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Abstract

This paper investigates the outage probability and rate performance of multi-hop full duplex (FD) and half duplex
(HD) decode-and-forward (DF)-based relay networks. First of all, we derive new closed form equation for the
end-to-end outage probability of multi-hop FDR system taking into account the inter-relay interference (IRI), i.e.,
interference caused by simultaneous transmissions by the nodes in non-orthogonal frequency bands, and the residual
self-interference (RSI) present at the full duplex relay (FDR) nodes, in independent non-identical Nakagami-m fading
channels. We also derive an approximate expression for the outage probability which is found to be highly accurate.
Further, we provide an asymptotic expression as well, for Rayleigh fading channels. Furthermore, we derive exact and
approximate expression for the outage probability of multi-hop spectral efficient HDR network that employ two-phase
relaying. We then consider optimal power allocation (OPA) for multi-hop FDR and HDR networks that maximizes the
end-to-end transmission rate with individual peak power constraint at the nodes. Since the optimization problem is
non-convex, we develop an efficient, low-complex and fast-converging iterative algorithm for power allocation based
on sequential convex programming. Secondly, we consider OPA for multi-hop FDR and HDR networks that minimizes
the end-to-end outage probability with individual peak power constraints at the nodes. We devise geometric
programming (GP) to obtain the OPA vector. The results demonstrate that OPA can significantly improve the outage
and end-to-end rate performance of both FDR and HDR networks as compared to uniform power allocation policy.
The results from the analytical model are validated by extensive Monte Carlo simulations.

Keywords: Full duplex relaying, Decode-and-forward, Multi-hop transmission, Outage probability, Nakagami-m
fading, Optimal power allocation

1 Introduction
In multi-hop wireless relay networks, communication
between the source node and destination node is facili-
tated with the help of a number of relay nodes in cascade
[1, 2]. In conventional multi-hop relay networks, the relay
nodes operate in half duplex mode. Recently, extensive
investigations have been reported on the use of full duplex
relaying (FDR) instead of half duplex relaying (HDR) [3].
The full duplex relay nodes are capable of performing
reception and transmission concurrently using the same
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frequency band, resulting in improved spectral efficiency
as compared to HDR systems. However, FDR systems suf-
fer from self-interference (also known as echo or loop
interference), arising due to imperfect isolation between
the transmitting and receiving antennas of the relay, which
can be mitigated by adopting effective antenna isola-
tion and interference cancellation techniques. In spite
of the advancements made in the design of such tech-
niques, studies have shown that FDR systems are always
affected by the presence of residual self-interference
(RSI). On the other hand, HDR system does not suf-
fer from RSI; however, the spectral efficiency is reduced
significantly [3–6].
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The end-to-end performance of multi-hop HDR net-
works has been studied extensively in the literature, e.g.,
[1, 2, 7–11]. Recently, the outage probability of a decode-
and-forward (DF) FDR system was analyzed by a few
researchers [4, 12–15]. In [4], the authors analyzed the
outage probability of dual-hop FDR system assuming
Rayleigh fading environment. This model was extended to
a multi-hop FDR system in [12], while the authors of [13]
have considered a dual-hop FDR system in Nakagami-m
fading channel. In [14, 15], the authors considered multi-
hop FDR system in Nakagami-m fading channels; how-
ever, closed-form equation for the outage probability was
not provided. From the detailed survey of related work,
it is observed that an exact closed-form analytical expres-
sion for the outage probability of multi-hop FDR system
has not appeared in the literature so far considering Nak-
agami fading channels. Further, it is observed that there
are no results available for asymptotic outage probability
considering Rayleigh/Nakagami fading channels.
On the other hand, a few researchers have addressed the

optimal power allocation (OPA) problem for FDR-based
dual-hop and multi-hop networks [16–22]. In [16], the
authors have proposed a hybrid full duplex/half duplex
scheme for amplify-and-forward (AF) dual-hop network
with transmit power adaption at the relay that maximizes
the instantaneous and average spectral efficiency. In [17],
OPAwas derived for AF dual-hop FDR thatmaximizes the
transmission rate of the network. In [18], OPAwas derived
under total and individual power constraints for dual-hop
DF-based FDR system. Likewise, dual-hop FDR systems
were considered in [19, 20] as well. In [21], OPA that max-
imizes the end-to-end throughput under a total power
constraint was considered for a multi-hop FDR system
while [22] considered OPA that minimizes the weighted
sum of transmit powers under an outage probability con-
straint. However, work in [21] ignored the presence of
RSI in the network while [22] assumed that both RSI and
inter-relay interference (IRI) are negligible.
The first objective of this paper is to obtain closed-

form equation for the outage probability of a multi-hop
DF-based FDR network by assuming the links to experi-
ence independent Nakagami-m fading. We also derive an
approximate expression for the outage probability which
is more concise as compared to the exact expression. We
validate the accuracy of the derived approximate expres-
sion through numerical and simulation studies. Further,
we provide an asymptotic expression for the outage proba-
bility considering special case of Rayleigh fading channels.
We then investigate OPA for multi-hop FDR system that
maximizes the end-to-end instantaneous transmission
rate with constraints onmaximum transmit power at each
node. We observe that the OPA problem is non-smooth
and non-convex; accordingly, an efficient, low-complex,
iterative power allocation algorithm based on sequential

convex programming (SCP) has been devised to solve
the OPA problem. Further, we provide the proof for
the convergence of the proposed algorithm to a Karush-
Kuhn-Tucker (KKT) point of the original problem, which
guarantees the achievability of local optimal solution to
the problem. We also make a comparison of the proposed
algorithm with that of bisection-based power allocation
algorithm and establish that SCP-based power allocation
algorithm converges faster than the bisection-based algo-
rithm. Furthermore, we consider OPA for multi-hop FDR
system that minimizes the end-to-end outage probabil-
ity with constraints on maximum transmit power at each
node. We establish that the problem can be transformed
to a standard geometric programming problem (GPP) and
the OPA can be determined by solving the GPP.Moreover,
we derive analytical equation for the outage probability
of spectral efficient multi-hop HDR system described in
[23] and then consider OPA for multi-hop HDR system
as well. We describe the procedure to find the optimal
transmit power for both FDR and HDR systems. Extensive
simulation results are used to establish that the proposed
power allocation algorithm converges very fast and is
highly effective for solving the optimization problem con-
sidered in the paper. The results further demonstrate that
OPA can significantly improve the end-to-end outage per-
formance and transmission rate of both HDR and FDR
systems as compared to uniform power allocation (UPA)
policy.
Rest of the paper is organized as follows. Section 2

describes the system model. Theoretical derivation of the
end-to-end outage probability of the multi-hop FDR/HDR
systems are described in Section 3. Section 4 considers
the OPA for FDR/HDR systems and describes the iterative
algorithm to solve the optimization problem. The results
are presented in Section 5 and the paper is concluded in
Section 6.

2 Systemmodel
Multi-hop relaying is a promising technique to improve
the coverage and throughput performance of wireless net-
works. In this case, intermediate relay nodes carry infor-
mation from source node to destination node. Recently,
this concept has been proposed for cooperative wireless
networks [24] and cellular networks [25, 26]. In relay-
assisted cellular networks, deployment of relay nodes can
provide improved coverage for base stations and can
enhance the signal quality experienced by cell edge user.

2.1 Multi-hop FDR system
A schematic diagram of the DF-based multi-hop FDR net-
work is shown in Fig. 1a. Here, F0 is the source node, FN+1
is the destination node, and the relay nodes are repre-
sented as F1, F2. . .FN . Assume that F0 transmits signal x0
to the relay F1 and let y1 be the received signal at F1. Since
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Fig. 1Multi-hop system model. a FDR system. b Spectral efficient HDR system (N is even)

DF relaying is assumed, after decoding y1, F1 transmits x1,
which is a delayed version of x0. This process is continued
till the signal reaches FN+1. Simultaneous transmission
and reception by the FDR nodes in the same frequency
band leads to self-interference at the relay nodes, which is
caused by insufficient isolation between transmitter and
receiver sections of the relay node. We assume the relay
nodes to use two directional antennas, one for transmis-
sion and the other for reception. The directional antennas
provide isolation between the transmission and recep-
tion for the self-interference channel, thereby reducing the
self-interference.
Assume that yj and xj respectively represent the signals

received and transmitted by Fj. Now, yj consists of the
following: (i) actual information-bearing signal sent from
Fj−1, (ii) RSI component present at Fj, and (iii) IRI from
other relays Fi, i = 0, 1, ...,N , i �= {j − 1, j} [27]. Let the
channel gain between Fi and Fj be hi,j, {i, j ∈ (0, 1....N+1)}.
We consider block fading channel where the channel gains
remain constant in each transmission block (i.e., each
block contains n number of symbols) and change inde-
pendently in the next block. We assume hi,j to follow
Nakagami-m distribution with shape parameter mi,j and
mean power E

[∣∣hi,j
∣∣2] = πi,j. Accordingly, |hi,j|2 is a

Gamma random variable with shape parameter mi,j and
scale parameter πi,j

mi,j
. The probability distribution function

(PDF) of
∣∣hi,j

∣∣ is given by [28]

f|hi,j|(x) =
(mi,j

πi,j

)mi,j 2x(2mi,j−1)

�(mi,j)
e
−
(

mi,jx2

πi,j

)

(1)

where �(.) is the Gamma function. As reported in
[4, 5, 12–20], we consider that the RSI channel at relay Fj,
(after employing all known practical interference isolation
and cancellation techniques), can be modeled as a fading
channel. Let hj,j be the fading coefficient corresponding to

the RSI channel at Fj. We assume hj,j (j = 0, 1, ..N) to fol-
low Nakagami-m fading model, since it can span a wide
range of fading scenarios that include both Rayleigh as
well as Rician.
The equation for the received signal yj at Fj for a given

time instant is given by:

yj = hj−1,jxj−1 + hj,jxj +
N∑

i=0,i�=j
i�=j−1

hi,jxi + nj (2)

where nj is the additive white Gaussian noise component
at Fj with power σ 2

j . Notice that (2) considers the signals
that arrive at Fj from Fi {i �= j−1}, as interference, i.e., it is
assumed that Fj does not implement any sort of diversity
techniques as reported in [29].

2.2 Multi-hop HDR system
The conventional K-hop HDR systems require K orthog-
onal time slots for communication which degrades the
spectral efficiency. For fair comparison of FDR network
against equivalent HDR network, the spectral efficient
HDR system proposed in [23] is considered, which uses
two-phase relaying and is illustrated in Fig 1b. Here, nodes
F0, F2, F4 ... transmit in the first time slot while all other
nodes are in the receive mode. In the second time slot,
nodes F1, F3, F5 ..., transmit while the rest of the nodes
stay in the receive mode.
Let y0j and x0j respectively be the received and transmit-

ted signals at a given time instance at node Fj. Now, y0j
consists of two components: (i) actual information bear-
ing signal sent from Fj−1 and (ii) IRI from other relays Fp,
where p = 2i + q, i = 0, 1, . . .

⌊
N−q
2

⌋
and q represents

the remainder when j− 1 is divided by 2. Accordingly, the
received signal y0j at Fj can be written as:
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y0j = hj−1,jx0j−1 +

⌊
N−q
2

⌋
∑
i=0

p�=j−1

hp,jx0p + nj (3)

In Section 3.2, we investigate the outage probability and
rate performance of multi-hop spectral efficient HDR net-
work and make an extensive comparison study among
multi-hop FDR/HDR systems. Even though the spectral
efficient HDR has been proposed in [23], the optimal
power allocation, outage, and rate performance were not
evaluated in the literature so far.

3 Derivation of outage probability
This section describes the analytical model for finding the
outage probability of multi-hop FDR/HDR sytem consid-
ering Nakagmi-m fading scenario.

3.1 Outage probability of multi-hop FDR system
Let P = (P0, P1, . . . , PN )T be the transmit power vector,
where Pi represents the transmission power of relay node
Fi. Let �j(P) be the signal-to-interference-plus-noise ratio
at Fj; j = 1, ...,N + 1. Now, �j(P) is given by

�j(P) = Pj−1|hj−1,j|2
σ 2
j + ∑N

i=0
i�=j−1

Pi|hi,j|2
(4)

The interference power terms in (4) include both RSI as
well as IRI. Let us defineXi,j = Pi|hi,j|2

σ 2
j

, {i, j ∈ (0, 1....N+1)}.
Since the channel coefficients |hi,j|2 have Gamma PDF, the
random variables {Xi,j} also have Gamma PDF with shape
parameters mi,j and scale parameters βi,j. The PDF of Xi,j
can be determined using the results of random variable
transformation and is given by [28]:

fXi,j(x) = β
−mi,j
i,j

xmi,j−1

�
(
mi,j

)e−
(

x
βi,j

)

(5)

where βi,j = πi,j
mi,j

Pi
σ 2
j
. Now, (4) can be written as follows:

�j(P) = Xj−1,j

1 + ∑N
i=0

i�=j−1
Xi,j

(6)

Assuming complex Gaussian inputs, unit bandwidth, and
that the nodes adopt a continuous rate scheme, the instan-
taneous transmission rate of the link between Fj−1 and Fj
is given by:

Rj(P) = log(1 + �j(P)) (7)

In addition, the end-to-end instantaneous rate of the
source to destination link for DF relaying is the minimum
of the instantaneous transmission rates of the N + 1 links
and is given by [27]

R(P) = min
j

(Rj(P)), j = 1, 2, . . . ,N + 1 (8)

The end-to-end outage probability of multi-hop DF FDR
system is defined as the probability that end-to-end
instantaneous rate is less than the given target rate r and
is given by

PFDRout = Pr
(
min
j

(Rj(P)) < r
)

= 1 −
N+1∏
j=1

Pr
(
Rj(P) ≥ r

)

= 1 −
N+1∏
j=1

Pr
(
�j(P) ≥ �T

)
(9)

where Pr(.) denotes probability and �T is the SINR
threshold, which is related to the link target transmission
rate, r, through the relation �T = 2r − 1 [4]. The jth term
in (9) is given by

Pr(�j(P) ≥ �T ) = Pr

⎛
⎜⎝ Xj−1,j

1 + ∑N
i=0
i�=j−1

Xi,j
≥ �T

⎞
⎟⎠ (10)

Let Yj = ∑N
i=0

i�=j−1
Xi,j and Wj = Xj−1,j

�T
. Further, let fYj(y)

and fWj(w) respectively be the PDFs of Yj and Wj. Now,
(10) becomes

Pr(�j(P) ≥ �T ) = Pr
(
Wj ≥ 1 + Yj

)

=
∫ ∞

0
fYj(y)

∫ ∞

y+1
fWj(w)dwdy (11)

Using (5), the PDF ofWj can be written as follows:

fWj(w) =
(

βj−1,j

�T

)−mj−1,j wmj−1,j−1

�(mj−1,j)
e
−
(

w�T
βj−1,j

)

(12)

3.1.1 Exact expression for outage probability
Here, we derive the exact expression for the outage prob-
ability of multi-hop FDR network. Since Yj is the sum of
independent Gamma random variables, for integer values
of Nakagami parametermi,j (i �= j−1, i = 0....N), the exact
PDF of Yj, i.e., fYj(y) is given by [30]:

fYj(y) =
N∑
i=0

i�=j−1

mi,j∑
k=1

�
(
i, k, {mi,j}, {βi,j}

)
fXi,j(y) (13)

where the weights �
(
i, k, {mi,j}, {βi,j}

)
can be found using

the recursive formula given by [30]:

�
(
i,mi,j − k

) = 1
k

k∑
l=1

N∑
q=0
q �=i

mq,j

β l
i,j

(
1

βi,j
− 1

βq,j

)−l

× �
(
i,mi,j − k + l

)
(14)
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�
(
i,mi,j

) = β
mi,j
i,j

N∏
h=0

β
mh,j
h,j

N∏
l=0
l �=i

(
1

βl,j
− 1

βi,j

)−ml,j
(15)

Substituting (13) in (11) and interchanging the order of
summation and integration, Pr(�j(P) ≥ �T ) can be
written as follows:

Pr(�j(P) ≥ �T ) =
N∑
i=0

i�=j−1

mi,j∑
k=1

� (i, k)
∫ ∞

0
fXi,j(y)

×
∫ ∞

y+1
fWj(w)dwdy (16)

Now, substituting (5) and (12) in (16) and after some
mathematical simplifications, (16) yields the following:

Pr(�j(P) ≥ �T ) =
N∑
i=0

i�=j−1

mi,j∑
k=1

� (i, k)
(

�T
βj−1,j

)mj−1,j

β
mi,j
i,j �(mi,j)�(mj−1,j)

×
∫ ∞

0
ymi,j−1e

− y
βi,j

∫ ∞

y+1
wmj−1,j−1e

− w�T
βj−1,j dwdy

(17)

The final equation for the outage probability is obtained
by solving (17) and substituting the result in (9) and is
given by (refer to Appendix 1 for the detailed derivation):

PFDRout =1 −
N+1∏
j=1

N∑
i=0

i �=j−1

mi,j∑
k=1

mj−1,j−1∑
n=0

n∑
r=0

� (i, k)
n!

e
−
(

�T
βj−1,j

)

×
(
n
r

)
βr
i,j

(
�T

βj−1,j

)n (
1 + �Tβi,j

βj−1,j

)−(mi,j+r) �(mi,j + r)
�(mi,j)

(18)

3.1.2 Approximate expression for outage probability
Since the exact outage probability given by (18) contains
weights � (i, k) which are to be computed recursively,
outage probability calculation is computationally expen-
sive. To reduce the computational complexity, we derive
an approximate simplified expression based on Welch-
Satterwaite approximation for the sum of Gamma random
variables [31]. In Section 5 of this paper, we validate the
accuracy of the approximate expression through numeri-
cal illustrations. Notice that finding the outage probability
expression requires fYj(y), which is the PDF of the sum of
N independent Gamma random variables. According to
[31], sum of N independent Gamma-distributed random
variables can be approximated by a Gamma random vari-
able. Accordingly, the PDF of the approximated Gamma
random variable Ỹj, fỸj(y) can be written as follows:

fỸj(y) = β
−mj
j

ymj−1

�(mj)
e
−
(

y
βj

)

(19)

where mj =

⎛
⎝∑N

i=0
i�=j−1

mi,jβi,j

⎞
⎠

2

∑N
i=0

i�=j−1
mi,jβ2

i,j
and βj =

∑N
i=0

i�=j−1
mi,jβ2

i,j

∑N
i=0

i�=j−1
mi,jβi,j

are the shape and scale parameters of Ỹj. An approxi-
mate expression for the probability Pr(�j ≥ �T ) can be
determined by substituting fWj(w) given by (12) and fỸj(y)
given by (19) in (11), i.e., fỸj(y) is used instead of fYj(y) in
(11). After rearranging the relevant terms, the following
expression can be obtained for this probability, i.e.,

P̃r(�j ≥ �T ) = β
−mj
j

�(mj)�(mj−1,j)

(
βj−1,j

�T

)−mj−1,j

×
∫ ∞

0
ymj−1e

−
(

y
βj

) ∫ ∞

y+1
wmj−1,j−1e

−
(

w�T
βj−1,j

)

dwdy

(20)

Notice that the double integral term in (20) is similar to
that given in (17). This integral can be solved using an
approach similar to the one followed for the derivation
of (18), described in Appendix 1. By following the steps
laid out in Appendix 1, the following expression can be
obtained:

P̃r(�j ≥ �T ) =
mj−1,j−1∑
n=0

n∑
r=0

e
−
(

�T
βj−1,j

) (
�T

βj−1,j

)n

n!

×
(
n
r

)
βr
j

(
1 + �Tβj

βj−1,j

)−(mj+r) �(mj + r)
�(mj)

(21)

Now, substituting (21) in (9), we get the approximate
closed-form expression for the outage probability of mul-
tihop FDR system as follows:

P̃FDRout =1 −
N+1∏
j=1

mj−1,j−1∑
n=0

n∑
r=0

e
−
(

�T
βj−1,j

) (
�T

βj−1,j

)n

n!

×
(
n
r

)
βr
j

(
1 + �Tβj

βj−1,j

)−(mj+r) �(mj + r)
�(mj)

(22)

The simplified outage probability expression for the spe-
cial case of Rayleigh fading can be obtained by substituting
mi,j = 1 ∀ i, j in (22) and is given as follows:

P̂FDRout = 1 −
N+1∏
j=1

e
−
(

�T
β̂j−1,j

) (
1 + �T β̂j

β̂j−1,j

)−m̂j

(23)
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where m̂j =

⎛
⎝∑N

i=0
i �=j−1

β̂i,j

⎞
⎠

2

∑N
i=0

i �=j−1
β̂2
i,j

, β̂j =
∑N

i=0
i�=j−1

β̂2
i,j

∑N
i=0

i�=j−1
β̂i,j

and β̂i,j =

πi,j

(
Pi
σ 2
j

)
.

The amount of RSI power at a FDR node is directly
proportional to the transmit power at the relay node. In
the high transmit power region, the amount of RSI and
IRI would be very high. This leads to an outage proba-
bility floor for FDR networks in the high transmit power
region, i.e., outage probability remains constant as the
transmit power increases. An expression for asymptotic
outage probability would be useful to theoretically verify
the existence of outage floor behavior in muti-hop FDR
networks. Recall that Rayleigh fading, which is applica-
ble for a rich multi-path environment, is a special case
of Nakagami fading [28]. So asymptotic outage results
for Rayleigh fading are relevant under certain channel
conditions. Accordingly, we derive the asymptotic outage
probability of multi-hop FDR system under Rayleigh fad-
ing, which can be obtained by letting Pi → ∞ in (23). This
implies β̂i,j → ∞ and β̂j/β̂j−1,j << 1. By using the bino-
mial linear approximation (1 + x)−n ≈ 1−nx ≈ exp(−nx)

for small x and substituting β̂j =
(∑N

i=0
i�=j−1

β̂i,j

)
/m̂j in (23),

the asymptotic outage probability is given as follows:

P̂FDRout,asy = 1 −
N+1∏
j=1

exp

⎡
⎢⎢⎣− �T

β̂j−1,j

⎛
⎜⎜⎝1 +

N∑
i=0

i�=j−1

β̂i,j

⎞
⎟⎟⎠

⎤
⎥⎥⎦

(24)

Now, (24) can be used to describe the outage probability
floor behavior which occurs when the links are unbal-
anced, i.e., when β̂b−1,b << β̂j−1,j ∀j, j �= b, the product
of exponentials terms in (24) becomes very low due to
the fact that the desired signal over the bth link becomes
very poor and it cannot be improved by increasing the
transmit power, which leads to outage floor behavior. Sim-
ilarly, when the interference at a node is very high as
compared to the other nodes, it also leads to outage floor.
However, the product term in (24) takes the higher pos-
sible numerical value when all the links are balanced and
it provides minimum value for the outage probability.
Since β̂i,j depends on the transmit powers of the nodes,
optimal allocation of power among the nodes results in
balanced links which leads to improved outage probability
performance.

3.2 Outage probability of multi-hop HDR system
For the spectral efficient multi-hop HDR system
described in [23], the SINR at relay node Fj, �HDR

j (P) is
given by

�HDR
j (P) = Pj−1|hj−1,j|2

σ 2
j + ∑	N−q

2 

i=0

p �=j−1
Pp|hp,j|2

(25)

The achievable end-to-end instantaneous rate of the
multi-hop HDR system is the minimum of the achievable
instantaneous rate over each link [27] and is given by

RHDR(P) = min
j

(
RHDR
j (P)

)
, j = 1, 2, . . . ,N+1 (26)

where RHDR
j (P) is the achievable instantaneous rate of link

j, j = 1, 2, . . . ,N + 1 and is given as follows:

RHDR
j (P) = 1

2
log

(
1 + �HDR

j (P)
)

(27)

The fraction 1/2 in (27) is due to the fact that spectral effi-
cient multi-hop HDR requires two orthogonal time slots
for transmission and reception [4, 12].
The end-to-end outage probability of multi-hop DF

HDR system is defined as the probability that end-to-end
instantaneous rate is less than the given target rate r and
is given by

PHDRout = Pr
(
min
j

(
RHDR
j (P)

)
< r

)

= 1 −
N+1∏
j=1

Pr
(
RHDR
j (P) ≥ r

)

= 1 −
N+1∏
j=1

Pr
(
�HDR
j (P) ≥ γT

)
(28)

Here, the threshold SINR (γT ) for HDR systems is given
as γT = 22r − 1, where r is the target rate of the FDR sys-
tem. Notice that (28) is similar to (9) with �HDR

j (P) given
by (25). By adopting an approach similar to multihop FDR
systems, it can be shown that the exact outage probabil-
ity of the spectral efficient multi-hop HDR system in the
presence of independent nonidentical Nakagami-m fading
channels is given by the following equation:

PHDRout =1 −
N+1∏
j=1

⌊
N−q
2

⌋
∑
i=0

p�=j−1

mp,j∑
k=1

mj−1,j−1∑
n=0

n∑
r=0

� (p, k)
n!

e
−
(

γT
βj−1,j

)

×
(
n
r

)
βr
p,j

(
γT

βj−1,j

)n (
1 + γTβp,j

βj−1,j

)−(mp,j+r) �(mp,j + r)
�(mp,j)

(29)

where the coefficients � (p, k) are computed recursively
as given by (14) and (15). To get a simplified expression
for the outage probability, we use the Welch-Satterwaite
approximation for the sum of N independent Gamma
random variables [31] as used in Section III-A for the
multi-hop FDR system. By adopting a similar approach,
the following approximate expression can be obtained
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for the outage probability of multi-hop HDR system in
independent nonidentical Nakagami-m fading channels:

P̃HDRout =1 −
N+1∏
j=1

mj−1,j−1∑
n=0

n∑
r=0

e
−
(

γT
βj−1,j

) (
γT

βj−1,j

)n

n!

(
n
r

)

× β̃r
j

(
1 + γT β̃j

βj−1,j

)−(m̃j+r)
�(m̃j + r)

�(m̃j)
(30)

where m̃j =

⎛
⎝∑

⌊N−q
2

⌋

i=0
p�=j−1

mp,jβp,j

⎞
⎠

2

∑
⌊N−q

2
⌋

i=0
p�=j−1

mp,jβ2
p,j

, β̃j =
∑

⌊N−q
2

⌋

i=0
p�=j−1

mp,jβ2
p,j

∑N
i=0

p�=j−1
mp,jβp,j

.

The approximate outage probability expression for the
Rayleigh fading case is obtainedby substitutingmi,j = 1 ∀ i, j
in (30) and is given by

P̄HDRout = 1 −
N+1∏
j=1

e
−
(

γT
β̄j−1,j

) (
1 + γT β̄j

β̄j−1,j

)−m̄j

(31)

Similar to (24), the asymptotic outage probability of multi-
hop HDR system for the Rayleigh fading case can be
obtained as follows:

P̄HDRout,asy = 1 −
N+1∏
j=1

exp

⎡
⎢⎢⎣− γT

β̄j−1,j

⎛
⎜⎜⎝

⌊
N−q
2

⌋
∑
i=0

p�=j−1

β̄p,j

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (32)

where m̄j =

⎛
⎝∑

⌊N−q
2

⌋

i=0
p�=j−1

β̄p,j

⎞
⎠

2

∑
⌊N−q

2
⌋

i=0
p�=j−1

β̄2
p,j

, β̄j =
∑

⌊N−q
2

⌋

i=0
p�=j−1

β̄2
p,j

∑N
i=0

p�=j−1
β̄p,j

and β̄i,j =

πi,j

(
Pi
σ 2
j

)
.

4 Optimal power allocation
In this section, we address two power allocation prob-
lems that optimize the performance of multi-hop FDR
and HDR systems. The first problem investigates the
maximization of end-to-end rate, while the second prob-
lem investigates the minimization of end-to-end outage
probability of multi-hop FDR andHDR systems, with con-
straints on maximum transmit power at the nodes. Note
that rate maximization requires the knowledge of com-
plete instantaneous channel state information (I-CSI) at
the nodes and outage probability minimization requires
the availability of statistical channel state information
(S-CSI) alone.

4.1 Optimal power allocation for multi-hop FDR system
Here, we formulate two OPA problems for multi-hop
FDR system: (i) for maximizing the end-to-end instanta-
neous rate and (ii) for minimizing the end-to-end outage

probability. We establish that the rate maximization prob-
lem is non-convex. We then propose an iterative power
allocation algorithm based on sequential convex program-
ming (SCP) for finding the OPA vector that meets the
objective. On the other hand, we transform the outage
probability minimization into a standard geometric pro-
gramming problem (GPP) and establish that the optimal
solution can be obtained by solving the GPP.

4.1.1 End-to-end instantaneous ratemaximization
Here, we formulate the OPA problem that maximizes the
end-to-end instantaneous rate of the system. Since the
objective function (i.e., rate) is non-concave, we show that
the optimization problem is non-convex and derive the
optimality conditions for the problem. We then propose
an iterative power allocation algorithm based on SCP for
finding the OPA vector that meets the objective.
The objective of the OPA problem is to maximize the

end-to-end instantaneous rate subject to the constraint on
maximum transmit power (Pi,max) at each node Fi. This
problem can be formulated as

max min
P j

{Rj(P) = log(1 + �j(P))} (33a)

subject to 0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (33b)

Since the objective function in (33a) is a non-smooth
and non-concave function of P [32], the optimization
problem (33) is non-convex and it is not possible to find
the global optimal solution. However, the non-smooth
optimization problem can be converted to a smooth opti-
mization problem and the optimality condition can be
derived by writing the hypo-graph form [32] for the prob-
lem (33) as follows:

max
P, ζ

ζ (34a)

subject to Rj(P) ≥ ζ ∀ j (34b)
0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (34c)

Theorem 1 The end-to-end instantaneous rate of the
multi-hop FDR system is maximized (i.e., optimization
problems (33) and (34) have optimal solution), if and only
if the instantaneous transmission rates over all the links of
the network are equal, i.e.,

R1(P) = R2(P) = . . . = RN+1(P) = ζ ∗ (35)

where ζ ∗ is the maximum achievable end-to-end rate.

Proof See Appendix 2.

Theorem 1 depicts the necessary condition for any solu-
tion of (33) to be optimal and any feasible solution of (34)
which violates (35) only be a feasible solution which is not
optimal. To find OPA vector P∗ that achieves the maxi-
mum rate, we have to solve the system of N + 1 nonlinear
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equations (35) with N + 2 unknowns (P∗, ζ ∗), which is
very difficult especially when N is large. Thus, we turn
our attention towards developing an efficient iterative
algorithm to solve (34).
Sequential convex programming (SCP) is an efficient

low-complex and fast-converging algorithm to solve non-
convex problems [32]. Accordingly, we devise an iterative
algorithm based on SCP to determine the OPA for (34).
SCP finds the local optimal solution of a difficult prob-
lem, through solving a sequence of approximate convex
problems. However, it is not possible to apply SCP directly
to (33), since it is not possible to find the approximate
convex problem for (33). Accordingly, we use the trans-
formed smooth optimization problem (34) for applying
SCP. Notice that (33) and (34) are equivalent in the sense
of optimality. The optimization problem (34) can fur-
ther be transformed by writing Rj(P) as difference of two
concave functions [33, 34]. This transformation makes it
easier to determine the approximate convex problem of
(34) at each iteration of the SCP [35]. Define the functions
f and g as:

fj(P) = log
(

σ 2
j +

N∑
i=0

Pi|hi,j|2
)

(36)

gj(P) = log

⎛
⎜⎜⎝σ 2

j +
N∑
i=0

i�=j−1

Pi|hi,j|2
⎞
⎟⎟⎠ (37)

Now, the functions f and g are concave functions of P [32]
and Rj(P) can be written as fj(P) − gj(P). Accordingly, the
optimization problem (34) can be re-casted as

max
P, ζ

ζ (38a)

subject to fj(P) − gj(P) ≥ ζ ∀ j (38b)
0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (38c)

Let Pn be the power allocation vector at step n of the
iterative algorithm. The first-order Taylor series approxi-
mation g̃j(P,Pn) of gj(P) at Pn is given as follows:

g̃j(P,Pn) = gj(Pn) + ∇gTj (Pn)(P − Pn) (39)

where the gradient of gj(P) at P is represented as ∇gj(P)

and is expressed as follows:

∇gj(P) = 1
σ 2
j + ∑N

i=0
i�=j−1

Pi|hi,j|2
.ej (40)

Here, ej is theN+1 dimensional column vector, ej(j−1) = 0
and ej(i) = |hi,j|2

ln 2 , i �= j − 1. Further, g̃j(P,Pn) has the
following properties with gj(P).

(i) g̃j(P,Pn) ≥ gj(P) ∀ P
(ii) g̃j(Pn,Pn) = gj(Pn)

(iii)∇ g̃j(Pn,Pn) = ∇gj(Pn), ∀j (41)

Due to the slow sensitivity of the function gj(P) to the
changes in P, the approximation given by (39) is very tight
over a fairly large neighborhood of Pn. Further, property
(i) arises due to the concavity of gj(P) and it depicts that
the global information can be estimated using the local
information (i.e., gj(Pn) and ∇gTj (Pn)) ([32], chapter 3,
sec 3.1.3).
Now, by plugging (39) into (38) and using (41), the

approximated convex optimization problem can be trans-
formed into a lower bound optimization problem to (34) as:

max
P, ζ

ζ (42a)

s. t fj(P) − g̃j(P,Pn) ≥ ζ ∀ j (42b)
0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (42c)

The constraints (42b) and (42c) form a convex set. Further,
the constraint (42b) is smooth; hence, (42) is a standard
convex optimization problem, which can be solved by
using efficient software packages for convex optimization
[36]. Algorithm 1 describes the iterative procedure to be
followed for finding the OPA vector. In each iteration n,
Algorithm 1 solves the approximate convex problem (42)
and the solution obtained in iteration n (i.e., Pn) is used
to determine the successive approximate convex problem
in iteration n + 1. The process continues until the con-
dition on the convergence is satisfied. In the simulation,
we observe that Algorithm 1 converges very quickly to the
optimal solution.

Algorithm 1 Iteratve algorithm for OPA based on SCP:
multi-hop FDR
1: Intialization:

• Set index n = 0 and choose tolerance level ε > 0
• Choose P0, calculate I0 = min

j

[
fj
(
P0) − gj

(
P0)].

2: Repeat
3: obtain optimal solution P̂ by solving (42)
4: increment n by 1 and assign Pn = P̂
5: Compute In = min

j

[
fj(Pn) − gj(Pn)

]
.

6: stop if |In − In−1| ≤ ε.

Lemma 1 The iterative Algorithm 1 described above (i)
converges and (ii) the convergence point is a KKT point for
the original problem (34).

Proof See Appendix 3
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As the original problem (34) is non-convex, it is not
possible to prove the convergence to a global optimal
point. Since the algorithm is based on SCP, which finds
local optimal solutions, it may not guarantee global opti-
mal solution to the original non-convex problem. Even
if it achieves global optimality, it cannot be proved
theoretically. However, from Lemma 1, the algorithm
achieves a KKT point to the original problem. The com-
putational complexity of Algorithm 1 is proportional to
O

(⌈
Imax − I0 − ε


I
⌉
max

{
(N + 1)3, S

})
([32], chapter 1,

sec 1.3.1), where Imax = maxmin
P j

fj(P) − gj(P), 
I =
minn

[
In − In−1] and S is the cost of computing fj(P) and

their first and second gradients [32]. Accordingly, the pro-
posed iterative algorithm has affordable computational
complexity and the optimization problem can be solved
in polynomial time which makes it suitable for practical
applications.

4.1.2 End-to-end outage probabilityminimization
Here, we formulate the OPA problem that minimizes
the end-to-end outage probability of the multi-hop FDR
system. Since the expressions for the end-to-end outage
probability described in Sections 3.1.1 and 3.1.2 are not in
a tractable form to optimize, we use the asymptotic outage
probability described in Section 3.1.2. We transform the
outage probability minimization into a standard geomet-
ric programming problem (GPP) and establish that the
optimal solution can be obtained by solving the GPP. Con-
sider the expression for asymptotic outage probability of
multi-hop FDR system under Rayleigh fading:

P̂FDRout,asy = 1 −
N+1∏
j=1

exp

⎡
⎢⎢⎣− �T

β̂j−1,j

⎛
⎜⎜⎝1 +

N∑
i=0

i�=j−1

β̂i,j

⎞
⎟⎟⎠

⎤
⎥⎥⎦

(43)

From (43), it is observed that minimization of P̂FDRout,asy
is equivalent to minimization of Q(P) = −
log

(
1 − P̂FDRout,asy

)
= ∑N+1

j=1
�T

β̂j−1,j

(
1 + ∑N

i=0
i �=j−1

β̂i,j

)
=

∑N+1
j=1

�T
Pj−1πj−1,j

(
σ 2
j + ∑N

i=0
i�=j−1

Piπi,j

)
. Choosing Q(P) as

the objective function, the OPA problem is formulated as:

min
P

Q(P) =
N+1∑
j=1

�T
Pj−1πj−1,j

⎛
⎜⎜⎝σ 2

j +
N∑
i=0

i�=j−1

Piπi,j

⎞
⎟⎟⎠

(44a)
subject to 0 ≤ Pj−1 ≤ Pj−1,max ∀ j (44b)

Now, by inspecting (44), we observe the following cases:
(1) the objective (44a) is a posynomial function, (2) the
left hand side of the inequality constraint is a posynomial

function, and (3) the right hand side of the inequality con-
straint is monomial [37]. Now, (44) is a GPP in standard
form; GPPs can be reformulated as convex optimization
problems and can be solved efficiently using standard
software package for convex optimization [36].
The power allocation considered above minimizes the

asymptotic outage for Rayleigh fading case. With the help
of numerical and simulation results, we have verified that
the OPA minimizes the outage for Nakagami fading as
well, provided mi,j = m ∀ i, j. We provide the numerical
results for the optimal power allocation in Section 5.
Further, the power allocation procedures described in

this section can be implemented in a centralized manner.
It is assumed that either I-CSI or S-CSI corresponding
to various links in the multi-hop network are available
at a centralized controller (i.e., either source or destina-
tion). The nodes in the network have to collect the S-CSI
or I-CSI and the information should be fed back to the
centralized controller. For node Fi{i ∈ (1, . . . ,N + 1)}
to have the required information (i.e., either I-CSI or S-
CSI), all the N + 2 nodes in the network can sequentially
transmit a predefined pilot message. Under the assump-
tion of channel reciprocity and with the broadcast nature
of wireless transmissions, every other node can use the
predefined pilot transmission to learn the channel. After
N + 2 pilot transmissions, every node would learn their
channel to every other node. Each node communicates
the acquired information to the central entity. The central
entity can run Algorithm 1, compute the OPA vector, and
distribute the transmit power values among the nodes in
the network [38].

4.2 Optimal power allocation for multi-hop HDR system
Here, we formulate OPA problems for multi-hop HDR
system. Let RHDR

j (P) be the instantaneous transmission
rate corresponding to the link j, j = 1, 2, ...N + 1. From
(27), the achievable end-to-end instantaneous transmis-
sion rate of the multi-hop HDR system is computed using
the formula given as follows:

RHDR(P) = min
j

(
RHDR
j (P)

)
, j = 1, 2, . . . ,N + 1

= min
j

1
2
log

⎛
⎜⎜⎜⎝1 + Pj−1|hj−1,j|2

σ 2
j + ∑	N−q

2 

i=0

p�=j−1
Pp|hp,j|2

⎞
⎟⎟⎟⎠

(45)

The OPA problem for the multi-hop HDR that maximizes
the end-to-end rate is formulated as

max min
P j

RHDR
j (P) (46a)

subject to 0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (46b)
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The optimization problem (46) is similar to the problem
(33). Optimal solution for problem (46), i.e., OPA for
multi-hop HDR system, can be determined by following
the procedure adopted for the multi-hop FDR system.
Consider the asymptotic outage probability for multi-

hop HDR system P̄HDRout,asy. Now, minimization of P̄HDRout,asy
given by (32) is equivalent toQHDR(P) = − log(1−P̄HDRout,asy).
Choosing QHDR(P) as the objective function for outage
probability minimization, the OPA problem for multi-hop
HDR system is formulated as:

min
P

QHDR(P) =
N+1∑
j=1

γT
Pj−1πj−1,j

⎛
⎜⎜⎝σ 2

j +
	N−q

2 
∑
i=0

p�=j−1

Ppπp,j

⎞
⎟⎟⎠

(47a)
subject to 0 ≤ Pj−1 ≤ Pj−1,max ∀ j (47b)

The optimization problem (47) is similar to the prob-
lem (44). Optimal solution for problem (47), i.e., OPA for
multi-hop HDR system, can be determined by following
the procedure adopted for the multi-hop FDR system.

5 Results and discussion
This section describes the results for the outage probabil-
ity and related metrics of multi-hop FDR and HDR sys-
tems under the proposed power allocation algorithm. We
assume a linear network, where the distance between the
adjacent nodes are set as equal. Further, the normalized
distance between the nodes F0 and FN+1 (normalized with
respect to a reference distance d0) is set equal to 10 and

it is assumed to be the same regardless of the number of
relay nodes,N in the network.We set πi,j = Gd−η

ij , where
G is the propagation constant, η is the path loss exponent,
and dij is the distance between relay nodes Fi and Fj. We
select η as 3 and the target rate r = 0.1 bps/Hz. The maxi-
mum available transmit power and the average power due
to RSI are the same for all the nodes, i.e., Pj,max = Pmax
and πj,j = π0 ∀ j. Furthermore, we assume the Nakagami
parameter mi,j = m and the noise power to be unity.
Under UPA, it is assumed that all the nodes in the net-
work operate at Pmax. Extensive Monte Carlo simulations
have been performed to corroborate the analytical results.
In the implementation of the proposed Algorithm 1,
the tolerance level ε has been chosen as equal to 10−6.
In Fig. 2, the analytical and simulation results for outage

probability of four-hop FDR/HDR system has been drawn
against Pmax assuming UPA (i.e., equal transmit power
for all the nodes). As Pmax increases, the outage proba-
bility of both FDR and HDR systems decreases. However,
for higher values of Pmax, the outage probability exhibits
a floor behavior, due to the higher level of IRI. Figure 2
also shows the impact of RSI (π0) on the outage probabil-
ity of FDR system. When the RSI is comparatively lower,
FDR performs significantly better than HDR due to the
fact that HDR systems need to achieve double the target
rate of FDR, i.e., for a given rate r, the threshold SINR
required for HDR system is higher than that of FDR [4].
However, when RSI is higher, the range of Pmax values over
which FDR performs superior than HDR decreases. For
low and medium values of Pmax, FDR continues to exhibit
improved performance than HDR. However, when Pmax is

Fig. 2 Four-hop FDR/HDR systems: outage probability vs Pmax , under UPA (m = 1, A analytical, S simulation)
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higher, FDR becomes inferior to HDR because of the RSI
and higher amount of IRI in the FDR system as compared
to the spectral efficient HDR system [23] considered in
this paper. Figure 2 also shows the results evaluated with
approximate outage probability expressions given by (22)
and (30) for the multi-hop FDR and HDR systems respec-
tively. It can be observed that the approximate outage
probability model is highly accurate, i.e., the outage prob-
ability corresponding to the approximate model is within
5% of the exact outage probability values.
In Fig. 3, we plot the analytical and simulation results

for the outage probability of four-hop FDR network under
UPA and the proposed OPA for different values of m, the
Nakagami fading parameter, while Fig. 4 shows the cor-
responding results for HDR systems. The results show
that the outage probability of FDR and HDR systems
improve significantly under OPA compared to UPA, espe-
cially for higher values of Pmax. When Pmax is very high,
FDR/HDR systems with conventional UPA suffer from
very high IRI whereas the proposedOPA strategy allocates
the transmit power among the nodes in such a way that
the effect of IRI is reduced, thereby improving the out-
age performance. With Pmax = 30 dB and m = 1, the
optimal power allocation vector (in dB) has been obtained
as P∗ = [30, 28.88, 25.46, 23.05]; it provides approximately
30% reduction in outage probability for the FDR system
as compared to that achievable under UPA. Similarly, with
Pmax = 30 dB and m = 1, the corresponding optimal
power allocation (in dB) for the HDR system is given by
P∗ = [30, 30, 23.45, 23.45]; it provides approximately 49%
reduction in outage probability for the HDR system as

compared to that achievable under UPA. Further, as m
increases, the percentage reduction in outage probability
has been observed to be higher, i.e., when m = 2, the
outage probability reduces by 69% (89%) for FDR (HDR)
system under OPA, as compared to the corresponding
system under UPA.
In Fig. 5, we plot the outage probability of the FDR sys-

tem against the number of relays (N) in the network. Since
the distance between source and destination is assumed
to be constant, the mean signal power over each link
depends on N. As shown, OPA always has an edge over
UPA when outage performance is considered. Initially, the
outage probability decreases as N is increased owing to
the reduction in hop length. However, when N increases
beyond a certain value, the outage probability significantly
increases. This happens due to higher amount of IRI in
the system asN becomes larger. From the graphs, it is also
clear that an optimum value forN exists that leads to min-
imum outage probability and the corresponding value of
N depends on Pmax.
In the next set of simulations, we consider perfect

knowledge of I-CSI. The channel gain matrixH = [|hi,j|2
]

has been assumed as follows:
⎡
⎢⎢⎣
0.0741 0.0026 0.0001 0.0020
0.0239 0.1349 0.0056 0.0003
0.0830 0.0197 0.2925 0.0052
0.0004 0.0607 0.0036 0.0283

⎤
⎥⎥⎦

where each element |hi,j|2 is generated randomly as
Gamma∼

(
mi,j,

πi,j
mi,j

)
. The power allocation vector that
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Fig. 3 Outage probability performance of four-hop FDR system vs Pmax under UPA and OPA, for different values ofm: π0 = 0.01
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Fig. 4 Outage probability of four-hop HDR system vs Pmax under UPA and OPA, for different values ofm: N = 3

maximizes the end-to-end instantaneous rate has been
determined by using Algorithm 1.
Figure 6 illustrates the convergence of Algorithm 1 for

four-hop FDR and HDR systems under I-CSI. It can be
seen that the proposed algorithm converges very fast and
the optimal solution can be obtained with a few num-
ber of iterations. For example, when P0 = 0.5 Pmax,
the algorithm converges within three iterations for the
FDR system and the maximum end-to-end instantaneous

rate R(P) obtained is equal to 2.1999 bps/Hz and optimal
power (in dB) allocation vector is obtained as P∗ =
[40, 38.06, 27.86, 35.20]. Further, for this P∗, the maximum
end-to-end instantaneous rate has been observed to be
equal for all the individual links, i.e., Rj(P) = 2.1999
bps/Hz . This corroborates the necessary condition for
optimality (35) described in Section 4. Similarly, in the
case of HDR systems, the maximum end-to-end instanta-
neous rate RHDR(P) is obtained as 1.8764 bps/Hz which
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Fig. 5 Outage probability performance of multi-hop FDR system vs N: π0 = 0.01 andm = 2
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Fig. 6 Convergence of Algorithm 1 for FDR/HDR systems under I-CSI: Pmax = 40 dB,m = 1, π0 = 0.01, and N = 3

corresponds to the optimal power (in dB) allocation vec-
tor P∗ = [38.91, 40, 25.14, 32.46]. Further, the maximum
instantaneous rate over each link has been observed to be
equal, i.e., RHDR

j (P) = 1.8764 bps/Hz (j = 1, 2, 3, 4) which
validates (35).
Figure 7 depicts the comparison of the maximum end-

to-end instantaneous rate that can be achieved for four-
hop FDR andHDR systems as a function of Pmax under the
proposed OPA strategy. The end-to-end instantaneous

rate that can be obtained under UPA is also shown. The
results confirm that the proposed OPA improves the end-
to-end instantaneous transmission rate for both FDR and
HDR systems, especially for higher values of Pmax. When
Pmax = 30 dB, the percentage improvement in end-to-end
rate is 174% for the FDR system and 224% for the HDR
system as compared to the corresponding systems with
UPA. Notice that, initially, the end-to-end instantaneous
rate increases as Pmax is increased; however, it remains
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constant for higher values of Pmax for both FDR as well as
HDR systems, owing to the higher levels of IRI arising out
of the increased Pmax.
Figure 8 compares the speed of convergence of SCP and

bisection-based algorithms (i.e., Algorithms 1 and 2 given
in Appendix 4) respectively considered for the rate max-
imization problem in this paper. Notice that both algo-
rithms converge to the same optimal point for HDR as well
as FDR systems. However, it is observed that SCP-based
algorithm converges faster than bisection-based method
for a given tolerance level ε. Specifically, it can be observed
that the SCP-based algorithm converges within four iter-
ations while the bisection-based algorithm converges to
the optimal point only after 22 iterations. This implies
that the SCP-based OPA algorithm has lower compu-
tational complexity as compared to the bisection-based
OPA algorithm.
Since conventional HDR networks use multi-phase

relaying, the end-to-end delay experienced is larger, which
considerably affects the spectral efficiency. In addition to
the delay introduced by multi-phase transmission, each
relay node introduces processing delay as well. How-
ever, in multi-hop FDR networks, since the relay nodes
perform simultaneous transmission and reception, the
processing delay at each node and the end-to-end delay
would be much lower than that of HDR networks. The
higher end-to-end delay will have significant influence
on the spectral efficiency of multi-hop HDR networks,
while its impact would be insignificant in the case of FDR
networks.

6 Conclusions
In this paper, we have derived closed-form expression
for the end-to-end outage probabilities of multi-hop FDR
and HDR networks in Nakagami-m fading channel. We
have also derived approximate expressions for the outage
probability which were observed to be highly accurate.
We then considered optimal power allocation (OPA) to
maximize end-to-end rate with constraints on maximum
transmit power at each node. It was shown that the OPA
problem is non-convex. Then, based on sequential convex
programming, we have proposed an iterative algorithm to
solve the optimization problem.With the help of extensive
simulations, it was established that the algorithm con-
verges very fast and optimal solution (i.e., OPA vector)
can be obtained with a few number of iterations. We also
considered OPA to minimize the end-to-end outage prob-
ability with constraints on maximum transmit power at
each node.We employed geometric programming to solve
the OPA problem. Further, it was shown that the proposed
OPA strategies would lead to significant improvements in
end-to-end outage probability and data rate performance
of multi-hop FDR/HDR systems as compared to uniform
power allocation strategy.

7 Methods/Experimental
The purpose of this study is to investigate and optimize
the outage and rate performance of the multi-hop FDR
system. The system consists of a source node, destina-
tion node, and N relay nodes. The relay nodes operate
in full duplex mode. The channels between the nodes are
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assumed to follow Nakagami-m fading, and it is assumed
that the RSI channel has Nakagami-m fading character-
istics. Further, closed-form expressions for end-to-end
outage probability are provided, power optimization is
based on SCP and GPP is performed. The investigations
are repeated for spectral efficient HDR system. Since the
relay node in HDR system needs two orthogonal channels
for transmission and reception, for fair comparison, the
target rate of HDR system is chosen as twice that of FDR
system.

Appendix 1: Derivation of (18)
Assume that the double integral term in (17) is repre-
sented as θ , which can be written as follows:

θ =
∫ ∞

0
yM−1e−ay

∫ ∞

y+1
wN−1e−bwdwdy (48)

Using incomplete Gamma function [40], we get

θ = 1
bN

∫ ∞

0
yM−1e−ay × �(N , b(y + 1))dy (49)

With the help of series expansion for the incomplete
Gamma function and by using binomial expansion of
(1 + y)n, we get

θ = (N−1)! e−b
N−1∑
n=0

bn−N

n!

∫ ∞

0
yM−1e−(a+b)y

n∑
r=0

(
n
r

)
yrdy

(50)

Now, θ given by (50) can be written as follows by using the
definition of Gamma function:

θ = �(N)e−b
N∑

n=0

bn−N

�(n + 1)

n∑
r=0

(
n
r

)
(a+b)−(M+r)�(M+r)

(51)

Notice that here M = mi,j, a = 1
βi,j

, N = mj−1,j and
b = �T

βj−1,j
. By substituting the resulting expression for θ

in (17), and after mathematical simplification, we get the
following:

Pr(�j(P) ≥ �T ) =
N∑
i=0

i �=j−1

mi,j∑
k=1

mj−1,j−1∑
n=0

n∑
r=0

� (i, k)
n!

e
− �T

βj−1,j

×
(
n
r

)
βr
i,j

(
�T

βj−1,j

)n (
1 + �Tβi,j

βj−1,j

)−(mi,j+r) �(mi,j + r)
�(mi,j)

(52)

Finally, substituting (52) in (9), we get (18).

Appendix 2: Proof of Theorem 1
Let ζ ∗ be the maximum achievable end-to-end rate. By
contradiction, assume that Rk(P) > ζ ∗ for some k. Now,
strictly decrease Pk−1 by δk−1 such that Rk(P) > ζ ∗.
Decrementing Pk−1 results in reduction of interference at

Fj, j �= k. Therefore, there exists a positive εj such that
Rj(P) ≥ ζ ∗ + εj > ζ ∗, ∀ j. This contradicts with the
assumption that ζ ∗ is optimal. Hence, at the optimal point,
instantaneous rate of all the links of the multi-hop FDR
network are equal.

Appendix 3: Proof of Lemma 1
(i) The constraint set of (34) is compact and hence closed
and bounded. From Algorithm 1, we have the sequence
{In} where
In = min

j

[
fj
(
Pn) − gj(Pn)

]

≤ min
j

[
fj
(
Pn+1) −

(
gj(Pn) + ∇gTj (Pn)

(
Pn+1 − Pn))]

≤ min
j

[
fj
(
Pn+1) − gj

(
Pn+1)] = In+1 (53)

In (53), the first inequality arises due to the fact that Pn+1

is an optimal solution of (42) in n + 1th step, thus the
obtained value of fj

(
Pn+1) ≥ fj(Pn). Further, the second

inequality follows from the concavity of gj(P).
Now, the sequence In is monotonic increasing sequence

on a compact set and hence bounded. By Cauchy theorem,
the sequence {In} converges.
(ii) The convergence of Algorithm 1 implies In = In+1

in the limit. From (i) Algorithm 1 converges, then the con-
vergence point is a KKT solution. Hence, Pn+1 is a KKT
point of (42).
The Lagrangian dual for (42) can be written as

L1 = ζ +
N+1∑
j=1

λj (fj(P) − g̃j(P, Pn) − ζ )

+
N+1∑
j=1

αj(Pj−1,max − Pj−1) (54)

From (i) above, at the optimal point Pn+1 = Pn. Now,
the KKT conditions at the optimal point

(
Pn+1, ζ n+1) and

using (41) implies

∂L1
(
Pn+1, ζ n+1)

∂Pj−1
=

N+1∑
j=1

λj
∂
(
fj
(
Pn+1) − gj

(
Pn+1))

∂Pj−1

+
N+1∑
j=1

αj
∂(Pj−1,max − Pj−1)

∂Pj−1
= 0 ∀ j

(55)

∂L
(
Pn+1, ζ n+1)

∂ζ
= 1 −

∑N+1

j=1
λj = 0 (56)

((
fj
(
Pn+1) − gj

(
Pn+1)) − ζ

)
λj = 0 ∀ j (57)

(Pj−1,max − Pj−1)αj = 0 ∀ j (58)



Katla and Babu EURASIP Journal onWireless Communications and Networking  (2018) 2018:192 Page 16 of 17

Now, the conditions (55)–(58) are same as the KKT opti-
mality conditions for the problem (38). Thus, Pn+1 is the
KKT point of the optimization problem (34).We complete
the proof.

Appendix 4: Power allocation based on bisection
method
In this section, we investigate an iterative algorithm for
OPA based on bisection method. Though the optimiza-
tion problem (34) is non-convex in the original form,
it can be transformed to a quasi-concave optimization
problem [32, 39]. Since, log(.) is a monotonic increasing
function, (34) is equivalent to the following optimization
problem:

max min
P j

⎧
⎪⎨
⎪⎩

�j(P) = Pj−1|hj−1,j|2
σ 2
j + ∑N

i=0
i �=j−1

Pi|hi,j|2

⎫
⎪⎬
⎪⎭

(59a)

subject to 0 ≤ Pj−1 ≤ Pj−1,max ∀ j. (59b)

This is known as generalized fractional programming,
where �j(P) is a linear fractional function and hence it is
a quasi-concave function ([32], chapter 3, sec 3.4.1); fur-
ther minimum of quasi-concave functions is also a quasi-
concave function [[32], chapter 3, sec 3.4.4]. Accordingly,
(59) is a quasi-concave optimization problem and it can
further be transformed by introducing an auxiliary vari-
able τ , as follows:

Algorithm 2 Iteratve algorithm for OPA based on Bisec-
tion method: multi-hop FDR
1: Intialization:

• Given an interval [l,u], ε0 = u − l and tolerance
level ε > 0

2: Repeat
3: τ = (u + l)/2
4: given τ , solve the concave feasibility problem

find P

subject to Pj−1|hj−1,j|2 ≥ τ

⎛
⎜⎜⎝σ 2

j +
N∑
i=0

i�=j−1

Pi|hi,j|2
⎞
⎟⎟⎠

0 ≤ Pj−1 ≤ Pj−1,max ∀ j, τ > 0

5: if feasible l = τ ; if infeasible u = τ

6: stop if |u − l| ≤ ε.

max
P,τ

τ (60a)

subject to Pj−1|hj−1,j|2 ≥ τ

⎛
⎜⎜⎝σ 2

j +
N∑
i=0

i �=j−1

Pi|hi,j|2
⎞
⎟⎟⎠

(60b)
0 ≤ Pj−1 ≤ Pj−1,max ∀ j, τ > 0 (60c)

Now, (60) is a quasi-concave optimization problem, whose
solution can be determined by solving sequence of con-
cave feasibility problems with the help of bisection search
on τ . Algorithm 2 presents the bisection method to deter-
mine the OPA vector.
Algorithm 2 converges in log(ε0/ε) iterations, each

iteration involved in solving a concave feasibility prob-
lem (60) for a given value of τ . Accordingly, the
algorithm has the computational complexity propor-
tional to O

(
log(ε0/ε)max

{
(N + 1)3

})
([32], chapter 4,

Section 4.2).
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