is, if SC i is in
the sleep mode,Mi = 0. Otherwise,Mi = 1.
N can be denoted by

N =
NS∏

i
Ni (4)

where Ni denotes the number of users in SC i. That is,
Ni = {0, 1, 2, . . . ,MU}whereMU is themaximum number
of users in one SC.
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Fig. 2 Timing diagram

On one hand, Ci can be represented as

Ci =
NC∏

j
cji (5)

where cji denotes whether the content j is cached in SC
i or not. In other words, if the content j is cached in SC
i, cji = 1. Otherwise, cji = 0. The element of Ci can be
represented by the vector Ci. For example, when the total
number of contents is 5 and the first and third contents
are stored in SC 2, C2 = [1, 0, 1, 0, 0] as shown in Fig. 1.5

5.3 Action space
The action space A can be described as

A = {
A1,A2, . . . ,ANP,A

}
(6)

where NP,A means the total number of possible combi-
nations of actions. Ak represents the kth possible combi-
nation of actions. At each decision epoch, the controller
determines which SCs are in the sleep mode (i.e., con-
ducts the sleep scheduling). In addition, the controller
decides whether each content is cached at each SC (i.e.,
decides the cache strategy). Therefore, one of the vectors
in the action vector set (i.e.,A) can be constructed by con-
catenating two vectors: (1) the action vector for the sleep
scheduling, AM and (2) the action vector for the cache
strategy, AC. That is, A = AM ⊕ AC where ⊕ means the
concatenation operation between two vectors. Moreover,
AC can be constructed by concatenatingNS vectors where
each vector AC

i decides whether each content is cached at
SC i

(
i.e., AC = AC

1 ⊕ AC
2 ⊕ . . . ⊕ AC

NS

)
.

The controller commands each SC whether it goes in
the sleep mode or not. Therefore, AM can be represented
by

[
aM1 , aM2 , . . . , aMNS

]
, where aMi denotes the commanded

mode (i.e., sleep or active mode) to SC i. That is, if aMi = 0,
the controller commands the sleep mode to SC i. On the
contrary, aMi = 1 means that the controller commands SC
i to be active.
Meanwhile, AC

i can be denoted as
[
aCi,1, a

C
i,2, . . . , a

C
i,NC

]

where aCi,j represents whether SC i tries to cache content
j. In other words, aCi,j = 1 means that SC i tries to cache
content j (i.e., SC i downloads content j from the content
server), whereas aCi,j = 0 means that SC i does not try.
Note that the number of contents can be cached is limited
due to the constraint of the storage capacity of SCs. There-
fore, the possible action vector AC

i which can be chosen

is restricted. That is, when κj denotes the size of content
j, only AC

i with
∑
j

κjaCi,j ≤ ξ where ξ is the maximum

number of contents which can be cached in SCs can be
chosen.

5.4 Transition probability
We can think that two type of actions (i.e., action for
the sleep scheduling AM and action for the cache strat-
egy AC) are chosen at each decision epoch. Then, cached
content state C and SC mode state M are dependent on
the chosen action AC and AM, respectively. Meanwhile,
all states change independently with each other. There-
fore, the transition probability from the current state, S =
[P,M,N,C], to the next state, S′ = [

P′,M′,N′,C′], can be
represented by

P
[
S′|S,A] = P

[
P′|P] × P

[
M′|M,AM

]

×P
[
N′|N] × P

[
C′|C,AC

]
. (7)

The transition probability of each state can be derived as
follows. Since the popularity of contents are varied inde-

pendently, P
[
P′|P] =

NC∏
j
P

[
P′
j|Pj

]
where Pj and P′

j denote

the popularity of content j at the next states, respectively.
Meanwhile, P

[
P′
j|Pj

]
can be obtained by various meth-

ods such as statistic manner and model-based approach
[10–15]. For example, by using shot noise model (SNM)
[14], 6 the request rate can be modeled as a function of the
time. Since the request rate at a certain time can represent
the popularity at that time, P

[
P′
j|Pj

]
can be defined.

Since the modes of SCs are decided independently
according to the elements in the chosen action vector

AM, P
[
M′|M] =

NS∏
i
P

[
M′

i|Mi, aMi
]
where Mi and M′

i rep-

resent the mode of SC i at the current and next states,
respectively. Since M′

i is decided by aMi (i.e., SC i changes
its mode by following the command of the controller),
P

[
M′

i|Mi, aMi = 0
]
and P

[
M′

i|Mi, aMi = 1
]
can be repre-

sented by

P
[
M′

i|Mi, aMi = 0
] =

{
1, ifM′

i = 0
0, otherwise (8)

and

P
[
M′

i|Mi, aMi = 1
] =

{
1, ifM′

i = 1
0, otherwise. (9)
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Meanwhile, P
[
N′|N]

can be defined by means of a sta-
tistical manner or a mathematical assumption (e.g., uni-
form distribution and point Poisson process [30]). Note
that P

[
N′|N]

means that the population distribution of
SCs and the mobility of users can be reflected in this
probability.
On the other hand, the contents stored in SC i are

independently decided by the chosen action vector AC
i .

Therefore, P
[
C′|C,AC] =

NS∏
i
P

[
C′
i|Ci,AC

i
]
where Ci and

C′
i represent the cached contents in SC i at the current

and next states, respectively. Meanwhile, whether con-
tent j is stored in SC i or not is decided according to aCi,j.

That is, P
[
C′
i|Ci,AC

i
]
can be calculated by

NC∏
j
P

[
c′ji|cji, aCi,j

]

where cji and c′ji denote the current and next states for
the cached status of content j, respectively. P

[
c′ji|cji, aCi,j

]

is derived as follows. If SC i does not have content j
and the controller decides that content j is stored at
SC i

(
i.e., cji = 0 and aCi,j = 1

)
, SC i downloads content j

by requesting it to the content server. We assume that
the download completion time for content j follows an
exponential distributionwithmean 1/μj.7 Then, the prob-
ability that content j is stored in SC i at the next state can
be calculated by μjτ [31]. Meanwhile, when SC i does not
have content j and the controller decides that content j is
not stored at SC i

(
i.e., cji = 0 and aCi,j = 0

)
, any state tran-

sition does not occur. Therefore, the corresponding state
transition probabilities can be derived as

P
[
c′ji|cji = 0, aCi,j = 1

]
=

{
μjτ , if c′ji = 1
1 − μjτ , if c′ji = 0.

(10)

and

P
[
c′ji|cji = 0, aCi,j = 0

]
=

{
1, if c′ji = 0
0, otherwise.

(11)

When the controller decides that content j is stored
at SC i

(
i.e., aCi,j = 1

)
, if SC i has already content j,

(
i.e., cji = 1

)
, SC i needs not to download content j.

Thus, any state transition does not occur. Meanwhile,
SC i can delete content j immediately. Therefore, when
the controller decides that content j is not stored at
SC i

(
i.e., aCi,j = 0

)
, the next state for content j is 0

(
i.e., c′ji = 0

)
even though the current state for content

j is 1
(
i.e., cji = 1

)
. Then, the corresponding transition

probabilities can be described by

P
[
c′ji|cji = 1, aCi,j = 1

]
=

{
1, if c′ji = 1
0, otherwise

(12)

and

P
[
c′ji|cji = 1, aCi,j = 0

]
=

{
1, if c′ji = 0
0, otherwise.

(13)

5.5 Cost function
To define the cost function, we consider the overall energy
consumption. The overall energy consumption consists of
(1) the energy consumption to deliver the contents, (2) the
energy consumption to maintain the active mode of SCs,
and (3) the energy consumption to change of the cached
contents. Since one SC in the active mode consumes EA
energy during τ , the energy consumption to maintain the

active mode of SCs can be calculated as EA
NS∑
i

δ [Mi = 1],

where δ[ ·] is a delta function to return 1 if the given
condition (e.g., Mi = 0) is true. If the condition is not
true, a delta function returns 0. Meanwhile, the expected
number of requests for content j in SC i at each deci-
sion epoch, Ni,j

R , is proportional to its popularity and the
number of users in SC i. That is, Ni,j

R can be calculated
by αPjni where α is the coefficient parameter reflecting
the duration of decision epoch.8 When the content j is
requested, if SC i is in the active mode and has content j
in its storage

(
i.e.,Mi = 1 and cji = 1

)
, SC i can transport

content j to users. In this case, a small amount of deliv-
ery energy consumption EC,E is needed. On the contrary,
when SC i is in the sleep mode or it does not have con-
tent j in its storage

(
i.e.,Mi = 0 or cji = 0

)
, the requested

content should be delivered from the content server. Since
the energy consumption to deliver the contents is gener-
ally proportional to the distance between the source and
the destination, a large amount of energy EC,C can be
assumed when the content is delivered from the content
server. Meanwhile, when SC i tries to change its stored
content

(
i.e., aCi,j = 0 and aCi,j = 1 or aCi,j = 1 and aCi,j = 0

)
,

the energy ES is needed.9 To sum up, the cost function for
the total energy consumption of networks r(S,A) can be
defined as

r (S,A) = EA
NS∑

i
δ[Mi = 1]

+
NS∑

i

NC∑

j
αPjni

[
EC,Eδ[Mi = 1] δ[ cji = 1]

+ EC,C
{
δ[Mi = 0]+δ[ cji = 0]−δ[Mi = 0] δ[ cji = 0]

}]

+
NS∑

i

NC∑

j
ES

[
δ[ aCi,j = 0] δ[ cji = 1]+δ[ aCi,j = 1] δ[ cji = 0]

]
.

(14)
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5.6 Optimality equation
To minimize the expected total cost and obtain the opti-
mal policy, we choose the expected total discount cost
optimality criterion [32, 33]. Let v(S) be the minimum
expected total cost when the initial state is S. Then, we can
describe v(S) as

v(S) = min
π∈	

vπ (S) (15)

where vπ (S) is the expected total cost when the policy π

with an initial state S is given.
The optimality equation is given by [28]

v(S) = min
A∈A

{
r(S,A) +

∑

S′∈S
λP[ S′|S,A] v(S′)

}
(16)

where λ is a discount factor in the MDP model. A value of
λ closer to 1 gives more weight to future costs. The solu-
tion of the optimality equation corresponds to the mini-
mum expected total cost and the optimal policy. To solve
the optimality equation and to obtain the optimal policy,
δ∗, we use a value iteration algorithm, as shown in Algo-
rithm 1, which is one of the conventional algorithms to
solveMDP problem, where |v| = min[ v(S)] for S ∈ S and
vk(S) is the expected total cost in the step k. First, param-
eters are initialized (line 1 in Algorithm 1). Then, the
expected total cost in the step k for each state is computed
(line 2 in Algorithm 1). After that, the algorithm deter-
mines whether the iteration is sufficiently conducted or
not based on the inequality |vk+1(S)−vk(S)| < ε(1−λ)/2λ
(line 3 in Algorithm 1), where ε is a stopping criterion.
If the iteration is not enough, the algorithm conducts an
additional iteration. Otherwise, the algorithm computes
the stationary optimal policy (line 4 in Algorithm 1).

Algorithm 1 Value iteration algorithm.
1: Set v0(S) = 0 for each state S. Specify ε > 0, and set

k = 0.
2: For each state S, compute vk+1(S) by

vk+1(S) = min
A∈A

{
r(S,A) + ∑

S′∈S
λP[ S′|S,A] vk(S′)

}

3: If |vk+1(S) − vk(S)| < ε(1 − λ)/2λ, go to line 4.
Otherwise, increase k by 1 and return to line 2.

4: For each state S ∈ S, compute the stationary optimal
policy

δ(S) = argmin
A∈A

{
r(S,A) + ∑

S′∈S
λP[ S′|S,A] vk+1(S′)

}

and stop.

Generally, each iteration in the value iteration algorithm
is performed in O(|A||S|2) [34].10 Note the overall state
space and the action space are represented by (1) and (6),
respectively. Therefore, the complexity of this algorithm

is decided by the number of contents, the number of SCs,
the number of users, and the cache size. If these param-
eters have large values (i.e., state and/or action space are
large), the complexity cannot be neglected even though it
is a polynomial function. Therefore, the controller makes
a table to store the optimal policy, which can be pre-
computed by the value iteration algorithm in an offline
manner, and then distributes the table to SCs. This table
includes the state and decision in each state. Then, SCs
can decide whether to be in the sleep mode or not and
which contents are stored according to the policy stored
in the table.

6 Evaluation results
For performance evaluation, we compare the proposed
algorithm, E3CS, with the following five schemes: (1)
ADAP-SLEEP where SCs use the sleep mode only when
the number of users in their area does not exceed δN
while the contents are cached by the MDP, (2) NO-SLEEP
where SCs do not use the sleep mode while the con-
tents are cached by the MDP, (3) ALL-SLEEP where SCs
are always in the sleep mode,11 (4) HALF-SLEEP where
half of SCs which are randomly selected are in the sleep
mode are in the sleep mode whereas the others are in the
active mode while the contents are cached by the MDP,
and (5) POP-CACHE where the content is cached based
on the current content popularity (not content popular-
ity dynamics) while the mode of SCs are decided by the
MDP. Note that, since this is the first work on the joint
optimization of the caching strategy and sleep schedul-
ing by considering the content popularity dynamics, we
introduce simple comparison schemes to demonstrate the
effectiveness of the propose scheme. The performance
metric is the energy consumption ratio, ζ , based on the
energy consumption of ALL-SLEEP. That is, the energy
consumption of ALL-SLEEP is normalized as 1.
The default parameter settings are as follows. The num-

ber of SCs, NS, and the total number of contents, NC , are
set to 25 and 100, respectively [35, 36]. The cache size of
SCs and the average content size are assumed by 1 GB and
500 MB, respectively [36]. In particular, the content size
κj is set to the value between 250 and 750 MB. Then, we
can assume that the maximum number of contents which
can be cached in SCs ξ is set to 2. Meanwhile, we assume
that the link bandwidth between SC and the content
server is 250 MB/s. Then, the average download comple-
tion time, 1/μj, is set to the value between 1/3 and 1.
We assume that the content popularity is dynamically
changed to show effectively the outperforming of the pro-
posed scheme. The maximum number of users in one SC
MU is set to 5 [36]. The number of users in each SC is
dynamically changed with the different probability. That
is, the number of users in 40% of SCs is usually kept small,
while the number of users in 20% of SCs is decided by a
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uniform distribution. On the one hand,many users usually
exist in 40% of SCs. Meanwhile, the energy consumption
EA of the active mode during τ is 6.8 W [37]. In addition,
delivery energy consumptions, EC,E and EC,C , are set to
0.13 and 4.2 W, respectively [37, 38].12 The energy con-
sumption to change contents, ES, is set to 1 W [39].13 On
the other hand, α and τ are set to 0.1 and 1, respectively.
The discount factor λ is set to 0.95. Meanwhile, we have
set the x-axis values based on the real energy consumption
in cellular systems [37, 38].

6.1 Effect of EA
Figure 3 shows the effect of the energy consumption, EA,
for the active mode during τ . From Fig. 3, it can be found
that the energy consumption ratio of E3CS is the low-
est among the comparison schemes. This is because, in
E3CS, caching strategy and sleep scheduling are jointly
adjusted. In doing so, the case where the cached contents
become unavailable due to the sleep mode of SCs rarely
occurs. Specifically, E3CS considers the content popular-
ity dynamics, and therefore, contents estimated to become
popular are cached proactively in SCs. Therefore, the ζ of
E3CS is smaller than that of POP-CACHE. Note that, in
POP-CACHE, the content is cached based on the current
content popularity.
As shown in Fig. 3, when EA is smaller than 5, the energy

consumption of E3CS is comparable to that of NO-SLEEP.
This is because the energy consumption for the active
mode is not a dominant factor to reduce the overall energy
consumption. Therefore, E3CS commands all SCs to be
active to reduce the energy consumption for the content
delivery.
Meanwhile, as EA increases, the energy consumption

to exploit contents cached in SCs also increases. Note
that SCs should be in the active mode to use contents

Fig. 3 Effect of the energy consumption EA for the active mode
during τ

cached in SCs. Therefore, ζ of all schemes except ALL-
SLEEP increases as EA increases. However, since E3CS
commands the sleep mode adaptively depending on EA
(i.e., E3CS frequently commands the sleep mode to more
SCs when EA is large), the energy consumption ratio ζ of
E3CS increases slowly when EA is over 6.

6.2 Effect of EC,C
The effect of the energy consumption EC,C to retrieve con-
tents from the remote content server on ζ is shown in
Fig. 4. From Fig. 4, it can be seen that E3CS operates adap-
tively even when EC,C is changed. Small EC,C means that
contents can be retrieved from the remote content server
without high energy consumption. In such case, E3CS
commands the sleep mode to SCs to reduce the energy
consumption for the active mode in SCs, and thus, the ζ

of E3CS is the same as that of ALL-SLEEP when EC,C is
2. On the contrary, when EC,C has larger value (i.e., when
EC,C is 5 ∼ 6), the energy consumption to retrieve con-
tents from the remote content server is more influential
than the energy consumption for the active mode. As a
results, E3CS does not command the sleep mode to most
SCs, and thus, contents can be delivered from the network
edge (i.e., SCs). Therefore, the ζ of E3CS is comparable to
that of NO-SLEEP.

6.3 Effect of EC,E
The effect of the energy consumption EC,E to deliver con-
tents from the network edge on ζ is shown in Fig. 5. In this
result, α is set to 0.25. When EC,E is small (i.e., EC,E < 1),
the ζ of E3CS is almost the same as that of NO-SLEEP.
This is because, when EC,E is small, the energy saving
effect through the content delivery from the network edge
is more influential than the energy consumption due to
the active mode. In such a situation, SCs are always in

Fig. 4 Effect of the energy consumption EC,C to retrieve contents
from the remote content server
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Fig. 5 Effect of the energy consumption EC,E to deliver contents from
the network edge

the active mode to reduce the energy consumption for
the content delivery. Meanwhile, as EC,E increases, E3CS
commands the sleep mode to some SCs. Especially when
EC,E is lager than 3, E3CS commands the sleep mode to
all SCs, and therefore, the ζ of E3CS is the same as that of
ALL-SLEEP. Meanwhile, since ADAP-SLEEP, NO-SLEEP,
and HALF-SLEEP do not consider the energy consump-
tion to deliver contents from the network edge, their ζ

increases continuously regardless of EC,E . Specifically, the
increasing rate of NO-SLEEP is the highest, because the
contents are always retrieved from the network edge in
this scheme.

6.4 Effect ofμ
Figure 6 shows the effect of the download rate μ between
the content server and SCs. Asμ increase, ζ of all schemes

Fig. 6 Effect of the download rate μ between the content server and
SCs

except ALL-SLEEP decreases. This can be explained as
follows. Large μ represents that contents can be cached
within short time. Then, the cached contents can be
rapidly changed according to the popularity of contents,
which means that the cached contents can be used more
frequently. Consequently, the case where contents are
delivered from the remote content server rarely occurs,
and therefore, the overall energy consumption can be
reduced. This result means that the bandwidth of back-
haul link (i.e., the bandwidth between the content server
and SCs) should be enhanced to reduce the energy con-
sumption.

7 Conclusion
The sleep mode of small cells (SCs) can make the pop-
ular contents unavailable. To prevent this situation, in
this paper, we propose an energy efficient proactive edge
caching with sleep scheduling (E3CS) where the con-
troller jointly adjusts the caching strategy and the sleep
scheduling of SCs with the consideration of the con-
tent popularity dynamics. The joint optimal policy on
the caching strategy and sleep scheduling minimizing
the overall energy consumption is obtained by means
of a Markov decision process (MDP). Evaluation results
demonstrate that E3CS with the optimal policy reduces
the overall energy consumption by up to 25% compared
with other schemes. In addition, it can be also found that
E3CS operates adaptively even when operating environ-
ments (e.g., energy consumptions for the active mode and
the content delivery) are changed. In our future work,
we will extend the MDP model to consider content shar-
ing among users by means of device-to-device (D2D)
communications. Moreover, to reduce the complexity
of the MDP model, we will reformulate another MDP
model that has an implementation-friendly threshold
structure, and then evaluate the model in more practical
scenarios.

Endnotes
1 Proactive content caching is demonstrated to further

boost the caching efficiency compared to reactive data
caching [2–4].

2We assume that contents are cached in only SCs (not
cached in MC) to maximize the effectiveness of edge
caching. Note that the formulation is conducted based on
this assumption, which can be easily extended to consider
the case where contents can be cached in MC.

3 In a long-term scenario where the candidate contents
to be cached can be dynamically changed, an on-line
caching algorithm needs to be considered, which is one of
our future works.
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4 It is hard to define a quantitative metric to denote how
frequently a new policy table should be reconstructed.
Therefore, we conducted the qualitative analysis on the
tradeoff between the performance improvement and the
overhead depending on the frequency.

5 Since all contents cannot be included in the state space
due to large scale of contents, only popular contents
(which have higher probability to be cached in small cells)
should be included in the state space.

6 This model can describe the arrival process of con-
tent requests by the time instant at which the content is
requested by an user, the average number of requests, and
the popularity profile (i.e., how the request rate for the
content evolves over time).

7Note that the download completion time is inverse
proportional to the size of content, κj. Moreover, the
bandwidth of the backhaul link and background traffic
volume can affect the time.

8Note that as the duration of decision epoch increases,
the number of requests for contents during the duration
of decision epoch naturally increases.

9Note that ES is the average consumption during τ

when SC i tries to change contents.
10When ε and λ are set to 0.001 and 0.95, respectively,

the number of iterations to convergence is 65 which is not
quite large. This means that the number of iterations is
not a dominant factor to decide the whole running time
of the value iteration algorithm.

11 In ALL-SLEEP, since SCs are always in the sleepmode,
the contents needs not to be stored.

12EC,C is set based on the link energy consumption [38].
13 Since the energy is rarely consumed to delete data, we

set ES based on the writing operation.
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