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Abstract

Cloud-radio access network (C-RAN) has been an attractive solution in the recent years for the future generation
mobile networks due to its promising benefits. However, the transport link between the remote radio unit (RRU) and
the baseband unit (BBU), known as fronthaul (FH), imposes stringent requirements in terms of data rate, latency, jitter,
and synchronization. In the conventional C-RAN, the FH capacity scales linearly with the number of the transmitting
antennas, which has posed severe demands on the FH capacity, especially due to emerging 5G technologies such as
massive MIMO. However, this can be relaxed by performing precoding at the RRUs instead of centrally at BBU, leading
to FH traffic which depends on the number of currently served users. This paper adapts queueing model and spatial

Queueing model, Statistical multiplexing, Traffic model

traffic model to exploit randomness of the user traffic to achieve statistical multiplexing gain. Through this, we
showed that the required FH capacity can be reduced significantly, depending on traffic demand and its statistical
properties. Furthermore, we analyzed the impacts of pilots on capacity-constrained FH.
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1 Introduction

1.1 Cloud radio access networks

The wireless industry has witnessed phenomenal growth
over the recent years. Cisco predicts that the mobile data
traffic will increase sevenfold from 2016 to 2021 and the
number of devices connected to IP networks will be three
times as high as the global population in 2021 [1]. The
demand of higher data and continuous connectivity along
with the quality of experience (QoE) is increasing daily.
Moreover, plethora of use cases and application scenarios
[2] envisioned for 5G such as enhanced mobile broad-
band (eMBB) services, machine-type communications
(mMTC), and ultra-reliable and low latency communica-
tions (WRLLC) have imposed significant challenges on the
radio access network (RAN) of state-of-the-art 4G tech-
nologies, thus leading to the evolution of RAN. Along with
RAN’s evolution, cloud computing has emerged as a pop-
ular paradigm due to its attractive characteristics such as
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resource sharing, virtualization, and flexibility [3]. Hence,
inheriting the merits of cloud computing into RAN, cloud
RAN (C-RAN) has been proposed as a new baseband
architecture for the mobile networks of the future [3].

In traditional networks, basebands units (BBUs) and
analog front ends are co-located at the base station (BS)
site as a single BS entity, where the BS performs the
complete baseband processing including physical (PHY)
layer, media access control (MAC) layer, and a part of
the network layer processing. However, this setup suffers
from several limitations such as higher capital expendi-
tures (CAPEX) and operating expenses (OPEX), increased
energy consumption, underutilized dedicated resources,
and limited flexibility [4]. In order to address these lim-
itations, cloud-radio access network (C-RAN) has been
proposed [5, 6]—differently from conventional RAN—as
a prospective architecture, where the BBU is decoupled
from the RRU. That means, in C-RAN, the main digital
baseband processing is centralized to the BBU, whereas a
part of the signal processing functionalities of traditional
BSs are moved to the remote radio units (RRUs), which
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perform the basic signal transmission and reception func-
tionalities such as amplification and filtering.

C-RAN has drawn significant attention in the recent
years and offers several advantages compared to the con-
ventional RAN (3, 7]: Firstly, by utilizing centralized signal
processing in the BBU pool instead of the distributed
BSs in the conventional RAN, C-RAN significantly lowers
the CAPEX and OPEX, simplifies repair and mainte-
nance, and eases system upgrades. Secondly, joint pro-
cessing in the BBU pool and cooperative radio techniques
(e.g., coordinated multipoint (CoMP), enhanced inter-
cell interference coordination (eICIC)) over RRUs aims
at improving the spectrum efficiency, link reliability, and
the communication quality, particularly of the cell edge
users. Thirdly, centralized BBU pool helps to reduce the
power consumption and enables efficient hardware uti-
lization through resource sharing and network function
virtualization (NFV).

In C-RAN, the BBU and RRU are generally connected by
a high-speed transport link known as fronthaul (FH) that
forwards the digitized I/Q (in-phase/quadrature-phase)
samples from RRUs to BBUs and vice versa using common
public radio interface (CPRI) protocol [8]. CPRI is a serial
bidirectional digital interface, and currently, it is the most
adopted specification for the FH interface implementa-
tion. Other specifications are open base station architec-
ture initiative (OBSAI) and open radio interface (ORI) [9].
Although FH commonly employs dedicated fiber as a dig-
ital radio over fiber (D-RoF) solution, recently, radio over
Ethernet (RoE) [10] is also broadly investigated [11, 12].
On the other hand, analog radio over fiber (A-RoF) solu-
tions have not yet been standardized [11].

1.2 Challenges in fronthaul and related work
C-RAN not only offers many attractive advantages but
also imposes several challenging requirements in FH links.
In order to enable efficient centralized and cooperative
processing, FH links must offer huge bandwidth, very low
latency and jitter, and very tight synchronization. Unfor-
tunately, the practical FH is often capacity-constrained or
time-delay constrained [13]. Furthermore, FH networks
mainly use dedicated, point-to-point fiber links with a
very high capacity, which make FH networks inflexible
and expensive to deploy. Thus, if the FH networks are not
dimensioned correctly, they could become a bottleneck
for the performance of the future mobile networks [14].
Despite promising advantages of C-RAN mentioned
earlier, one of the major challenges of C-RAN is to meet
its high fronthaul capacity demand. In general, capacity of
a fronthaul network (in bits/s) is given by [15]:

Dpyr =Ng-f;-Ng-2-v, (1)

where Ny = N, - N is the total number of antennas at the
RRU, with N, being the number of antennas/sector and Nj
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being the number of sectors, f; is the sampling frequency
(in samples/s/carrier), N is the number of quantization
resolution bits of ADC or DAC (in bits/sample), the fac-
tor 2 is multiplication factor for the I/Q samples, and
y = vycw - vic is the CPRI specific overhead factor,
where ycw represents overhead introduced by CPRI con-
trol words and yrw represents line coding overhead (e.g.,
10/8 for 8B/10B coding or 66/64 for 64B/66B coding).

One of the biggest challenges on C-RAN arises from
the massive MIMO, which is considered as a promising
technology for the future next-generation wireless net-
works. In massive MIMO [16—18], a BS with hundreds of
antenna elements serves tens of users in the same time-
frequency resources and one of the main ideas behind
massive MIMO is to provide BSs with large spatial mul-
tiplexing gains and beamforming capabilities. By simul-
taneously serving several users, massive MIMO increases
spectral efficiency. Similarly, by allowing multiple anten-
nas to focus the radiated energy into even smaller regions
of space high-energy efficiency can be achieved. Since
in (1) the FH capacity scales linearly with the number
of transmitting antennas Ny, with the massive MIMO
system that employs arrays of hundreds of transceivers,
FH data rate increases dramatically; hence, an FH net-
work with existing dedicated optical fiber becomes very
expensive to deploy. For example, for one LTE sector with
20 MHz carrier and 2x2 MIMO, N4 = 2, f; = 30.72 MHz,
Ng = 15, ycw = 16/15, and y.¢c = 10/8, FH demands
approximately 2.45 Gbps using CPRI line rate option 3
[8]. However, in massive MIMO systems with 256 anten-
nas, as an example, this data rate would increase to about
310 Gbps. For comparison, the most recent CPRI standard
specifies line rates of only up to 24 Gbps.

In order to ease the challenging requirement of FH data
constraint, various solutions have been proposed such as
(i) increasing the FH capacity using single fiber bidirection
(SFBD), wavelength division multiplexing (WDM)
[19, 20], and time-shared optical networks (TSON) [21, 22];
(if) decreasing the FH capacity by using compression
techniques such as non-linear quantization and IQ data
compression with a lossless 2:1 compression ratio [23], or
using new functional splits between RRU-BBU [15, 24].
Another approach is packet-based network such as Eth-
ernet which is heavily investigated by the recent initiative
such as IEEE 1914 working group for next-generation
fronthaul interface (NGFI) [25].

1.3 Contributions

In this paper, we consider a packetized network to
analyze possible fronthaul capacity reduction. Recently,
CPRI released the first eCPRI specification (1.0) [26]
that enables use of packet-based transport technologies
such as Ethernet and supports real-time traffic through
different flexible functional splits. Various functional
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splits between BBU-RRU have been investigated, e.g., in
[14, 15, 24] and the choice of a particular split is an appli-
cation specific. Unlike packetized network, in traditional
CPRI, FH data rate is always static and independent of the
traffic load, i.e., full-FH data rate needs to be forwarded
even when there is no user connected to the BS. How-
ever, with the appropriate RRU-BBU functional split such
as Split C! [14], where resource mapping and precod-
ing operations are executed at RRU instead of centrally at
BBU, FH data rate can be made traffic dependent. This
allows FH data rate more closely coupled with the actual
user traffic i.e., the traffic will be lower due to low demand
or due to unfavourable channel conditions. For simplic-
ity, we assume that the RRU generates the beamforming
weights locally at the RRU after having obtained perfect
CSI from uplink pilots, which means there is generally no
signalling overhead on the FH. Precoding at RRU enables
to transmit one stream per user instead of one stream
per transceiver?. Performing precoding at RRU gives rise
to two advantages: First, the number of streams will vary
according to the users currently served, and hence, by
allowing a certain outage probability within the limits of
acceptable quality of service (QoS), i.e. dimensioning the
FH capacity only for the 99th percentile of the traffic dis-
tribution, the required FH capacity can be reduced con-
siderably. Second, the variable streams of different RRUs
can be combined in the aggregation segment, resulting in
statistical multiplexing, which further lowers the required
FH capacity. In Section 3, we explain this concept.

Since the traffic is varying, randomness of the user traf-
fic could be exploited to enjoy the statistical multiplexing
gain. The possible factors to exploit statistical multiplex-
ing gain are variable FH streams, aggregation of the trans-
port streams from different cells and a reasonable outage
probability. In the paper [27], we have combined these fac-
tors to obtain statistical multiplexing gain using queueing
model and spatial the traffic model and are explanined
in Section 4. Furthermore, in this paper, we analyze the
impacts of pilots on statistical multiplexing gain using the
similar system model described in [27]. Since the num-
ber of pilots that can be assigned to the active users is
limited, we will analyze the impacts of pilots on capacity-
constrained FH. We call this optimization approach as
pilot-based optimization and through this we will show
that additional reduction in required FH capacity can be
achieved as explained in Section 5.

2 Methods/experimental

Our aim is firstly, to study the statistical multiplexing
in capacity-constrained C-RAN and secondly, to ana-
lyze impact of pilots on statistical multiplexing gain. In
order to demonstrate that, a packetized fronthaul net-
work was considered, and we adopted the spatial traffic
model and M/G/m/m queueing model to achieve the
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aforementioned goals. We used traffic models to get ran-
dom spatial traffic maps via log normally distributed ran-
dom fields defined by statistical parameters, and queueing
model to get the steady state probabilities of users served
by each cell. The simulations were performed using MAT-
LAB and the simulation parameters are listed in Table 1.
We assumed that with an appropriate functional split, FH
data rate is coupled with the actual user traffic, hence
by assuming a reasonable outage probability within an
acceptable QoS, we can achieve statistical multiplexing.
Further, since the number of pilots that can be assigned
to users is limited, we present an optimization algorithm
to adapt the number of pilots to the FH capacity. The sys-
tem model considered in this work is described in detail
in Section 4 and the simulation results are presented in
Section 6.

3 Statistical multiplexing
Figure 1 illustrates a basic network setup that enables
statistical multiplexing considered in this paper. In this
figure, traffics from multiple RRUs are aggregated to an
aggregation network and the resulting traffic is then for-
warded to the BBU via FH Segment II in the uplink and
vice versa in the downlink [28, 29], ([30], Chapter 4). The
direct link between the RRU and aggregation network is
termed as last mile, denoted by FH Segment I, whereas
the link between the aggregation network and the BBU
is the main FH segment, denoted by FH Segment II. The
advantage of having FH Segment I is that it allows users to
have data delivery with shorter cable lengths, which oth-
erwise would have been a single dedicated fiber between
each RRU and BBU. On the other hand, FH Segment II
requires higher capacity and more protection against the
link failure.

Since the streams from users are varying, we can
observe two methods to lower the required FH capacity:

Table 1 Simulation parameters

Parameters Symbol Value
Number of cells C 19
Inter site distance disp 200 m
RRH height hrru 12m
Bandwidth B 20 MHz
Coherence bandwidth Bcoh 200 kHz
Coherence time Teoh 5ms
Number of transmitting antennas Mc 256
Maximum users Kmax 64
Total transmit power pMc 23 dBm
Total noise power o? — 96 dBm
Average file size s 80 Mbit
Pilot reuse factor B 14
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(last mile)

Fig. 1 C-RAN network. Massive MIMO-based C-RAN deployment with
two fronthaul segments and statistical multiplexing

first, accepting a certain outage (which benefits both FH
Segments I and II), and second, accounting for the effect
of statistical multiplexing in the aggregation part (which is
only possible in Segment II). In this paper, we will describe
a methodology how to evaluate these gains and quantify
the benefits for different scenarios.

4 System model

4.1 MIMO rate

Figure 2 shows the frame structure of a massive MIMO
system [31]. Assuming the channel is frequency flat with
coherence time, Tcon, and coherence bandwidth Bggh,
length of the channel coherence interval (in symbols) is
Te = TcohBeoh. Out of these T, symbols, t symbols are
dedicated for pilot signaling, and the remaining (7, — 1)
symbols used for payload data, where (*) and (@
are fractions of UL and DL data transmissions, respec-
tively. Massive MIMO systems commonly operate in TDD
mode, where it is assumed that channel is reciprocal
meaning the BS estimates the downlink channel using the
uplink pilots. The number of orthogonal pilots that can be
assigned to users is always limited. If FDD is used, chan-
nel state information (CSI) corresponding to UL and DL
will be different since UL and DL use different frequency
bands. In our model, for simplicity, we have assumed
TDD operation. We also focus on the DL and assume
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for simplicity that (¥’ = 1, i.e., there is only DL data
transmission and in the UL only pilots are transmitted.

Let us now consider downlink transmission of a mas-
sive MIMO system, where the cellular network consists of
asetC = {1,2,...,C} of C RRUs. Each cell has its own
RRU that can simultaneously serve Kyax users. We sup-
pose each RRU is equipped with M, antennas, while each
user has a single antenna. Usually for massive MIMO sys-
tem, it is assumed that the number of antennas at each
RRU is much larger than the number of served users,
ie, M, >> K, >> 1. We assume all the BSs and UEs
are perfectly synchronized, the UEs share the same time-
frequency resource, and transmissions take place over the
Rayleigh fading channels.

The area served by the RRUs is denoted A, with a
single location indicated by its coordinates (x,y). The
pathloss factor, defined here as a ratio of received power
to transmitted power, between RRU c¢ and location (x, )
is denoted w«.(x,y) and modeled according to the urban
microcellular pathloss model defined in [32]. Users are
associated with the RRU providing the lowest pathloss;
hence, the serving area .4, of a RRU c is given as

(x,y) € Acifc = arg max o, (%, ). (2)

Let us consider that the total transmit power of a BS
is pM,, where is p is the average power per antenna that
is considered to be same for all the antennas. Each cell ¢
receives interference from the active antennas in the any
other cell d. Let M; be the active antennas in any other
cell; hence, total transmitting power of the corresponding
cell is pM,. Then, the signal-to-noise-plus-interference
ratio (SINR) at a location (x,y) can be obtained as:

PpMcoc(x,y)
T E Y oo PMadary)’

Yy = 3)

where o2 denotes the noise power.

We use Poisson point process to describe the traf-
fic demand in the network, compare, e.g. [33]. For this,
we define for each location a user arrival rate per area
A(x,9) (in 1/s/km?), and a corresponding traffic density
(in Mbps/ km?) is

Qx,y) = Ax,y) s, (4)

where s (in bits) is the mean file size requested per user.
The mean traffic density of the overall area A we denote
Q. For the serving area of a RRU, this results in user
arrivals with arrival rate (in 1/s),

Ae = f A(x,y)dxdy. (5)
Ac

From this, we define the average SINR in the serving
area of RRU c as the expected value of the SINRs weighted
according to the traffic distribution € (x, ), i.e.:
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Fig. 2 Massive MIMO frame structure. Transmission consists of coherence length interval of TcohBcon symbols, of which © symbols are used for pilot
signaling and the remaining (zc — t) symbols are used for data transmission
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Furthermore, for simplicity, let us assume that each RRU
has obtained perfect CSI from its users and employs zero
forcing precoding in order to cancel out the intracell inter-
ference and adapts power allocation such that each of the
K, user achieves the same average data rate, R, (in bps)
given by [34]:

~ BKax P
R.(K,) =B (1 - > log, (1 + % (M, 1@) )
(7)

where B is channel bandwidth, B is reuse factor,
Te = TcohBeon is length of channel coherence interval, and
Kmax is the maximum number of users, which is, for now,
assumed to be same for all cells. M, — K_ is the effective
array gain, and the factor 1/K; accounts for the fact that
the total transmit power is split between all users. The

Ye =Ely (] = (6)

pre-log factor <1 — %’2‘“) corresponds to the pilot over-

head, and it will play an important role, which is explained
in Section 5.

Exemplary plots of the average data rate per user R, and
total sum throughput K - R.(K;) are shown in Fig. 3a, b,
respectively. It is obvious from Fig. 3a that higher per
user average rate is achievable with fewer active users.
On the other hand, Fig. 3b shows that the sum through-
put increases when increasing the number of active users
which highlights the general benefit of massive MIMO in
terms of capacity. The simulation parameters for all the
figures are listed in Table 1.

4.2 Queueing model

In order to achieve statistical multiplexing gain, we need
to find probabilities of random number of users served
by each cell. For this, we utilize queueing theory results
from [35, 36], where each MIMO RRU is modeled
as M/G/m/m state-dependent queue. The M/G/m/m
queue states that for exponential arrival and general distri-
bution of service time, maximum m number of users can
be served simultaneously (m servers and no waiting) and
the arrivals follow the Poisson process [34]. In this work,
we assume that the maximum number of users that a BS
can serve is m = Kpax. Let m.(n) = P,[K, = n] be the
steady state probabilities of having K, active users served
by RRU ¢, then under M/G/m/m state-dependent queue,
7.(n) is given by [35]:

s n
[’\le)]

<(0), 8
affo—1.. o | <@ @

e (n) =

n=12,...m,
with

i
[AC R ]

1fOfG— 1. fFf Q)

’

m
N O) =1+
i=1

where f(n) = R.(n)/R.(1) is the normalized rate per user,
R, is the average data rate per user while serving # number
of users given by (7), A, is the arrival rate from (5), and s
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is the average file size requested by each user introduced
earlier.

An example of user distributions defined by (8) is given
in Fig. 4 for different values of A.. Figure 4 implies that
the as the arrival rate increases, there are more flows per
second from the users and the number of users attempting
to get the resources is also increasing. For example, at 2%
probability, the number of active users for arrival rate of
Ac = 10 flows per second is 12 which increases to 50 users
for arrival rate of A, = 40 flows per second.

4.3 Fronthaul capacity, outage, and multiplexing

In literature, there are two main different definitions of
the FH capacity [3]: The first one states that FH capac-
ity is defined as the maximum sum data rate transmitted
on each FH. In this case, the authors always implicitly
assume each FH can serve unlimited number of users.
However, this assumption can not hold in real systems.
On the other hand, the second definition states that FH
capacity is defined as maximum number of users that can
be served on each FH. In this paper, we adopt the second
definition.

0.15

0.1

T

PDF, 7.(K.)

20
Number of active users in the cell, K

40 60

Fig. 4 Massive MIMO user distribution. PDF of the number of
concurrently active users in massive MIMO cell with Kyax = 64 and
different arrival rates

Conventionally, the FH in Segment I would be dimen-
sioned to serve its maximum number of users, i.e. for a
number of stream S;max = Kmax Streams. Similarly, Seg-
ment II would be dimensioned for S¢ = C - Kjyax Streams.
Such a dimensioning is common in cpnventional CPRI-
based FH networks, which requires a static and constant
data rate per RRU. This high and constant data rate is the
major challenge in massive MIMO C-RANSs as explained
in Section 1.2. From network operators perspective, it
would be beneficial for them to constrain that capacity
to lower deployment cost. As the traffic is varying due to
the varying number of user streams, we can assume a cer-
tain outage probability Pg on each link according to some
QoS requirements. Hence, the FH in Segment I can be
dimensioned with the outage capacity

Sc,0 = nsuch thatIl.(n) < Po, (9)
where I[1.(n) = Y, _, 7c(i) is CDF of each individual cell.
Furthermore, the streams are aggregated for Segment II,
i.e., the number of streams are summed up. The summa-
tion leads to a convolution of the corresponding probabil-
ity distributions, i.e., the distribution of user streams on
Segment II becomes:

e = 01 % T % -+ + % TT¢, (10)
with CDF Il¢ and outage capacity
Se,0 = nsuch thatllg (n) < Po. (11)

In general, the convolution will lead to a a longer-tailed
PDF, which yields to a statistical mutiplexing gain, as
Sc,0 = D¢ Sco. To assess the benefit of the statistical
multiplexing, we define the relative required FH rates in
Segment I and II as:

S
S1 = M for FH Segment I, (12)
C- Sc,max
S
Sy = €0 for FH Segment II. (13)

C- Sc,max
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4.4 Traffic model

In general, the gain of statistical multiplexing will depend
on the variance of the total number of streams. This
variance is affected both by the (temporal) variation for
users from (8) and by the different (spatial) variation of
users among different cells based on the traffic distri-
bution Q(x,y). In order to model Q(x,y), we utilize a
traffic model developed in [37, 38]. This traffic model
allows to create random spatial traffic maps via log-
normal distributed random fields defined by three statis-
tical parameters: mean traffic density (), traffic density
standard deviation (o), and a correlation distance (dcorr).
Three different examples of such traffic maps are given
in Fig. 5. The parameter Q controls the overall traffic
demand, oq controls the ratio between traffic demand in
hot spots and low-traffic areas, and do, controls the size
of the hotspots. With traffic maps generated based on this
model, we can average statistical multiplexing gains over
random scenarios without having to rely on just a single
scenario, leading to more consistent results and more gen-
eral conclusions for real scenarios. For more details on this
traffic model see [38].

Now, in order to illustrate the underlying concepts,
a layout of 19 homogeneous hexagonal cells each hav-
ing inter site distance of 200 m are plotted as shown in
Fig. 5. It is common practice to assume regular cells, in
particular hexagonal cells to, establish the general prop-
erties, although the practical deployments have irregular
cells. The innermost cell is surrounded by a tier of six
cells, which in turn are surrounded by additional tier of
12 cells. Figure 6a, b respectively illustrates the PDF and
CCDF of each cell. The total traffic from 19 such cells,
assuming each cell in its peak load can serve 64 users,
demands to have total 64 x 19 = 1216 user streams to
be forwarded. However, assuming a reasonable 1% out-
age probability of the fronthaul Segment II, we need to
transport only 605 users as shown in Fig. 6b, which means
less fronthaul capacity demand. This shows up to 50% FH
capacity saving can be achieved.

5 Pilot optimization

is the chan-

In (7), the pre-log scaling factor (1 — %‘:‘X)

nel estimation overhead. K,y is the maximum num-
ber of users that a BS can support due to the number

1072
I
4 |
<
o2 .,19 cells |
A
[a ¥
RN |
O L | |
0 200 400 600 800 1,000 1,200
Number of active users in the cell, K.
a

Fig. 6 Statistical multiplexing. Exemplary distribution of served users/req
oq =025, deor = 10 m.a PDF and b CCDF
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Fig. 7 Pilot-based optimization. Example of the pilot-based optimization for Kmax = 64 users. a PDF and b CCDF

of transmitted pilots. This number is in general a sys-
tem design parameter and would be set according to
an expected general peak demand. However, as we have
shown in the previous section in the case of FH, it can
be much more efficient to design a system based on the
actual demand. According to (7), it would increase the
rate of all active users, if a lower number of pilots is used.
What is even more important is that we already dimen-
sion the fronthaul to support only a limited number of
users based on an acceptable outage probability. It hence
does not make sense to support more users in terms of
pilots if they cannot be served by the FH anyways. We can
hence derive a simple, iterative optimization algorithm to
adapt the number of pilots to the fronthaul capacity, which
is in turn based on the outage probability. For this, we
assume from now on that the number of pilots/number
of supported users can be different for each RRU c and is
denoted Kpax,c. The algorithm to find the optimal number
of pilots K7, . is depicted in Algorithm 1.

The algorithm can be explained as follows. We set the
number of pilots to an starting value Kmax for all RRUs
¢. We then calculate the number of Segment I outage FH

Algorithm 1 Pilot optimization
i=0
K =
repeat

forallc € C do
calculate (7), (8), (9),(11)

KpnaxVecel

I(r(rgx,c = Sc,O
end for
i=i+1

until Kty = K Ve € C
Khaxe = Ko St = S,

max,c

_ ¢
Sz,o =Sco Yece C

streams S0 according to (9). This is the number of FH
streams/users we support for each RRU in Segment I. Now
we can use that value as the new number of pilots in each
RRU. This will increase the rate of all users according to
(7), which in turn leads to less number of users in the
queue according to (8) (illustrated in Fig. 7a) which in turn
again may reduce the number of outage streams in (9)
(illustrated in Fig. 7b). The algorithm terminates when the
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increase in rate is so low that it does not lead to a reduc-
tion of # in (7) by at least one. The convergence is hence
guaranteed by the limitation of n to integer values.

After the final iteration, the optimal number of pilots
will be equal to the fronthaul capacity in Segment I. Of
course, this also means that the outage no longer occurs in
Segment I but already during user admission in the wire-
less link, as no more pilots are available. To illustrate the
additional benefit achieved by the optimization we define
the optimization gain in terms of FH capacity as:

S*
a=1- éjcsc’o for FH Segment 1, (14)
¢ ©c0
S*
gH=1- SC—’O for FH Segment II. (15)
C,0

6 Numerical results

6.1 Scenario

To evaluate the FH capacity reduction, we utilize an exem-
plary setup in Fig. 5 consisting of 19 uniformly placed
hexagonal cells with inter site distance djsp = 200 m and
RRUs placed at a height of igry = 12 m. These cells
are placed on random traffic maps generated according to
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Section 4.4, which is also illustrated in Figs. 8, 9, and 10.
Then, the relative required FH rates according to (12) and
(13) are evaluated and the results are averaged over 25
instances of random traffic maps.

6.2 Statistical multiplexing

Figures 8, 9, and 10 illustrate the reduction in relative
FH capacity that is achieved by accepting outage and
utilizing statistical multiplexing in Segment II, first with-
out pilot optimization. As can be seen, the relative FH
capacity mainly scales with the mean traffic density. In
addition, the capacity in FH Segment II is always lower, as
here the additional effect of statistical multiplexing comes
into effect. The difference between Segments I and II is
more pronounced towards higher traffic densities. Here,
clearly the statistical multiplexing effect is more dominant
compared to the reduction possible by accepting outage.
Furthermore, it can be seen that higher values of traffic
variance and correlation distance lead to lower FH capaci-
ties, as both parameters lead to a higher variability in total
cell traffic among the different RUs, hence resulting in a
higher multiplexing gain. Finally, it can be seen in Fig. 10
that a higher outage probability leads to an lower required
FH capacity, as can be expected. Here, especially Segment
I profits. In Segment II, due to the statistical multiplex-
ing effect, the probability distribution converges towards
the mean traffic, and hence, the difference between the
percentiles is less pronounced.

6.3 Pilot optimization

Next, Fig. 11 shows the relative FH capacity before and
after pilot optimization according to Section 5. In addi-
tion, the additional reduction provided by the optimiza-
tion according to (14) and (15) is illustrated. As can be
seen, the optimization achieves an additional reduction in
required FH capacity of up approximately 15% in both seg-
ments. As can be also seen, the gain is of course higher
when the starting point Kr(,?gx is chosen larger, as in this
case there is more room for improvement. Furthermore,
we consider pilot reuse factor § = 4 in Fig. 12, unlike

— Segment I —— w/o optimization
—— Segment II --- w. optimization
------ optimization gain

S 0.8[ N
0.6 - s
204 LY 8

0.2+ 4, s

Relative FH capacity Sy, Sa
Optimization gain g1,9>

) [ R L
0 200 400 600
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Fig. 11 Impact of pilot optimization. Relative FH capacity after optimization for Ké%)x = 64 (left) and
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all other simulated figures, where we assumed 8 = 1
for simplicity. Higher value of 8 allows to have sufficient
pilot resources to be shared among the users and hence, it
helps in mitigating the pilot contamination [31]. It is to be
noted that proper choice of 8 depends on various factors
such as number of transmitting antennas, SINR values,
number of allocated users, and spectral efficiency. As seen
from Fig. 12, the optimization gain has now improved to
roughly 20%.

7 Conclusions

The introduction of massive MIMO systems will pose
severe challenges on the C-RAN’s FH network, causing
the FH network to be a constraint for future deploy-
ments. However, this can be mitigated by implementing
per-user fronthauling and enabling statistical multiplexing
in aggregation networks. By adopting queueing model and
spatial traffic model, we have shown that assuming a rea-
sonable outage probability within the limits of acceptable
quality of service, user-based FH can reduce the required
FH capacity significantly. We analyzed the impacts of traf-
fic density, correlation distance, and outage probability
and showed that the relative FH capacity in the FH Seg-
ment II is always lower than that in the FH Segment I
Furthermore, we have also analyzed impacts of pilots
on capacity-constrained FH. We introduced an optimiza-
tion scheme and showed that additional reduction in FH
segments can be achieved.

Endnotes
!The nomenclature of functional split is not harmo-
nized and is used differently by different works.
%Investigation of impact of how and where precoding
scheme has been performed is beyond the scope of the
focus of this paper.
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