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Abstract

In cloud radio access network (Cloud-RAN), most previous research aims to reduce the energy consumption of the
total system and ignores specific requirements of energy-saving in mobile users. For the meantime, some efforts have
been made to devise efficient signal quantization techniques for fronthaul capacity restriction to improve the
performance of Cloud-RAN. To improve the user-centric energy efficiency (EE), we propose two kinds of optimization
algorithms in orthogonal frequency division multiple access-based Cloud-RAN in this paper, whereby Gaussian
quantization and uniform scalar quantization methods are utilized. For single-RRH scenario, alternative iterative
optimization algorithms are proposed to maximize users’ EE, by jointly allocating resources. Furthermore, in more
general scenario for multiple RRHs, authors investigate a modified particle swarm optimization (M-PSO) algorithm to
solve more complex problems, which remain non-linear and non-convex. Simulation results demonstrate the
proposed schemes in this paper outperform conventional solutions and improve EE of users.

Keywords: Cloud-RAN, Fronthaul capacity restriction, Signal quantization, User-centric EE, Joint optimization,
Modified PSO

1 Introduction
1.1 Motivation
With the rapid increment of mobile network, it is esti-
mated that mobile data traffic will rise approximately 1000
times from 2010 to 2020, and the cost is predicted to
decrease 100 times by 2020 [1]. The rapid increase of data
traffic has brought about a fast-growing high burden on
the existing communication system, which include more
strict requirements on spectrum efficiency (SE), energy
efficiency (EE), capital expenditures, and operating expen-
ditures. In order to achieve above targets, China Mobile
raised Cloud-RAN in [2], which is considered as one
promising candidate for next-generation communication
technologies [3].
Cloud-RAN is a cloud-based, green, clean, and col-

laborative radio access network [4]. Figure 1 shows a
simplified diagram of a Cloud-RAN structure. In this
paper, each single mobile user is corresponding to one or
more remote radio heads (RRHs). RRHs, as limited func-
tion transceivers, are attached to the central cloud via a
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limited-capacity fronthaul link. The baseband unit (BBU)
pool, also called as “cloud,” consists of multiple BBUs, for
the better adaptation to non-uniform traffic. The BBU
pool is attached to the core internet via a backhaul link,
through gateway relays. Different from a traditional com-
munication system, Cloud-RAN requires fewer BBUs and
saves network operating costs.
Energy-saving problem has attracted lots of attention in

Cloud-RAN research field. But according to the authors
knowledge, most of the previous research aim to reduce
the energy consumption of the total system and ignore
specific requirements of energy saving of mobile users
[5–7]. To reduce the interference between different chan-
nels [8] and decrease design complexity, we introduce
orthogonal frequency division multiple access (OFDMA)
to Cloud-RAN systems in this paper. Nevertheless, the
fronthaul link capacity of Cloud-RAN is limited, which
is different from a conventional cellular system [9]. To
further improve system performance of Cloud-RAN, sig-
nal quantization techniques have been applied in related
research [10].
Overall, our motivation is to design resource allocation

scheme to improve the energy efficiency of users, under
“signal quantization” mechanism in Cloud-RAN system
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Fig. 1 An architecture layer diagram of Cloud-RAN

in this paper. In single-RRH scenario, authors use frac-
tional programming and Lagrangian dual decomposition
to jointly allocate power and fronthaul capacity. But in a
more general scenario for multiple RRHs, the above opti-
mizationmethods could not be directly utilized because of
the more complex problems, in which objective functions
and constraints also remain non-linear and non-convex.
Instead, we need to seek a new optimization method to
avoid slow convergence and high complexity. Actually,
there exists a clear conflict between optimizing EE only
and optimizing SE only. We will consider it in another
paper, due to space limitation.
This paper focuses on the algorithm for jointly allocat-

ing user uplink transmit power and fronthaul capacity.
The optimization process mainly occurs in the physical
layer and does not know any design details of frames,
including the number of signaling and specific bit val-
ues. Moreover, this article assumes the BBU pool knows
all the information (including CSI); when all users do
not move in the entire process, the users’ association
with RRHs does not change. In the process of resource

allocation, there is little signaling overhead among cloud,
RRHs, and users. Hence, we could not directly perform
quantitative analysis of signaling overhead for Cloud-RAN
systems. However, by using the related technologies, such
as aggregation of BBU pool to increase the fault tolerance,
“signal quantization/compression” for fronthaul link, the
Cloud-RAN system could reduce the signaling overhead
greatly.

1.2 Related work
In Cloud-RAN, the EE performance metric has attracted
considerable attention because of the rapid growth of
carbon emission and running cost of wireless commu-
nication systems [11, 12]. In [5], cross-layer resource
management problem is formulated as a mixed-integer
nonlinear programming problem, which could be relaxed
into an easy-to-solve extended sum-utility maximization
problem. Through jointly UL-DL (uplink-downlink) user
association and beamforming design, a NP-hard problem
of energy minimization is solved by converting to an origi-
nal DL issue with two separate correlated subproblems for
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the original and virtual DL transmissions in Cloud-RAN
[6]. Dai and Yu [13] compare the energy efficiencies of the
data-sharing strategy and compression strategy by utiliz-
ing reweighted l1 minimization and convex approxima-
tion. Wang et al. [14] introduce mobile cloud computing
into Cloud-RAN, while authors establish a joint energy-
saving issue into a non-convex optimization with the con-
straints of task operating time, transmitting power, etc. In
general, the above work pays attention to bring down the
total energy consumption problems (unit: Joule), ignor-
ing the specific energy-saving needs of the users (unit:
Bps/W).
OFDMA, as a promising multi-access technique, has

proved its advantages in both frequency and time domains
to offer high throughput in the 4G system [15, 16]. As
mentioned above, we bring in OFDMA for the Cloud-
RAN in this paper because of its advantages over inter-
ference avoidance and encoding design. Thus, complex
beamforming design [17, 18] and interference cancella-
tion are not needed in OFDMA-based Cloud-RAN in
this paper. And it also has strong compatibility with the
current 4G standards.
But in OFDMA-based Cloud-RAN system, on account

of fronthaul capacity limitation, the conventional energy-
saving methods cannot be directly used. According to [2],
the fronthaul traffic generated by a single user can easily
reach multiple Gigabit byte per second (Gbps) because of
the dense deployment of RRHs. And in practical Cloud-
RAN system, a fiber link with magnitude of Gbps capacity
is often utilized to transmit mobile data. Some signal
compression/quantization methods have been studied in
various networks [8, 10, 19] to enhance the system perfor-
mance and save fronthaul capacity resource. Furthermore,
how to introduce effective “signal quanzation” techniques
to user-centric energy-saving problem is still an open issue
in OFDMA-based Cloud-RAN.

1.3 Main contributions
The contributions of this paper could be shown below:

• Different from the prior work, we aim to resolve the
energy-saving issue of mobile users in an
OFDMA-based Cloud-RAN. In the UL transmission,
under two different quantization methods, a joint
resource allocation issue is formulated to maximize the
energy efficiency of users, when two corresponding
restrictions are user’s UL transmission power and
fronthaul capacity of RRHs. By solving the above
problems, this paper intends to provide a new research
direction for EE improvement in Cloud-RAN.

• In single-RRH scenario, this paper investigates a joint
optimized resource allocation scheme to realize
user-centric energy-saving goal, by utilizing Lagrange
dual decomposition and iterative optimization

method. Under Gaussian quantization and uniform
scalar quantization, some useful insights on the
optimal allocation plans can be obtained, respectively.

• In a more general scenario for multi-RRH, the similar
optimization methods could not be directly utilized
because of the more complex problems, in which
objective functions and constraints also remain
non-convex and non-linear. Instead, authors design a
new Modified-PSO algorithm to solve this issue.
Simulation results confirm the proposed schemes in
this paper outperform conventional solutions.

1.4 Organization
The rest of this paper is organized as shown below.
Section 2 discusses system model of Cloud-RAN and two
quantization ways utilized in fronthaul signal processing.
Section 3 solves the joint optimization problem for single-
RRH scenario and provide some useful simulation results.
Section 4 extends the single-RRH scenario to the general
scenario for multi-RRH and deals with the joint opti-
mization problem for multi-user. Finally, some concluding
remarks are obtained in Section 5.

2 Systemmodel and quantization schemes
As shown in Fig. 1, the UL transmission in a single clus-
ter of Cloud-RAN is considered. The core network, e.g.,
Internet, exists in the upper layer of Cloud-RAN. The cen-
tral “cloud,” consists of multiple BBUs, is connected to the
core network via a backhaul link. The RRH is equipped
with single antenna and its number is M, denoted as
M = {1, . . . ,M}. The number of single-antenna user is K,
K = {1, . . . ,K}. For each RRH m, ∀m ∈ M, the capacity
of fronthaul constraint is T total

m bps.
In the uplink transmission process, mobile users send

signals to RRHs over wireless channel firstly. Second, each
RRH quantizes its received signal and sends the corre-
sponding digital codewords to the BBU pool. Third, the
BBU pool joint decodes the users’ messages carried on the
signals from all the RRHs in the same cluster and upload
the decoded messages through backhaul links.
The detailed models of signals and fronthaul link are

showed as follows.

2.1 Signal model at RRH in OFDMA-based Cloud-RAN
In a system model, the total bandwidth B Hz, which is
between K users and M RRHs, is divided equally over N
subcarriers (SCs),N = {1, . . . ,N}. Single SC n is assigned
to a single user simultaneously and �k is denoted the SCs
assigned to user k,∀k ∈ K.
The signals received by RRHm at SC n is defined as

ym,n = hm,k,n
√pk,nsk,n + zm,n, (1)

where
n ∈ �k is the SC assigned to the user k,
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hm,n,k means the channel gain from kth user tomth RRH
at nth SC,
pk,n is the UL transmit power of kth user,
sk,n ∼ CN (0, 1) is the transmit signal of kth user at nth

SC,
zm,n ∼ CN

(
0, σ 2

m,n
)
is the aggregation of additive white

Gaussian noise (AWGN).
In this paper, we assume the SC allocation scheme �k

is scheduled for simplicity. In practical use, to improve
the system performance, dynamic SC allocation scheme
is often considered by allocating appropriate SCs to users
of favorable wireless link conditions. We will pay more
attention to more specific SC allocation strategies in
future work.
Because the received symbol at SCs by each RRH is

independent with each other, so we assume independent
signal quantization at different RRHs. By utilizing a scalar
quantization method [20], the quantized signal of ym,n
could be rewritten as

ỹm,n = hm,k,n
√pk,nsk,n + zm,n + em,n, (2)

em,n denotes the quantization error for the received sym-
bol ym,n with zero mean and variance qm,n.
After being quantified, ỹm,n is transformed into serial

bits and sent to the BBU Pool via fronthaul link.
Utilizing maximal ratio combining (MRC) technique

[21, 22], the SNR of sk,n is written as

γk,n =
∑M

m=1

∣
∣hm,k,n

∣
∣2pk,n /

(
σ 2
m,n + qm,n

)
, (3)

where n ∈ �k , k ∈ K.

2.2 Two quantization schemes
The first signal quantization method is Gaussian quan-
tization (GQ). In Gaussian test channel (GTC) [23], em,n
given in (2) is Gaussian distributed, em,n ∼ CN

(
0, qm,n

)
.

According to [23], the transmission rate of mth RRH’s
fronthaul link via nth SC to forward uplink transmission
data is denoted as

T (G)
m,n = Blog2

(
1 +

(∣∣hm,k,n
∣∣2pk,n + σ 2

m,n

)
/ qm,n /qm,n

)
NN

(4)

(G) superscript means variables in Gaussian test channel.
Noise variance is included in the numerator of the sec-
ond item in the bracket in the above formula (10). That
is because the Gaussian white noise generated in the pre-
vious stage is used as part of the new signal during the
generation of quantization errors at the RRH. Corre-
spondingly, quantization noise becomes a noise compo-
nent of the new signal to noise ratio.
The variance of em,n of GQ could be rewritten as:

q(G)
m,n =

(∣
∣hm,k,n

∣
∣2pk,n + σ 2

m,n

)
/
(
2NT (G)

m,n/B − 1
)

(5)

The corresponding SNR obtained in (3) can be expressed as

γ (G)
m,n =

M∑

m=1

∣
∣hm,k,n

∣
∣2pk,n

σ 2
m,n + |hm,k,n|2pk,n+σ 2

m,n

2NT(G)
m,n/B−1

(6)

Based on rate-distortion theory, the above Gaussian quan-
tization method has the best theoretical performance
while it is hard to implement practically. In [8], a more
practical uniform scalar quantization (USQ) scheme has
been proposed. Due to space limitations, we just list the
following conclusion referring the above GQ part. The
transmission rate in RRH m’s fronthaul link to forward
the received data at SC n must satisfy the following
constraint

T (U)
m,n = 2BD(U)

m,n/N ,Dm,n ∈ {1, 2, . . .},∀m ∈ M, n ∈ N
(7)

(U) superscriptmeans variables in USQ scheme. The vari-
ance of the quantization error em,n with USQ scheme can
be expressed as

q(U)
m,n = 3

(∣
∣hm,k,n

∣
∣2pk,n + σ 2

m,n

)
2−NT (U)

m,n /B (8)

The corresponding signal to noise ratio (SNR) with USQ
scheme can be expressed as

γ (U)
m,n =

M∑

m=1

∣∣hm,k,n
∣∣2pk,n

σ 2
m,n + 3

(∣
∣hm,k,n

∣
∣2pk,n + σ 2

m,n

)
2−NT (U)

m,n /B

(9)

From the above expression, it can be seen the SNR of
decoding sk,n in Cloud-RAN is also related to both users’
allocation schemes {pk,n} and RRHs’ fronthaul rate alloca-
tions T (G)

k,n , T
(U)

k,n .

3 Joint optimization of the single-RRH scenario
In this subsection, K is defined as 1 and M is fixed to 1,
which cause the omission of k and m. Authors define sys-
tem bandwidth as B, user’s UL power maximum value as
Ptotal, RRH’s fronthaul capacity restriction as T total, and
power loss of user except UL transmission power pn as
Pc. The optimization models based on two quantization
schemes are as follows
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(P1) : max{
pn,T (G)

n
}
B
N

N∑

n=1
log2

⎛

⎝1 + |hn|2pn
σ 2
n+ |hn|2pn+σ2n

2NT(G)
n /B−1

⎞

⎠

N∑

n=1
pn + Pc

(10)

s.t.
N∑

n=1
pn ≤ Ptotal,

N∑

n=1
T (G)
n ≤ T total,∀n ∈ N (11)

(P2) : max{
pn,T (U)

n
}
B
N

N∑

n=1
log2

⎛

⎜
⎝1 + |hn|2pn

σ 2
n+ 3∗(|hn|2pn+σ2n)

2NT(U)
n /B

⎞

⎟
⎠

N∑

n=1
pn + Pc

(12)

s.t.
N∑

n=1
pn ≤ Ptotal,

N∑

n=1
T (U)
n ≤ T total,∀n ∈ N (13)

T (U)
n = 2BD(U)

n /N ,Dn ∈ {1, 2, . . .},∀n ∈ N (14)

Because (P1) and (P2) are both non-linear non-convex
fractional programming problems, it’s hard to obtain the
global optimal solution directly. The following parts aim
to solve two optimization problems separately and obtain
some meaningful conclusions.

3.1 Gaussian quantization
Taking into account non-convex and non-linear charac-
teristics, an alternating optimization method is adopted
to convert original fractional programming issue to two
relatively simple ones.
In (P1), the fronthaul capacity is assumed to have been

allocated optimally and denoted T (G)
n = T (G)

n,opt . Then
origin (P1) is rewritten as

max{pn}
B
N

N∑

n=1
log2

⎛

⎜
⎝1 + |hn|2pn

σ 2
n+ |hn|2pn+σ2n

2
NT(G)

n,opt/B−1

⎞

⎟
⎠

N∑

n=1
pn + Pc

(15)

s.t.
N∑

n=1
pn ≤ Ptotal (16)

Define
{
poptn

}
as the optimal solution of new problem (15).

Correspondingly, UL transmit power is assumed to have
been optimally allocated and denoted pn = poptn . Then
origin (P1) is rewritten as

max{
T (G)
n

}
B
N

N∑

n=1
log2

⎛

⎜
⎝1 + |hn|2poptn

σ 2
n+ |hn|2poptn +σ2n

2NT(G)
n /B−1

⎞

⎟
⎠

N∑

n=1
poptn + Pc

(17)

s.t.
N∑

n=1
T (G)
n ≤ T total (18)

Define
{
T (G)
n,opt

}
as the optimal solution of new problem (17).

Next, before proposing iterative algorithms, authors will
give the optimal solution of (15) and (17), respectively.
Denote ζ = R

(
pn,T (G)

n
)
/ P (pn) as the EE performance

of mobile users, R(pn,T (G)
n ) as the total throughput of

users, P(pn) as the total power loss. Then, problem (P1)
can be converted to max

{pn,T (G)
n }

ζ = R
(
pn,T (G)

n
)
/ P (pn).

In problem (17), the object function can be expressed
as max{pn}

ζ = R (pn) / P (pn), which is a typical fractional

programming problem. Using Lagrangian duality method
in [24], we could offer the propositions as follows.

Proposition 3.1 The optimal conclusion of UL transmit
power control in (15) could be written as:

poptn =
{ −αn+

√
α2
n−4ηn

2 , if |hn|2 / σ 2
n > fn

(
T (G)
n,opt

)

0 , otherwise
(19)

where

αn =

(
2NT (G)

n,opt/B + 1
)

σ 2
n

|hn|2
,∀n (20)

ηn = 2NT (G)
n,opt/Bσ 4

n
|hn|4

−
Bσ 2

n

(
2NT (G)

n,opt/B − 1
)

ln 2N
(
λ(i) + ζ (i)

) |hn|2
,∀i, n

(21)

fn
(
T (G)
n,opt

)
= ln 2N

B
2NT (G)

n,opt/B
(
λ(i) + ζ (i))

2NT (G)
n,opt/B − 1

,∀i, n (22)

λ(i+1) =
[
λ(i) − χ

(i+1)
λ × ∇λ(i+1)

]+
,∀i, n (23)

∇λ(i+1) = Ptotal −
N∑

n=1
p(i)
n ,∀i, n (24)

In (23), λ(i) is the duality factor for power constraint. χ(i+1)
λ

means the size of non-negative step. ∇λ(i+1) represents the
size of subgradient for (i + 1)th iteration.

Proof Please refer to Appendix A.
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Different from problem (15), problem (17) is convex
when T (G)

n,opt could be obtained as follows

Proposition 3.2 The optimal conclusion of fronthaul
capacity in (17) could be written as:

T (G)
n,opt =

⎧
⎨

⎩

B
N log νn + B

N log2
(

1−βpoptn −βPc
βpoptn +βPc

)
, if νn > �n

0 , otherwise
(25)

where

�n = βpoptn + βPc
1 − βpoptn − βPc

, νn = |hn|2poptn
σ 2
n

,β <
1

poptn + Pc
(26)

In the above expressions, β is a constant which satisfies
N∑

n=1
T (G)
n,opt = Ttotal.

Proof Consult Appendix B for details.

In Proposition 3.2, if the received SNR νn is below the
threshold βpoptn +βPc

1−βpoptn −βPc
, T (G)

n,opt is zero. That means the RRH
need not transmit quantized signal to the BBU pool. Oth-
erwise, if the received SNR νn is over the threshold, more
quantized data need to be transmitted. The demand for
fronthaul capacity is growing with higher values of νn.
To solve problem (P1), we design the following algo-

rithm based on Propositions 3.1 and 3.2:

Algorithm 1 Energy-efficient Fronthaul Rate Allocation
And Power Allocation Under Gaussian Quantization for
Problem (P1)
1: Set the maximum number of iterations Imax (1 ≤ i ≤

Imax), starting value ζ (1), converging factor εζ , and
p(1)
n = Ptotal/N ,etc.

2: Set the iteration index initial value i = 1 .
3: For 1 ≤ i ≤ Imax
4: For 1 ≤ n ≤ N
5: Calculate T (G,i)

n,opt based on Proposition 3.2 with
poptn = p(i)

n ;
6: Calculate p(i,opt)

n based on Proposition 3.1 with
T (G)
n,opt = T (G,i)

n,opt , p
(i)
n = p(i,opt)

n ;
7: End For
8: Acquire ζ (i+1) based on (10) in Problem (P1)

while K = 1,M = 1;
9: If ζ (i+1) − ζ (i) < εζ

10: break;
11: Else
12: i = i + 1; Go to step 4;
13: End If
14: End For

It must be particularly pointed out that the algorithm
used in this paper is a centralized processing method,
which is determined by the characteristics of Cloud-
RAN itself. Compared with traditional communication
systems, Cloud-RANs attenuate the performance of RRHs
to reduce network deployment costs, with a formed
BBU pool for more efficient centralized processing. Due
to the following two reasons: (1) RRHs in Cloud-RAN
only have limited functions, which could not meet the
requirements of distributed processing; (2) Distributed
processing requires a large amount of information to be
exchanged among RRHs during the iterations of the algo-
rithm. This will cause a lot of signaling overhead. We do
not consider the usage of “distributed algorithms” in this
paper.

3.2 Uniform scalar quantization
In the following sections, we aim to settle the prob-
lem (P2). Since the objective function of (P2) is similar
to that in problem (P1), new integer constraint can be
ignored firstly, then the propositions for problem (P1)
could be redesigned for (P2). Therefore, an alternating
optimization method is adopted to convert original frac-
tional programming issue to two relatively simple ones.
After solving two simple problems, the corresponding
propositions are as follows.

Proposition 3.3 The optimal conclusion of UL transmit
power control for problem (P2) which only contains power
constraint could be written as:

poptn =
{ −χn+

√
χ2
n−4ψn

2 , if |hn|2/σ 2
n > fn

(
T (G)
n,opt

)

0 , otherwise
(27)

where

χn = σ 2
n

(
6 + 2NT (U)

n,opt/B
)
/ 3|hn|2,∀n (28)

ψn =

(
3 + 2NT (U)

n,opt/B
)

σ 4
n

3|hn|4
− Bσ 2

n2
NT (U)

n,opt/B

3ln2
(
ζ (i) + λ(i)

)
N |hn|2

,∀n, i
(29)

fn
(
T (U)
n,opt

)
= N ln 2

B

(
3 + 2NT (U)

n,opt/B
)
(
ζ (i) + λ(i))

2NT (U)
n,opt/B

,∀n, i
(30)

λ(i+1) =
[
λ(i) − χ

(i+1)
λ × ∇λ(i+1)

]+
(31)

∇λ(i+1) = Ptotal −
N∑

n=1
p(i)
n ,∀i, n (32)
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In (32), λ(i) is the duality factor for power constraint.
χ

(i+1)
λ means the size of positive step.∇λ(i+1) represents the

subgradient in the (i + 1)th iteration.

Proof Similar to Appendix A. Proof of proposition 3.1.

In Proposition 3.3, characteristic of optimal power allo-
cation scheme poptn with the given T (U)

n,opt is similar to that
in Proposition 3.1.

Proposition 3.4 The optimal conclusion of fronthaul
rate allocation for problem (P2) which only contains fron-
thaul capacity constraint could be written as:

T (U)
n,opt =

⎧
⎨

⎩

B
N log2

(
−χn+

√
χ2
n−4ψn

2

)
, if

{
χn < 0
�n > 1

0 , otherwise
(33)

where

�n = −χn +√
χ2
n − 4ψn

2
,∀n (34)

χn = 3|hn|2poptn β + 6σ 2
nβ − 3|hn|2poptn

σ 2
nβ

,∀n (35)

ψn =
9
(
|hn|2poptn + σ 2

n

)

σ 2
n

,∀n (36)

and β is a constant which satisfies
∑N

n=1 T
(U)
n,opt = T total.

Proof Similar to Appendix 6.2.

After obtaining Propositions 3.3 and 3.4, the new integer
constraint T (U)

m,n = 2BD(U)
m,n/N ,Dm,n ∈ {1, 2, . . .} is consid-

ered in problem (P2). Based on Proposition 3.4, we input
pn = poptn and output a feasible solution of T (U)

n,opt . Hence,
we introduce a new variable (0 ≤ τ ≤ 1) to transform
integer constraint as followed

T (U)
n,opt =

{
2B
N 	n , if NT (U)

n,opt
2B − 	n < τ

2B
N 
n , otherwise

(37)

	n =
⌊
NT (U)

n,opt
2B

⌋

,
n =
⌈
NT (U)

n,opt
2B

⌉

,∀n (38)

	n is the number which rounds down to NT (U)
n,opt/2B,⌈

NT (U)
n,opt/2B

⌉
denotes the number which rounds up to

NT (U)
n,opt/2B. For a given τ , the original T (U)

n,opt changes into
2B
N 	n or 2B

N 
n. It could be observed the objective func-
tion in (P2) is monotonically increasing overT (U)

n,opt . Hence,
we should find the optimal τn,opt for each T (U)

n,opt to ensure

∑N
n=1 T

(U)
n,opt as large as possible within fronthaul con-

straint. For a group of input
{
T (U)
n,opt

}
, we need to design

a corresponding group of output
{
τn,opt

}
, which contains

N different element. For simplicity, we set the same τn,opt
for all SCs and the subscript n can be ignored. Bisec-
tion method could be used to find the optimal τopt . Due
to space limitations, we do not list specific algorithms
for finding the optimal τ here. When τ = 0, there are
still significant differences between the two quantization
schemes, mainly because of different target formulas.
Based on Proposition 3.3, Proposition 3.4, a complete

algorithm is redesigned to resolve (P2):

Algorithm 2 Energy-efficient Fronthaul Rate Allocation
And Power Allocation Under Uniform Scalar Quantiza-
tion for Problem (P2)
1: Set the maximum iterations number Imax, 1 ≤ i ≤

Imax, starting value ζ (1), converging factor εζ , τmin =
0, τmax = 1, and p(1)

n = Ptotal/N ,etc.
2: Set the iteration index initial value i = 1 .
3: For 1 ≤ i ≤ Imax
4: For 1 ≤ n ≤ N
5: Calculate T (U ,i)

n,opt based on Proposition 3.4 with
poptn = p(i)

n ;
6: Calculate τopt with T (U ,i)

n,opt based on bisection
method;

7: If NT (U ,i)
n,opt / 2B −

⌊
NT (U ,i)

n,opt / 2B
⌋

≤ τopt

8: Set T (U ,i)
n,opt = 2B / N

⌊
NT (U ,i)

n,opt / 2B
⌋
;

9: Else
10: Set T (U ,i)

n,opt = 2B / N
⌈
NT (U ,i)

n,opt / 2B
⌉
;

11: End If
12: Calculate p(i,opt)

n based on Proposition 3.3 with
T (U)
n,opt = T (U ,i)

n,opt , p
(i)
n = p(i,opt)

n ;
13: End For
14: Obtain ζ (i+1) based on EE expression in Problem

(P2) while K = 1,M = 1;
15: If ζ (i+1) − ζ (i) < εζ

16: break;
17: Else
18: i = i + 1; Go to step 4;
19: End If
20: End For

3.3 Single-RRH scenario: numerical experiment
To evaluate our proposed algorithms for single-RRH sce-
nario K = M = 1 and compare with other resource
allocation methods, we present related simulation conclu-
sions in this subpart. The rest of this subsection is orga-
nized as follows. Different schemes of resource allocation
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over SCs for two quantization schemes are analyzed in
subsection C1. In subsection C2 , we analyze the energy
efficiency gain causing by different optimization meth-
ods for Gaussian test channel. Then, the effect of different
parameter τ on energy efficiency gain under USQmethod
is listed in subsection C3.

3.3.1 Powermanagement and fronthaul capacity
allocation over four SCs

In this simulation part, bandwidth B is set to 100Mhz and
N = 4. The channel gains are fixed as |h1|2 = 1.28×10−9,
|h2|2 = 6.12 × 10−10, |h3|2 = 2.9 × 10−11, and |h4|2 =
1.5 × 10−11. The power spectral density of noise is
−169 dBm/Hz. User UL maximum power limitation Ptotal
and maximum fronthaul limitation T total are set to 0.2W,
0.4 Gbps. In single-user subsection, power consumption
of one user expect UL power is Pc/N=0.5W/8 = 0.0625W.
In Figs. 2 and 3, six resource allocation methods are
compared as follows:
Method 1: GQMax EE: Joint Optimization in this paper.

In this scheme, we joint optimize its uplink transmit
power and fronthaul rate to maximize user-centric energy
efficiency with Gaussian quantization, as mentioned in
Algorithm 1.
Method 2: GQ Max EE: Power Optimization only. In

this scheme, the RRH allocate its fronthaul link capacity
over all SCs equally. Then, under T (G)

n = T total/N , the
user only optimize its uplink transmit power over SCs to
maximize its energy efficiency.
Method 3: GQ Max EE: Fronthaul Optimization only.

In this scheme, the user allocate its uplink transmit power

over all SCs equally. Then, with pn = Ptotal/N , the
RRH only optimize its fronthaul link capacity over SCs to
maximize user’s energy efficiency.
Method 4: GQMax Throughput: Joint Optimization. In

this scheme, we reappear the optimization method in [8]
and joint optimize its uplink transmit power and fronthaul
capacity to maximize user’s throughput instead of user’s
energy efficiency.
Method 5: Equal Fronthaul and Power Allocation. Dur-

ing this scheme, user allocates its uplink transmission
power over all SCs equally when RRH allocates its fron-
thaul link capacity over all SCs equally.
Method 6: USQ Max EE: Joint Optimization in this

paper. In this scheme, we joint optimize its uplink transmit
power and fronthaul rate to maximize user-centric energy
efficiency with uniform scalar quantization, as mentioned
in Algorithm 2.
In Figs. 2 and 3, some useful conclusions could be

obtained as follows.
Conclusion 1: In Fig. 2, method 1 and method 6 did not

tend to allocate all power to SCs compared with methods
3–5. The power resource is almost allocated to two best
channel quality subcarriers SC1 and SC2 in method 4. But
for method 1 and method 6, the total sum of the allocated
power over four SCs is less than Ptotal = 0.2W . This states
our designed Algorithm 1 and Algorithm 2 works well and
saves the uplink transmit power effectively.
Conclusion 2: From Fig. 2, Fig. 3, we can observe that the

joint optimization in method 1 and method 6 tend to allo-
cate more power resource and fronthaul capacity to the
better channel condition SC, which strategy is consistent
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Fig. 2 Power allocation over four SCs
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Fig. 3 Fronthaul rate allocation among four SCs

with method 4. For instance, the poorest channel condi-
tion SC 4 is almost shut down while the best channel SC 1
receive the most resources.
Conclusion 3: All methods, including Algorithm 1

in method 1 and Algorithm 2 in method 6, tend
to allocate all fronthaul link capacity over all SCs.
For example, the sum of the fronthaul rate of each
subcarrier is almost 400 Mhz in all methods. That
means the fronthaul capacity boundary T total can be
reached.

3.3.2 Energy efficiency gain causing by differentmethods
under Gaussian quantization

Different from the settings above, bandwidth B is set to
100 Mhz and N = 32 in this subsection. In an I.I.D
Rayleigh fading channel model of six paths, the pass
loss model is set as L = 30.6 + 36.7log10 (d). The dis-
tance between user and RRH is 50 m. Other parame-
ters are consistent with the settings in Subsection 3.3.1.
In Fig. 4, parameter Ptotal remains invariant when T total

keeps unchanged in Fig. 5.
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Fig. 4 Performance of various schemes under GQ versus fronthaul capacity
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Fig. 5 Performance of various schemes under GQ versus power

In Figs. 4 and 5, some useful conclusions could be
obtained as follows:
Conclusion 1: Fig. 4 shows Algorithm 1 proposed in this

paper always achieves better EE performance compared
with other methods. When T total < 1 Gbps, the perfor-
mance gain of Algorithm 1 is more obvious. However,
whenT total is continuously growing, the performance gain
from power optimization only approximates Algorithm 1.
The reason is that each symbol can be quantized by
enough bits when T total is sufficiently large. Therefore, the
effect of specific fronthaul allocation method is smaller.
It shows Algorithm 1 works better for limited fronthaul
capacity Cloud-RAN scenes. Because the channel condi-
tions of RRHs and users are different, the performance of
the scheme for average allocating resources is almost the
worst.
Conclusion 2: Fig. 4 also indicates method 2 always

produces more gain than method 3. That is because opti-
mizing users’ power has more impacts on objective func-
tion than optimizing fronthaul capacity. Figure 5 shows
that the proposed Algorithm 1 could realize better EE
performance, allocate power on each SC effectively, and
optimize two variables pn and T (G)

n jointly, when Ptotal is
growing. In Fig. 5, the maximum EE gradually grows to
a maximum value and stops growth with Ptotal increases
when T total keeps unchanged.

3.3.3 The effect of different parameter τ on EE gain for USQ
method

In this part, the simulation parameters are the same as
the settings in part 3.3.2. Compared with problem (P1),

problem (P2) for USQ method has an integer restriction,
which is T (U)

n = 2BD(U)
n / N ,Dn ∈ {1, 2, . . .},∀n ∈ N .

Figure 6 assumes stationary Ptotal when T total is fixed in
Fig. 7. In this subsection, the effect of different parameter
τ is analyzed.
From Figs. 6 and 7, the following conclusions can be

obtained:
Conclusion 1: When τ = 0, that means the restriction

T (U)
n = 2BD(U)

n / N ,Dn ∈ {1, 2, ...} does not work and
the EE obtained could reach the upper bound. Meanwhile,
τ = 1 indicates all NT (U)

n / 2B is set to a large integer as
possible. Because objective function of (P2) is monotoni-
cally increasing over T (U)

n , τ = 1 causes the lower bound
of EE.
Conclusion 2: The performance of the EE obtained by

the USQ method is lower than that obtained by GQ
method, under the same simulation parameters. This
gap is understandable because the GQ method is the-
oretically optimal and often treated as a performance
upper bound. However, in the actual scenario, the GQ
method is difficult to achieve. When T total is large
enough, the EE-USQ approaches the theoretical EE-GQ
bound.

4 New algorithms for multi-RRH scenario
During this subsection, authors extend the special single-
RRH scenario to general multi-RRH scenario, whenK > 1
and M > 1. We assume �k as the allocated SCs to single
user k. Two corresponding restrictions are kth user’s max-
imum UL transmit power Ptotalk andmth RRH’s maximum
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Fig. 6 The effect of τ (tau) under fixed Ptotal

fronthaul capacity T total
m . Based on two different quanti-

zation schemes, the optimization models in multi-RRH
scenario are as follows.

(P3) : max{
pk,n,T

(G)
m,n

}

B
N

K∑

k=1

∑

n∈�k

log2
(
1 +

M∑

m=1
�m

)

K∑

k=1

∑

n∈�k

pk,n + Pc
(39)

s.t.

N∑

n=1
T (G)
m,n ≤ T total

m ,∀m ∈ M (40)

∑

n∈�k

pk,n ≤ Ptotalk ,∀k ∈ K (41)

where

�m =
(∣
∣hm,k,n

∣
∣2pk,n

)
/

(

σ 2
m,n +

∣
∣hm,k,n

∣
∣2pk,n + σ 2

m,n

2NT (G)
m,n/B − 1

)

(42)
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(P4) : max{
pk,n,T

(U)
m,n

}

B
N

K∑

k=1

∑

n∈�k

log2
(
1 +

M∑

m=1
�m

)

K∑

k=1

∑

n∈�k

pk,n + Pc
(43)

s.t.
N∑

n=1
T (U)
m,n ≤ T total

m ,∀m ∈ M (44)

∑

n∈�k

pk,n ≤ Ptotalk ,∀k ∈ K (45)

T (U)
m,n = 2BD(U)

m,n / N ,Dm,n ∈ {1, 2, ...},∀m ∈ M,∀n ∈ N
(46)

where

�m = ∣
∣hm,k,n

∣
∣2pk,n /

⎛

⎝σ 2
m,n +

3
(∣
∣hm,k,n

∣
∣2pk,n + σ 2

m,n

)

2NT (U)
m,n/B

⎞

⎠

(47)

The similar optimization problems in general scenario for
multi-user are more complex. And it is difficult to utilize
fractional programming and Lagrangian dual decomposi-
tion directly. To address the non-convex and non-linear
optimization problems, authors come up with a modified
particle swarm optimization (M-PSO) algorithm. Actu-
ally, the M-PSO method also could be used for a single-
user scenario, but its effect is not good, because M-PSO
is a heuristic algorithm, which is suitable for dealing with
complex problems. For the single-user scenario which has
been simplified, its performance is not significantly better
thanAlgorithm 1. AndM-PSO algorithm can only give the
optimal strategy scheme within the allowable error range
through simulation. However, the analytical expression of
the optimal scheme cannot be given theoretically. Instead,
we could give the analytical expression in Algorithm 1.

4.1 The proposed M-PSO algorithm for P3
Particle swarm optimization (PSO), originally got the
inspiration from the movement feature of fish and bird, is
a population-based approach to solve optimization prob-
lems by changing the candidate solution [25, 26]. In
PSO system, particles are moving around in the multi-
dimensional search-space for particle’s moving, according
to the mathematical rule. Every particle adjusts its posi-
tion based on its local best known position in the search
history, but is also directed to the most known optimal
positions of other particles. In the standard PSO algo-
rithm, the velocity and position of single particle change
are as follows:

vi+1
qd = wviqd + c1ξ

(
ziqd − xiqd

)
+ c2ρ

(
sigd − xiqd

)
(48)

xi+1
qd = xiqd + vi+1

qd (49)
where
Qmax, 1 ≤ q ≤ Qmax: The particle number;
D, 1 ≤ d ≤ D: The space dimension;
Imax, 1 ≤ i ≤ Imax: Maximum iterations;
xq = (

xq1, xq2, ..., xqD
)
: Position information of particle

q in the D dimension;
vq = (

vq1, vq2, ..., vqD
)
: Velocity information of particle q

in the D dimension;
zq = (

zq1, zq2, ..., zqD
)
: Best historic position informa-

tion of particle q in the D dimension;
sg = (

sg1, sg2, ..., sgD
)
: Best historic position information

of all particles in the D dimension;
c1, c2: The learning factors that determine the size of

step;
w: The inertial weight which determine the influences of

particle’s previous velocity on next velocity;
ξ , ρ: Randomly distributed numbers between [0,1];
As stated in the formula above, standard PSO is more

suitable for solving the non-constrained problems. There-
fore, it is necessary to design an improved M-PSO for
(P3-P4). Based on [27], this subsection considers the
application of asynchronous time-varying learning factors
c1, c2 and linear time-varying weights w. To guarantee the
particles have the best performance in searching for the
global optimal value in the initial stage and good con-
vergence in the final stage, the dynamic range of weight
[wmin,wmax] is further considered. The corresponding
expression between the dynamic weight w and iteration
number i is as follows.

wi = wmax − (wmax − wmin) / Imax × i (50)

For the same reason, learning factors c1 and c2 are also
redesigned. The learning factors of the ith iteration could
be represented:

ci1 =
(
cfinal1 − cinitial1

)
× i / Imax + cinitial1 (51)

ci2 =
(
cfinal2 − cinitial2

)
× i / Imax + cinitial2 (52)

where cinitial1 , cfinal1 , cinitial2 , cfinal2 are the initial and final val-
ues of C1 and C2, respectively. In this paper, we select the
following variable assignments wmax = 1, wmin = 0.1,
cinitial1 = cfinal2 = 4, cfinal1 = cinitial2 = 0.1, for better
convergence.
In Fig. 8, a numerical example is provided to prove

the modified PSO algorithm has obvious advantages over
standard PSO in seeking global optimal solution. The
fronthaul capacity T total is fixed as 2 Gbps and UL trans-
mission power Ptotal is assumed as 0.2 W. We set M = 8,
K = 8, Pc = 0.5 W, B = 150 Mhz, N = 32. For conve-
nience, each user is pre-assignedN/K = 4 SCs. In an I.I.D
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Fig. 8 The comparison between proposed M-PSO and standard PSO

Rayleigh fading channel model of six paths, we distribute
RRHs and use randomly in a circle with a radius of 100 m,
when the pass loss model is set as L = 30.6+36.7log10 (d).
Two different PSO algorithms have the same particle
number Qmax = 250 and maximum iterations number
Imax = 1000. Figure 8 reveals the proposed modified
PSO algorithm can achieve better EE performance com-
pared with standard PSO when Qmax, Imax keep the same.
According to experimental tests in Appendix C, proper

parameters Qmax = 2000, Imax = 2000 are chosen to offer
good tradeoff between sufficiently good EE performance
and sufficiently short searching time.
Therefore, a new algorithm of M-PSO is designed for

(P3).

In step 2, x1q =
(

{pk,n}q,
{
T (G)
m,n

}

q

)
, v1q =

(
{vpk,n}q,

{
vT (G)

m,n
}

q

)
are the initial position and velocity of qth par-

ticle. The utility function of F is designed according to the
objective function in (39) in step 3.

4.2 The proposed M-PSO algorithm for P4
To solve problem (P4), the utility function of F in
Algorithm 3 should be set as the objective function in (43).
In addition, particle position xi+1

q should not only satisfy
the constraint in (44, 45), but also ensure integer con-
straint in (46). Details of the specific adjustment of xi+1

q in
step 9 for USQ is similar to that in Algorithm 3.

4.3 Multi-RRH scenario: numerical experiment
Under two different quantization schemes, i.e., GQ and
USQ, numerical examples are provided to evaluate the

Algorithm 3 Proposed M-PSO Algorithm for Jointly
Optimization Under Gaussian Quantization for Problem
(P3)
1: Input wmin,wmax, cinitial1 , cfinal2 , cfinal1 , etc;

2: Randomly initialize x1q =
(

{pk,n}q,
{
T (G)
m,n

}

q

)
, v1q =

(
{vpk,n}q,

{
vT (G)

m,n
}

q

)
under constraint (40) (41);

3: Set z1q ← argmaxF
(
x1q
)
, sg ← argmaxF

(
z1q
)

according to the objective function in (40) (41);
4: For 1 ≤ i ≤ Imax
5: For 1 ≤ q ≤ Qmax
6: xi+1

q = xiq + viq
7: IF xi+1

q penetrate the borders in (40), (41)
8: Reinstall xi+1

q ;
9: When xi+1

1 can satisfies the constraints
10: Update zi+1

q ← arg max{
xi+1
q

}F
(
xi+1
q

)
, if

F
(
xi+1
q

)
> ziq;

11: Update sg ← arg max{
zi+1
q

}F
(
zi+1
q

)
> F

(
ziq
)
;

12: Update vi+1
q = wiviq + ci1ξ

(
ziq − xiq

)
+

ci2ρ
(
sg − xiq

)
based on (48-52);

13: End When
14: i = i + 1;
15: End For
16: End For
17: Output xImax

q ,F
(
xImaxq

)
;
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energy efficiency of different optimization methods. In
Fig. 9, Ptotal is fixed to 0.2 W when T total = 0.8 Gbps
remains unchanged in Fig. 10. The rest of the relevant
simulation parameters are set according to Fig. 8. We
also compare energy efficiency under different resource
allocation schemes in Figs. 9 and 10.

• Scheme 1 (Max EE Under GQ: Joint Opt By
M-PSO): The proposed Algorithm 3 for joint
optimization of user-centric energy efficiency under
Gaussian quantization.

• Scheme 2 (Max EE Under GQ: Joint Opt By S-PSO
in [25]): The user-centric EE optimized by standard
PSO algorithm.

• Scheme 3 (Max EE Under GQ: Power Opt Only By
M-PSO): Optimize power only in problem (P3) when
fronthaul resources allocated equally.

• Scheme 4 (Max EE Under GQ: Fronthaul Opt Only
By M-PSO): Optimize fronthaul capacity only in
problem (P3), contrary to scheme 3.

• Scheme 5 (Max Throughput Under GQ:
Interior-point Method in [8]): The algorithm
presented in [8] for throughput maximization
utilizing interior-point method.

• Scheme 6 (Max EE Under GQ: Equal Fronthaul
Allocation and Power): Users allocate uplink transmit
power over all SCs equally when RRHs allocate
fronthaul link capacity over all SCs equally.

• Scheme 7 (Max EE Under USQ: Joint Opt M-PSO):
In contrast to scheme 1, the quantization method
changed into uniform scalar quantization (USQ).
During the period of signal processing, the received

signal could be firstly converted to
in-phase/quadrature (I/Q) parts. Secondly, every
RRH uses positive integer bits to normalize I/Q parts.
From an optimization point of view, the USQ method
puts an integer limit condition on fronthaul rate Tm,n.

In Figs. 9 and 10, simulation results reveal the following
conclusions:
Conclusion 1: All figures show the proposed M-PSO in

Algorithm 3 7y7 realize better EE all the time, compared
with S-PSO. Based on simulations of M-PSO algorithm in
Appendix C, parameter Qmax = 2000, Imax = 2000 could
offer good tradeoff between sufficiently good EE perfor-
mance and sufficiently short searching time. In contrast,
S-PSO could not implement a stable EE value, under the
same parameters.
Conclusion 2: Fig. 9 indicates that the theoretical upper

information EE obtained by GQ is superior to which
obtained by USQ, when T total<2 Gbps. Further, the EE-
USQ nearly coincides with EE-GQ, when T total>2 Gbps.
This trend is consistent with the single-user scenario in
Fig. 6. Besides, when T total is fixed in Fig. 10, there is
a significant gap between the EE-GQ curve and the EE-
USQ curve, which is similar to the conclusion of Fig. 7.
At the same time, power optimization generate more gain
than fronthaul optimization in Fig. 9. However, Fig. 10
gives the opposite case that fronthaul optimization is bet-
ter than power optimization, meanwhile T total is fixed and
Ptotal<0.1 W.
Conclusion 3: Both two figures shows that the improved

M-PSO could realize better EE than which obtained
by all other schemes. The similar conclusion is that
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Fig. 9 Performance of various schemes versus fronthaul capacity for multi-RRH scenario
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Fig. 10 Performance of various schemes versus power for multi-RRH scenario

performance gain achieved by Algorithm 3 is not as as
significant as the power optimization only, when T total

increases. Obviously, the corresponding T total of inter-
section between scheme 1 and scheme 3 is bigger than
that obtained in a single scenario. That illustrates M-PSO
algorithm is more suitable for a multi-user case, because
fronthaul capacity constraints is more serious.

5 Conclusion
In this article, authors study the joint optimization prob-
lem to improve energy efficiency of users in Cloud-RAN
system, under two quantization methods. The main cor-
responding restrictions are user’s UL transmission power
and RRH’s fronthaul capacity. Compared with existing
work, this paper firstly take into account “signal quanti-
zation” and “fronthaul capacity constraint” in user-centric
EE maximization of OFDMA-based Cloud-RAN. For
single-user scenario, the related algorithms are formu-
lated to maximize the EE of users by optimizing power
control and fronthaul capacity allocation. Then we extend
single-RRH scenario to the more general scenario of mul-
tiple RRHs and resolve the more complex non-convex and
non-linear problems by devising M-PSO algorithms. Sim-
ulation results demonstrate that the proposed schemes
in this paper outperform conventional solutions and
improve EE of users obviously.

Appendix
A. Proof of proposition 3.1
Proof We denote subscript optimal as opt. In problem

(15), the EE performance ofmobile users ζ is non-negative
with the optimal value ζopt = C

(
poptn

)
/ P

(
poptn

)
. An

equivalent function is defined F(ζ ) = max{pn} C
(
poptn

)
−

ζP
(
poptn

)
. According to [24], the problem (17) is equiva-

lent to new transformed EE optimization

max{pn} C
(
poptn

)
− ζP

(
poptn

)
(53)

F (ζ ) is strictly monotonic decreasing when ζ increases
with F (ζ ) ≥ 0.

Based on the decreasing characteristic of F (ζ ),
Algorithm 4 is raised to settle the transformed issue by
updating ζ in the following algorithm.
When the non-zero duality between the optimal value

of max{pn} C (pn) − ζ (i)P (pn) and its dual problem is nearly

zero, the problem of the ith inner loop could be solved by
Lagrange dual decomposition method.
The Lagrange function of the problem in the ith inner

loop is as follows

L
({
pn
}
, λ
) = B

N

N∑

n=1
log2

⎛

⎜
⎝1 + |hn|2pn

σ 2
n+ |hn|2pn+σ2n

2
NT(G)

n,opt/B−1

⎞

⎟
⎠

−ζ (i)
( N∑

n=1
pn + Pc

)
− λ(i)

( N∑

n=1
pn − Ptotal

)
(54)

where λ is the dual vector associated with the total
transmission power limitation in (18). For single SC, the
subproblem can be expressed as
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Algorithm 4 Problem (17) Green Joint Power Control and
Fronthaul Capacity Allocation For Optimal ζ
1: Suppose maximum number of iterations Imax, 1 ≤

i ≤ Imax, starting value ζ (1), and the convergence
conditions εζ .

2: Set i = 1 .
3: For 1 ≤ i ≤ Imax
4: Inner Loop: for a obtained ζ (i), resolve the resource

allocation problem.
5: Obtain p(i)

n ,C
(
p(i)
n
)
,P

(
p(i)
n
)
.

6: If C
(
p(i)
n
)

− ζ (i)P
(
p(i)
n
)

< εζ , then

7: Set poptn = p(i)
n , ζ opt = ζ (i).

8: Break;
9: Else

10: Set ζ (i+1) = C
(
p(i)
n
)
/ P

(
p(i)
n
)
, and i = i+1;

11: End If
12: End for

max
pn≥0

Ln (pn) (55)

where

Ln (pn) = B
N
log2

⎛

⎜
⎜
⎝1 + |hn|2pn

σ 2
n + |hn|2pn+σ 2

n

2NT(G)
n,opt/B−1

⎞

⎟
⎟
⎠−

(
ζ (i) + λ

)
pn

(56)

Since Ln (pn) is concave over pn, its corresponding deriva-
tive over pn is shown below

∂Ln(pn)
∂pn = B

N ln 2

|hn|2σ 2
n

(

2NT(G)
n,opt/B−1

)

(

2NT(G)
n,opt/Bσ 2

n+|hn|2pn
)
(
σ 2
n+|hn|2pn

)

− (
ζ (i) + λ

)
,∀n

(57)

By setting ∂Ln(pn)
∂pn = 0, then we have the following expres-

sion

p2n+

(
2NT (G)

n,opt/B + 1
)

σ 2
n

|hn|2
pn+ 2NT (G)

n,opt/Bσ 4
n

|hn|4
−� = 0,∀n

(58)

where

� = B
ln 2

σ 2
n

(
2NT (G)

n,opt/B − 1
)

N
(
λ(i) + ζ (i)

) |hn|2
(59)

By denoting αn as (28), ηn as (30), the above expression
can be expressed as

p2n + αnpn + ηn = 0,∀n (60)

According to the relevant characteristics of a quadratic
equation, to obtain the meaningful solution, we denote

α2
n − 4ηn ≥ 0 (61)

and then we have the following expression

α2
n − 4ηn = σ 2

n
|hn|2 + 4 1

ln 2N(λ(i)+ζ (i))

(

2NT(G)
n,opt/B−1

) > 0

(62)

So α2
n−4ηn always set up and the above quadratic equation

always have the meaningful solution. At the same time,
because pn ≥ 0, we set the constraint

ηn < 0 (63)

By substituting ηn in (30), we can further draw the follow-
ing conclusion

|hn|2
σ 2
n

>
ln 2N
B

2NT (G)
n,opt/B

(
λ(i) + ζ (i))

2NT (G)
n,opt/B − 1

= fn
(
T (G)
n,opt

)

(64)

Because the objective function in (17) is not increasing
monotonically over pn, the subgradient-based method is
utilized to obtain in λ [28]. The subgradient of the dual
function is shown below

∇λ(i+1) = Ptotal −
N∑

n=1
p(i)
n (65)

where p(i)
n means the allocated power at SC n of ith itera-

tion, ∇λ(i+1) is the subgradient applied in (i + 1)th itera-
tion. Therefore, the iterative formulas of dual variables in
(i + 1)th iteration are shown below

λ(i+1) =
[
λ(i) − χ

(i+1)
λ × ∇λ(i+1)

]+
(66)

where χ
(i+1)
λ is the positive step size.

Proposition 3.1 is thus proved.

B. Proof of Proposition 3.2
Proof The Lagrangian of problem (27) can be expressed as

L
({

T (G)
n

}
,β
)

= B
N

N∑

n=1
log2

⎛

⎜
⎜
⎝1+ |hn|2poptn

σ2n+ |hn|2poptn +σ2n

2NT(G)
n /B−1

⎞

⎟
⎟
⎠

N∑

n=1
poptn +Pc

−β

( N∑

n=1
T (G)
n − T total

)

(67)

where β is the dual vector corresponding to fronthaul
capacity constraint in problem (27). Similar to proof of
proposition 3.1, for single SC, the associated subproblem
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is shown below

max
T (G)
n ≥0

Ln
(
T (G)
n

)
,∀n (68)

where

Ln
(
T (G)
n

)
= B

N

log2

⎛

⎜
⎝1 + |hn|2poptn

σ 2
n+ |hn|2poptn +σ2n

2NT(G)
n /B−1

⎞

⎟
⎠

poptn + Pc
− βT (G)

n

(69)

Since Ln
(
T (G)
n

)
is concave over T (G)

n , its corresponding

derivative over T (G)
n can be expressed as

∂Ln
(
T (G)
n

)

∂T (G)
n

= 1
poptn + Pc

(

1 − σ 2
n2NT (G)

n /B

|hn|2poptn + σ 2
n2NT (G)

n /B

)

−β

(70)

By setting ∂Ln
(
T (G)
n

)
/ ∂T (G)

n = 0, then we have the
following expression

2NT (G)
n /B = |hn|2poptn

βσ 2
n

(
poptn + Pc

) − |hn|2poptn
σ 2
n

(71)

Since T (G)
n ≥ 0 always exists, to obtain the meaningful

solution, we have

|hn|2poptn

βσ 2
n

(
poptn + Pc

) − |hn|2poptn
σ 2
n

> 1 (72)

From the above expression of T (G)
n , we can further

derive

T (G)
n = B

N
log2

(
|hn|2poptn

σ 2
n

)

+ B
N
log2

⎛

⎝ 1

β
(
poptn + Pc

) − 1

⎞

⎠

(73)

β <
1

poptn + Pc
(74)

Assume νn = |hn|2poptn / σ 2
n , we can obtain the conclusion

in expression (25).

Under the constraint β < 1
poptn +Pc

given above, optimal
β can be obtained when the fronthaul link capacity is tight
in problem (27). The optimal βopt could be obtained by a
bisection algorithm, as a solution to problem (27).

Proposition 3.2 is thus proved.

Table 1 Comparison between different Qmax and Imax in
modified PSO algorithm

Qmax Imax Stable value of EE (Gbps/W) Calculating time (h:m:s)

500 500 1.8669 0 : 2 : 09

750 500 1.8873 0 : 3 : 10

1500 500 1.890 0 : 5 : 41

2000 2000 1.9143 0 : 45 : 23

3000 3000 1.9145 2 : 25 : 01

4000 4000 1.9147 6 : 06 : 03

5000 5000 1.9147 14 : 2 : 5

C. Comparison between different Qmax and Imax in
modified PSO algorithm
In Table 1, the simulation parameters is the same as which
in Fig. 8. From this table, we can learn when we set
Qmax = 2000, Imax = 2000 is suitable. Because when
the number of particles Qmax and maximum number of
iterations Imax continue to increase, the final EE stable
value keeps the same while the total time calculating by
MATLAB grows rapidly.
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