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Abstract

Delay tomography is an inference technique for link delays in a network, where end-to-end route measurement is a
promising method to reduce measurement overhead. Furthermore, by incorporating compressed sensing, delay
tomography can efficiently detect sparse anomaly. In delay tomography, however, there is an inevitable issue that is
clock synchronization for the routemeasurements. In this paper, based on route referencing, we study synchronization-
free delay tomography with compressed sensing. From theoretical analysis, optimal route referencing and ordering
methods for synchronization-free delay tomography are derived as “subtractive and differential schemes,” which
cancel or minimize the error factors caused by clock asynchronism, clock skew, and normal link delays with single or
multiple references, respectively. Simulation experiments confirm that the proposed methods can identify abnormal
links more accurately with robustness against the error factors than a conventional scheme, where the newly
proposed differential scheme always shows the best performance thanks to its better error
factors cancelation.
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1 Introduction
Anomaly detection/identification [1] is essential for wire-
less sensor networks since it can guarantee not only long-
term workability but also quick recovery once an anomaly
occurs. In order to detect and identify anomaly, it is nec-
essary to monitor the network either passively, actively, or
both. In a passive approach, the traffic flows on the net-
work are passively monitored and the network informa-
tion is collected. There are a number of routing algorithms
proposed for wireless sensor networks [2], and among
them, distributed algorithms are commonly used for their
low transmission redundancy. In distributed routing algo-
rithms, each sensor node locally exchanges hello packets
for link state probing only between the neighboring sensor
nodes, and then, data packets of each sensor node are sent
according to the established routes in the network. This
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implies the drawback of the passive network monitoring,
that is, it is limited to the periods of time when there is
traffic on the network between the nodes of interest. On
the other hand, an active approach that injects traffic into
the network can quickly and accurately detect anomaly,
but may adversely affect the normal data traffic. The pri-
mary purpose of wireless sensor networks is to reliably
collect data from sensor nodes, so it should be accom-
plished by fewer probing packets and less interference for
normal data traffic without change or addition of sensor
network functions. In this paper, we address the chal-
lenge of the active anomaly detection in an asynchronous
network, based on “network tomography [3–5].”
Network tomography has been used to encompass a

class of approaches to estimate internal link states from
end-to-end route measurements in networks. Especially
when packet route delays are measured, network tomog-
raphy is referred to as “delay tomography,” and recently,
it has been applied to the problem of anomaly iden-
tification in networks since it alleviates cooperation of
internal nodes. In the problem, tomography schemes
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are often formulated as underdetermined linear systems
[6–8], and compressed sensing [9, 10] is utilized to solve
it, which is a promising technique for reconstructing a
finite-dimensional sparse vector based on its linear mea-
surements with dimension smaller than the size of the
unknown sparse vector. The probability that multiple
anomaly simultaneously occur is considered to be rela-
tively low, so compressed sensing has successfully brought
high efficiency into delay tomography for the aforemen-
tioned challenge of the active anomaly detection, by
reducing the number of measurement routes as compared
to the number of links in a given network, that is, by
reducing the number of probing packets. Similar to the
previous study [6–8], provided that the sparsity of the
desired solution can be exploited, the primary objective
of this paper is to identify few links giving extraordinarily
large delays as anomaly, which is referred to as “abnormal
links.”
In a wireless sensor network, unattended sensor nodes

are usually likely to connect to neighboring nodes in bet-
ter link states, so it is difficult for its network manager
to know whether there is something wrong in a network
and where it is even if they notice it. When an anomaly
happens due to a node failure, the active delay tomogra-
phy can identify it, so the manager can fix or replace the
failed node. This would be necessary for continuing the
task of the wireless sensor network. In addition, when an
anomaly happens due to a link disconnection by a physical
obstruction, the manager can find or remove the physical
obstruction for the identified link. This would be applica-
ble for an intruder or wild animal detection in a wireless
sensor network for environmental monitoring over an
agricultural field. Although delay tomography brings these
benefits into wireless sensor networks, few works have
been dedicated for this interesting research topic [11–15].
As an issue for consideration, delay tomography bur-

dens source and destination nodes with clock synchro-
nization between them. A packet route delay, which is
required in the formulation, can be known from the
transmission time at a source node and the reception
time at a destination node, so precise clock synchro-
nization between them seems essential and unavoidable,
but it is difficult in reality. In wireless sensor networks,
the electronic components of nodes are sometimes too
untrustable to meet the requirement of clock synchro-
nization in terms of precision and complexity [16, 17].
Global positioning system (GPS) may provide precise
clock synchronization among wireless nodes [18], but all
nodes cannot be equipped with GPS receivers. Network
time protocol (NTP) [19] is applicable and several meth-
ods using the medium access control layer (MAC) time
stamp [20–22] have been proposed for clock synchro-
nization, but they require all nodes to exchange packets
specialized for clock synchronization. It must be more

energy-efficient to accomplish active delay tomography
without the use of such specialized packets.
In [13], we tackled the clock synchronization problem

and proposed a synchronization-free delay tomography
based on compressed sensing. The proposed scheme can-
cels the time offset between the source and destination
nodes by selecting a single reference route, inspired by the
workability of a time-difference-of-arrival (TDOA)-based
localization where the clocks of target node and refer-
ence nodes are not synchronized [18]. The trade-off for
the asynchronism is a loss of equation in the delay tomog-
raphy formulation, but compressed sensing is a method
to obtain a solution from an underdetermined linear sys-
tem, so it successfully compensates the trade-off. In [13],
based on the compressed sensing theory, the potential
performance is discussed for identifying abnormal links
when measurement routes are given, and it is proven that
the potential performance can be preserved, as long as
reconstructing an underdetermined exactly sparse vector
with a single non-zero entry. Here, we refer to the con-
ventional synchronization-free delay tomography scheme
with a single route reference as “a subtractive scheme.”
In addition to the success of the cancelation of the time

offset in asynchronous wireless sensor networks, it needs
to be carefully designed taking two more factors into con-
sideration in order to more accurately identify abnormal
links, which are inherent to wireless sensor networks.
One is “link delay,” which always arises from some fac-
tors: buffering, medium access protocol, packet collision,
and packet loss due to propagation characteristics such
as fading, blocking, and near/far effect. The link delay in
wireless networks is relatively large as compared to that
in wired networks and is accumulated in the measured
route delay as a large positive bias, so it gives an unig-
norable impact on the tomography performance, if the
route delays are simply used in it. The other is clock error
derived from clock frequency deviation, which is referred
to as “clock skew.” Since the frequency of crystal oscilla-
tors inevitably deviates [23], the clock error between the
source and destination nodes increases over time even if
the clock of one node is temporarily synchronized to that
of the other node at a time. For example, when the mea-
surement interval gets longer to avoid interference from
active probing packets to normal data traffic, the clock
skew appears as a larger time-variant bias in the mea-
sured route delay. In [24], we simply analyzed the effect
of the two error factors but did not deeply discuss the
performance of the subtractive scheme.
In this paper, we propose the design strategies to make

the synchronization-free delay tomography scheme more
accurate in wireless sensor networks. We start by theo-
retically analyzing the effects of the link delay and clock
skew on the tomography performance and propose the
optimal route referencing and ordering method for the
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subtractive scheme. Next, extending the idea to the case
of multiple routes reference, we newly propose a better
synchronization-free delay tomography scheme, which is
referred to as “a differential scheme,” with its optimal route
referencing and orderingmethod as well.We show by sim-
ulation experiments that well-designed synchronization-
free delay tomography schemes can be insensitive to the
error factors and accurately identify abnormal links in an
asynchronous wireless network. To the best of the authors’
knowledge, there have been no works on the theoreti-
cal analysis of such error factors and the design of route
referencing and ordering suited for delay tomography in
wireless sensor networks, although there are a number of
works dealing with network tomography.
The remainder of this paper is organized as follows.

Section 2 presents some preliminaries on compressed
sensing for discussing the mathematical property of the
proposed schemes. Section 3 explains the system model.
After Section 4 introduces the conventional delay tomog-
raphy. Sections 5 and 6 propose the synchronization-free
delay tomography methods with a single route refer-
ence and multiple routes reference, respectively. Section 7
prepares to evaluate the proposed methods, and then,
Section 8 demonstrates their performance by simulation
experiments. Finally, Section 9 concludes the paper.

2 Preliminaries on compressed sensing
2.1 Definition
The �p norm (p ≥ 1) of a vector ω =[ω1,ω2, · · · ,ωj,
· · · ,ωJ ]� ∈ R

J×1 is defined as

‖ω‖p =
⎛
⎝

J∑
j=1

|ωj|p
⎞
⎠

1
p

(1)

where � denotes the transpose operator. For p = 0, using
its support, we define ‖ω‖0 as

‖ω‖0 = |supp(ω)| (2)
supp(ω) = {j| ωj �= 0}. (3)

K-sparse vectors are defined as those which have at
most K non-zero elements, and a set of K-sparse vectors
�K ∈ R

J×1 is given by

�K = {
ω ∈ R

J×1| ‖ω‖0 ≤ K
}
. (4)

We consider that, through a matrix A ∈ R
I×J (I < J), a

linear measurement vector y =[ y1, y2, · · · , yi, · · · , yI ]� ∈
R
I×1 for a vector x =[ x1, x2, · · · , xj, · · · , xJ ]� ∈ R

J×1 is
obtained as

y = Ax. (5)

Whether or not one can recover a sparse vector x from
y by means of compressed sensing can be evaluated by
Spark (A), which is defined as

Spark(A) = min
ω∈Ker(A)\{0}

‖ω‖0 (6)

where Ker(A) denotes the kernel of A, that is,

Ker(A) = {
ω ∈ R

J×1| Aω = 0
}
. (7)

The following theorem guarantees the unique recover-
ability of sparse vector [10]:

Theorem 1 For any y, there exists at most one x ∈ �K
such that y = Ax, if and only if Spark(A) > 2K.

Theorem 1 yields the requirement I ≥ 2K , since
Spark(A) ∈ [2, I + 1]. We refer to such a matrix A with
Spark(A) > 2K as K-identifiable.

2.2 �0, �1, and �1/�2 optimization problems
When A is K-identifiable and y is not contaminated with
noise in (5), x ∈ �K is reconstructed by solving the
following �0 optimization problem:

x̂ = argmin
x∈RJ×1

‖x‖0 subject to y = Ax. (8)

Because of the discrete and discontinuous nature of the
�0, it is very difficult to solve (8), so instead, the following
�1 relaxation of (8) is proposed:

x̂ = argmin
x∈RJ×1

‖x‖1 subject to y = Ax. (9)

The problem given by (9) can be easily solved by lin-
ear programming algorithms, and its solution is proven to
be equivalent to the one for the original �0 optimization
problem [25].
On the other hand, when y is contaminated with some

form of noise, Theorem 1 may not guarantee the recover-
ability. In this case, instead, we estimate x̂ by solving the
following �1/�2 optimization problem [26, 27]:

x̂ = argmin
x∈RJ×1

{
1
2
‖y − Ax‖22 + ξ‖x‖1

}
(10)

where ξ is an adjustable parameter.
Several methods have been so far proposed to solve

the �1/�2 optimization problem [10], and we use the fast
iterative shrinkage-thresholding (FISTA) algorithm [28]
to obtain x̂. In our simulation experiments, after select-
ing the element with the maximal magnitude from the
elements of x̂ as xmax, we finally identify the indexes of
non-zero elements as
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ĵ = {j | |xj| ≥ θxmax} (11)

where θ is a constant parameter.

3 Systemmodel
3.1 Network and tomography session model
Figure 1 shows the network model with a defined bound-
ary. Let G = (N ,L) denote an undirected network,
where N and L ⊂ N × N are sets of nodes and links,
respectively1. The nodes and links are numbered such as
N = {n1, n2, · · · , nq, · · · , nQ} and L =
{l1, l2, · · · , lj, · · · , lJ }, where Q = |N | and J = |L|
denote the numbers of nodes and links, respectively. It is
assumed that the topology is fixed while a tomography
session defined below is conducted.
We consider delay tomography in a simple scenario

[7, 13] for an easy-to-understand explanation, where a sin-
gle source node S and a single destination node D are
assigned out of the boundary nodes, and S has estab-
lished several routes to D before a tomography session.
We define a set of the routes asR = {r1, r2, · · · , ri, · · · , rI},
where I denotes the number of routes, and define a set
of links which constitutes ri as Li. In a tomography ses-
sion, S sequentially sends probing packets to D through
the routes in the packet transmission interval of Tprobe.
Here, in order for a probing packet to traverse over each
pre-selected route, S uses a source routing algorithm such
as the dynamic source routing (DSR) [29].
For each of the probing packets, the corresponding end-

to-end delay is calculated from the transmission time at S
and reception time at D. Note that, since the active prov-
ing traffic increases the load of the network, its longer
transmission interval is preferable not to interfere with
normal data traffic; on the other hand, since the assump-
tion of the stationarity in the network may be invalid for

a long duration, the tomography session should be per-
formed in a short time. One of the reasons for utilizing
compressed sensing is that it is possible to reduce the
number of probing packets while keeping the identifiabil-
ity of abnormal links.
In addition to the above definitions and notations, we

assume that there are K abnormal links giving extraordi-
narily large delays in the network. The abnormal links are
distinguished from the other links referred to as normal
links, and they are separated into different setsLA andLN

with
∣∣LA∣∣ = K and

∣∣LN ∣∣ = J − K , respectively. Finally,
we define sets of routes containing and not containing
abnormal links asRA andRN , respectively, and define the
numbers of abnormal links and normal links over ri as κi
(κi ≤ K) and ρi, respectively.

3.2 Clock model
Figure 2 shows a clockmodel. On the basis of the clock of S,
the clocks of S and D are written respectively as

tS = t (12)
tD = αt + Toff = (	sk + 1)t + Toff (13)

where Toff and 	sk = (α − 1) are the time offset at t = 0
and the skew parameter, respectively. As an example of
clock skew, in the IEEE 802.11 standard for wireless local
area networks (WLANs) and the IEEE 802.15.4 standard
for wireless personal area networks (WPANs), the physi-
cal layer (PHY)/medium access control (MAC) protocols
are designed to accept the clock error up to ± 40 ppm
[30, 31]. In this paper, assuming that the clock frequency
uniformly deviates in [−	dev,+	dev], 	sk follows the tri-
angular distribution triangular [−2	dev, 0, +2	dev] with
the following average and variance:

Fig. 1 Network model
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Fig. 2 Clock model

E[	sk] = 0 (14)

E
[
	2

sk
] = 2

3
	2

dev (15)

where E[ (·)] is the ensemble average of (·).

3.3 Link delay model
Figure 3 shows the time chart between S and D. The ith
probing packet (i = 1, 2, · · · , I), which is transmitted from
S at time of tSi on the basis of the clock of S, traverses
the ith route and finally arrives at D at time of tDi on the
basis of the clock of D. It experiences the delay of zi on
the basis of the clock of S, which is the sum of the link
delays over the ith route. In [6], it is assumed that the
normal link delay behaves stochastically according to an
exponential distribution whereas the abnormal link delay
behaves deterministically, irrespective of wired or wire-
less networks. In this paper, we take the same approach
as in [6], but we adopt a different model on the normal
link delay suited for wireless sensor networks [32], that
is Gaussian distribution. The reason is due to the cen-
tral limit theorem, which asserts that the distribution of
the sum of a large number of independent and identically
distributed (i.i.d.) random variables approaches to that of

Gaussian random variable. This model will be appropriate
if the link delays are thought to be the addition of numer-
ous independent random processes. So when lj is a normal
link, that is, lj ∈ LN , we assume that its delay is given as a
Gaussian random variable γj, and it is i.i.d. among links. γj
has the following statistical properties:

E
[
γj
] = ηN (16)

E
[
γ 2
j

]
= η2N + σ 2

N (17)

where ηN and σ 2
N are the average and variance of

γj, respectively. On the other hand, for an abnormal
link lj ∈ LA, we assign a constant large delay of
ηA

(
ηA 	 ηN , η2A 	 σ 2

N
)
. Finally, as the statistical proper-

ties of the link states, we assume that the link delays are
stationary in a tomography session.

4 Conventional delay tomography scheme
4.1 Matrix/vector representation
The measured route delay over ri (i = 1, 2, · · · , I) can be
written as

yi = tDi − tSi
= zi + Toff + 	sk(tSi + zi) (18)

zi =
∑
lj∈Li

dj. (19)

Defining the link delay vector d ∈ R
J×1 as

d =[ d1, d2, · · · , dj, · · · , dJ ]� , (20)

it can be decomposed into the following two vectors:

d = x + a (21)
x = [ x1, x2, · · · , xj, · · · , xJ ]� (22)
a = [ a1, a2, · · · , aj, · · · , aJ ]� (23)

Fig. 3 Time chart between S and D
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where x ∈ R
J×1 and a ∈ R

J×1 are the link delay vec-
tors containing only the abnormal link delays whereas the
normal link delays, respectively, that is,

dj = xj + aj (24)

xj =
{

ηA
(
lj ∈ LA)

0
(
lj ∈ LN) (25)

aj =
{
0
(
lj ∈ LA)

γj
(
lj ∈ LN) . (26)

Furthermore, defining the measurement route delay
vector y ∈ R

I×1, the routing matrix B ∈ {0, 1}I×J , the ith
row vector of the routing matrix β i ∈ R

1×J , the time offset
vector v ∈ R

I×1, and the clock skew vector w ∈ R
I×1 as

y = [
y1, y2, · · · , yi, · · · , yI

]� (27)

B =
[
β�
1 ,β�

2 , · · · ,β�
i , · · · ,β�

I

]�
(28)

β i = [
bi1, bi2, · · · , bij, · · · , biJ

]
(29)

v = [v1, v2, · · · , vi, · · · , vI ]� (30)
w = [w1,w2, · · · ,wi, · · · ,wI ]� (31)

where

vi = Toff (32)
wi = 	sk(tSi + zi), (33)

the measurement route delay vector y is written as

y = Bx + Ba + v + w. (34)

Now, the purpose of the tomography is to estimate theK
non-zero elements of x, so we distinguish between x and
the other vectors which are the components of error factor
vector defined as

e = u + v + w (35)

where

u = Ba = [
u1,u2, · · · ,ui, · · · ,uIright

]� (36)

is the route delay vector contributed from normal links
u ∈ R

I×1. Consequently, we arrive at

y = Bx + e. (37)

4.2 Design for reducing the effect of the error factors
Let us pay attention to the statistical properties of e.
Regarding the each component of e, from (16), (17), and
(36), the statistical properties of the ith element of u are
calculated as

E[ui] =
{

(ρi − κi)ηN
(
ri ∈ RA)

ρiηN
(
ri ∈ RN) (38)

E[u2i ] =
{

(ρi − κi)
2 η2N + (ρi − κi) σ 2

N
(
ri ∈ RA)

ρ2
i η

2
N + ρiσ

2
N

(
ri ∈ RN) (39)

from (32), the statistical properties of the ith element of v
are written as

E[vi] = Toff (40)
E
[
v2i
] = T2

off (41)

and from (14), (15), and (33), the statistical properties of
the ith element of w are written as

E[wi]= 0 (42)

E
[
w2
i
]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3	2

dev

{
t2Si + 2tSi

[
κiηA + (ρi − κi)ηN

]

+ [
κiηA + (ρi − κi)ηN

]2 + (ρi − κi)σ 2
N

} (
ri ∈ RA

)

2
3	2

dev

(
t2Si + 2tSiρiηN + ρ2i η2N + ρiσ 2

N

) (
ri ∈ RN )

.

(43)

Thus, taking into consideration

E
[
uw�] = 0 (44)

E
[
vw�] = 0 (45)

where 0 ∈ R
I×I is the zeromatrix, themean squared norm

of e is written as

ε2conv = E
[
e�e

]

= εuuconv + εuvconv + εvvconv + εwwconv (46)

where

εuuconv = E
[
u�u

]
(47)

εuvconv = E
[
u�v

]
+ E

[
v�u

]
(48)

εvvconv = E
[
v�v

]
(49)

εwwconv = E
[
w�w

]
. (50)

From (38)–(43), they result in

εuuconv =
I∑

i=1

{
PA

[
(ρi − κi)

2η2N + (ρi − κi)σ
2
N
]

+PN
(
ρ2
i η

2
N + ρiσ

2
N
)}

(51)

εuvconv = 2Toff

I∑
i=1

[PA(ρi − κi)ηN + PNρiηN ] (52)

εvvconv = IT2
off (53)
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εwwconv = 2
3
	2

dev

I∑
i=1

(
t2Si + PA {2tSi [κiηA + (ρi − κi)ηN ]

+ [κiηA + (ρi − κi)ηN ]2 + (ρi − κi)σ
2
N
}

+PN
(
2tSiρiηN + ρ2

i η
2
N + ρiσ

2
N
))

(54)

where PA and PN are the probabilities that ri (i =
1, 2, · · · , I) is included in RA and RN , respectively. From
these, in order for a conventional scheme to perform the
delay tomography accurately, in other words, to minimize
the mean squared norm of e given by (46), there is no way
except for selecting clock oscillators with high clock fre-
quency stabilities 	dev ≈ 0 and estimating the time offset
accurately to make Toff ≈ 0.

5 Subtractive scheme
5.1 Matrix/vector representation
The subtractive scheme is achieved by getting rid of Toff
completely, where themth row components of y, B, u, and
w are selected as references. Define a set of observation
route indexes as Iroute = {1, 2, · · · , I} with |Iroute| = I.
Using Iroute, sets of selected reference route indexes
Fref and not-selected (remaining) route indexes Hrem are
defined respectively as

Fref = {
fi′ |fi′ = m, i′ = 1, 2, · · · , I − 1

}
(55)

Hrem = {
hi′ |i′ = 1, 2, · · · , I − 1

}

= Iroute \ {m} (56)

with |Fref | = I − 1 and |Hrem| = I − 1. Using Fref and
Hrem, the reference route delay vector yref ∈ R

(I−1)×1, the
reference routing matrix Bref ∈ R

(I−1)×J , the reference
route delay vector contributed from normal links uref ∈
R

(I−1)×1, the reference clock skew vector wref ∈ R
(I−1)×1,

the remaining route delay vector yrem ∈ R
(I−1)×1, the

remaining routing matrix Brem ∈ R
(I−1)×J , the remaining

route delay vector contributed from normal links urem ∈
R

(I−1)×1, and the remaining clock skew vector wrem ∈
R

(I−1)×1 are defined respectively as

yref = [ yf1 , yf2 , · · · , yfi′ , · · · , yfI−1 ]
� (57)

Bref =
[
β�
f1 ,β

�
f2 , · · · ,β�

fi′ , · · · ,β
�
fI−1

]�
(58)

uref = [uf1 ,uf2 , · · · ,ufi′ , · · · ,ufI−1 ]
� (59)

wref = [wf1 ,wf2 , · · · ,wfi′ , · · · ,wfI−1 ]
� (60)

yrem = [ yh1 , yh2 , · · · , yhi′ , · · · , yhI−1 ]
� (61)

Brem =
[
β�
h1 ,β

�
h2 , · · · ,β�

hi′ , · · · ,β
�
hI−1

]�
(62)

urem = [uh1 ,uh2 , · · · ,uhi′ , · · · ,uhI−1 ]
� (63)

wrem = [wh1 ,wh2 , · · · ,whi′ , · · · ,whI−1 ]
� . (64)

Therefore, we finally have the following new
matrix/vector equation:

y(m) = B(m)x + e(m) (65)
y(m) = yrem − yref (66)
B(m) = Brem − Bref (67)
e(m) = u(m) + w(m) (68)

u(m) =
[
u(m)
1 ,u(m)

2 , · · · ,u(m)

i′ , · · · ,u(m)
I−1

]�

= urem − uref (69)

w(m) =
[
w(m)
1 ,w(m)

2 , · · · ,w(m)

i′ , · · · ,w(m)
I−1

]�

= wrem − wref (70)

where B(m) ∈ {−1, 0, 1}(I−1)×J is referred to as the sub-
tractive routing matrix using the mth route reference and
v disappears completely in (68). Note that, in [13], the
principle of the synchronization-free delay tomography
corresponding to (65)–(67) was simply derived, but it
seemed that m can be neither 1 nor I. The expressions
from (55) to (70) seem complicated but are more math-
ematically strict and expandable for the case of multiple
routes reference. When u(m) ≈ 0 and w(m) ≈ 0, (65),
(66), and (67) result in the equations which are indeed
equivalent to those in [13].

5.2 Reference route selection preserving the
identifiability

Assuming e(m) = 0 in (65), it becomes a simple equation
of linear observation (see (5)). In [13], it is proven that, if B
is 1-identifiable, then B(m) can be also 1-identifiable, and
in this case, we can identify the abnormal link by solving
the �1 optimization problem (see (9)). Now, we add the
following two theorems to the synchronization-free delay
tomography scheme.

Theorem 2 If the subtractive routing matrix using the
m1th route reference is K-identifiable, then another sub-
tractive routing matrix using the m2th route reference is
also K-identifiable.

Proof See the Appendix 1.

Theorem 3 If a subtractive routing matrix is K-
identifiable and the number of abnormal links is more than
K, then we can have the same possibility to identify them
even when selecting any route as the reference.

Proof See the Appendix 2.

Note that the solution may be algorithm-dependent in
the case of Theorem 3.
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In reality, however, the assumption of e(m) = 0 cannot
be held in (65), and in this case, we can identify the abnor-
mal link by solving the �1/�2 optimization problem (see
(10)). e(m) varies according to the reference and order of
the probing routes, so the solution is still affected by the
design of the tomography session. In the following sub-
sections, how to order the measurement routes and select
a preferable reference is addressed to make E

[
e(m)�e(m)

]
closer to 0.

5.3 Reference route selection for reducing the error
factors

Let us pay attention to e(m) in (65) . Itsmean squared norm
is written as

ε2sub = E
[
e(m)�e(m)

]

= εuusub + εwwsub (71)

where

εuusub = E
[
u(m)�u(m)

]
(72)

εwwsub = E
[
w(m)�w(m)

]
. (73)

From (39), (55), (56), (59), (63), and (69), (72) results in

εuusub =
I−1∑
i′=1

{
E
[(
uhi′ − ufi′

)2]}

=
I−1∑
i′=1

(
P2A

{[(
ρhi′ − κhi′

)− (
ρfi′ − κfi′

)]2
η2N

+ [(
ρhi′ − κhi′

)+ (
ρfi′ − κfi′

)]
σ 2
N
}

+ PAPN
{[(

ρhi′ − κhi′
)− ρfi′

]2
η2N +[(ρhi′ − κhi′

)+ ρfi′
]
σ 2
N

}

+ PNPA
{[(

ρhi′ −
(
ρfi′ − κfi′

) ]2
η2N + [

ρhi′ + (
ρfi′ − κfi′

)]
σ 2
N

}

+P2N
[(

ρhi′ − ρfi′
)2

η2N + (
ρhi′ + ρfi′

)
σ 2
N

])
.

(74)

On the other hand, from (43), (55), (56), (60), (64), and
(70), (73) results in

εwwsub =
I−1∑
i′=1

{
E
[(
whi′ − wfi′

)2]}

=
I−1∑
i′=1

2
3
	2

dev
(
tShi′ − tSfi′

)2

+ 2
3
	2

dev
[
P2A

({[
κhi′ ηA + (

ρhi′ − κhi′
)
ηN
]

− [
κfi′ ηA + (

ρfi′ − κfi′
)
ηN
]}2

+ [(
ρhi′ − κhi′

)
σ 2
N + (

ρfi′ − κfi′
)
σ 2
N
] )

+ PAPN
({[

κhi′ ηA + (
ρhi′ − κhi′

)
ηN
]− ρfi′ ηN

}2

+ [(
ρhi′ − κhi′

)
σ 2
N + ρfi′ σ

2
N
] )

+ PNPA
({

ρhi′ ηN − [
κfi′ ηA + (

ρfi′ − κfi′
)
ηN
]}2

+ [
ρhi′ σ

2
N + (

ρfi′ − κfi′
)
σ 2
N
])

+ P2N
[(

ρhi′ ηN − ρfi′ ηN
)2 + (

ρhi′ σ
2
N + ρfi′ σ

2
N
)]]

.

(75)

Applying ρhi′ − κhi′ ≈ ρhi′ , ρfi′ − κfi′ ≈ ρfi′ and ηA 	 ηN
to (74) and (75), they can be approximated respectively as

εuusub =
I−1∑
i′=1

{
E
[(
uhi′ − ufi′

)2]}

≈
I−1∑
i′=1

[(
ρhi′ − ρfi′

)2
η2N + (

ρhi′ + ρfi′
)
σ 2
N

]

> η2N

I−1∑
i′=1

[
ρhi′ −

(
ρfi′ − σ 2

N
2η2N

)]2
(76)

εwwsub =
I−1∑
i′=1

{
E
[(
whi′ − wfi′

)2]}

≈
I−1∑
i′=1

2
3
	2

dev

[(
tShi′ − tSfi′

)2 + PAPNκ2
hi′ η

2
A

]

>
2
3
	2

devT
2
probe

I−1∑
i′=1

(
hi′ − fi′

)2 . (77)

Now, applying the Cauchy-Schwarz inequality to (76)
results in

εuusub ≥ η2N
I − 1

{I−1∑
i′=1

[
ρhi′ −

(
ρfi′ − σ 2

N
2η2N

)]}2

. (78)

From (55), taking into consideration fi′ = m, that is,
ρfi′ = ρm (i′ = 1, 2, · · · , I − 1), by finding the minimizer
for (78), we can see that the following ρm minimizes the
error contributed from random delays in normal links:

I−1∑
i′=1

[
ρhi′ −

(
ρm − σ 2

N
2η2N

)]
= 0

∴ ρm = σ 2
N

2η2N
+ 1

I − 1

I−1∑
i′=1

ρhi′ ≈ 1
I − 1

I−1∑
i′=1

ρhi′ . (79)

On the other hand, applying the Cauchy-Schwarz
inequality to (77) results in

εwwsub ≥ 2
3(I − 1)

	2
devT

2
probe

[I−1∑
i′=1

(
hi′ − fi′

)]2
, (80)
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so by finding the minimizer for (80) as well, we can see
that the followingmminimizes the error contributed from
clock skews:

I−1∑
i′=1

(hi′ − m) = 0

∴ m = 1
I − 1

I−1∑
i′=1

hi′ . (81)

5.4 Design for reducing the effect of the error factors
Equation (79) means that the route whose number of links
is closer to the average of those of links over all the routes
should be selected as the reference. On the other hand,
in terms of reducing the error contributed from the clock
skew, (81) means that the route whose probing packet is
transmitted at around the middle of tomography session
should be selected as the reference. Consequently, one
theoretical design strategy to jointly reduce the two error
factors is to order the probing routes as below, send prob-
ing packets according to the order, and use the delay as the
reference which is measured over the route probed at the
middle of the tomography session:

order ri (i = 1, 2, · · · , I) such that

m =
⌈
I
2

⌉
(82)

ρm = argmin
ρm′ ∈{ρ1,ρ2,··· ,ρI }

∣∣∣∣∣
I∑

i=1
ρi/I − ρm′

∣∣∣∣∣ (83)

select fi′ and hi′ (i′ = 1, 2, · · · , I − 1) such that

fi′ = m (84)

hi′ =
{
i′ (i′ < m)

i′ + 1 (i′ ≥ m)
. (85)

In the following, we use the superscript “s” instead of
(m) to indicate the subtractive scheme.

6 Differential scheme
We can also select multiple routes as references in order
to get rid of Toff . In this case, (55) is modified as

Fref = {
fi′ |fi′ ∈ Iroute, i′ = 1, 2, · · · , I − 1

}
. (86)

Any routes need to be included in either of a set of reference
routes or a set of remaining sets, so (56) is modified as

Hrem = {
hi′ |hi′ �= fi′ , i′ = 1, 2, · · · , I − 1

}

such that Fref ∪ Hrem = Iroute. (87)

From (76) and (77), the following conditions obviously
minimize the error factors contributed from the random
delays and clock skew

ρfi′ ≈ ρhi′ (88)
fi′ ≈ hi′ . (89)

This means that, as a matter of course, the error factor
should be canceled by another error factor with a simi-
lar value. Inspired by the workability of differential phase
shift keying (DPSK) scheme in optical wired communica-
tion system which is rich in phase noise [33], one design
strategy for achieving (88) and (89) is to order the observa-
tion routes with the numbers of links in an ascending (or
descending) order and select the i′th route as the reference
for the (i′ + 1)th route (i′ = 1, 2, · · · , I − 1), namely,

order ri (i = 1, 2, · · · , I) such that

ρ1 ≤ ρ2 ≤ · · · ≤ ρI (90)

select fi′ and hi′ (i′ = 1, 2, · · · , I − 1) such that

fi′ = i′ (91)
hi′ = i′ + 1. (92)

Following this, we propose a differential delay tomogra-
phy scheme, and modify (65)–(70) respectively as

yd = Bdx + ed (93)

yd = [
y2 − y1, y3 − y2, · · · , yi − yi−1, · · · , yI − yI−1

]�
(94)

Bd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b21−b11, b22−b12, ··· , b2J−b1J

b31−b21, b32−b22, ··· , b3J−b2J
...

...
...

...
bi1−b(i−1)1, bi2−b(i−1)2, ··· , biJ−b(i−1)J

...
...

...
...

bI1−b(I−1)1, bI2−b(I−1)2, ··· , bIJ−b(I−1)J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(95)

ed = ud + wd (96)

ud =[u2 −u1,u3 − u2, · · · ,ui −ui−1, · · · ,uI − uI−1]�

(97)

wd =[w2−w1,w3−w2, · · · ,wi−wi−1, · · · ,wI−wI−1]�

(98)
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where Bd is referred to as the differential routing matrix
and the superscript “d” is used instead of (m) to indi-
cate the differential scheme. Similar to the discussion in
Appendix 1 and 2, we can derive

[
b(m1)
1 ,b(m1)

2 , · · · ,b(m1)
q , · · · ,b(m1)

�1

]
η = 0

⇔
[
bd1 ,b

d
2 , · · · ,bdq , · · · ,bd�1

]
η = 0

(99)
y(m1) = B(m1)x ⇔ yd = Bdx, (100)

so in terms of the identifiability of the differential routing
matrix, there is no difference from the subtractive routing
matrices, contrary to the better error factor cancelation
than the subtractive scheme.

7 Methods
To guarantee the repeatability of simulation experiments,
we will use the network with Q = 14 and J = 29 for
performance evaluation, which is shown in Fig. 4. This
network is generated according to the random graph the-
ory [34], where the degree of the node is adjusted to be
more than 2 for satisfying 1-identifiability, and the most
left and most right nodes are selected as S and D, respec-
tively. In addition, according to the method proposed in
[7], 15 routes between S and D are selected, which are
summarized in Table 1. Note that we have the relation-
ships among Q, J, and I as Q ≈ J/2 and I ≈ J/2 for the
network in Fig. 4.
Furthermore, since the size of the network in Fig. 4

is limited, we will use other networks with larger sizes,
which are also generated according to the same method
for the one in Fig. 4. Here, the performance depends on
J rather than Q, so we will show the performance as the

Fig. 4 Network with Q = 14 and J = 29

Table 1 Sets of routes

|Li| Li (i = 1, 2, · · · , 15)
3 L1 = {l3, l15, l26}, L2 = {l2, l14, l26}
4 L3 = {l4, l7, l20, l28}
5 L4 = {l3, l16, l22, l29, l28}, L5 = {l2, l14, l19, l18, l25},

L6 = {l2, l13, l18, l24, l26}, L7 = {l2, l10, l21, l29, l28},
L8 = {l1, l5, l12, l18, l25}

6 L9 = {l4, l8, l17, l16, l15, l26},
L10 = {l4, l7, l21, l29, l27, l26},
L11 = {l2, l9, l12, l19, l27, l28}

7 L12 = {l3, l11, l23, l29, l27, l24, l25},
L13 = {l1, l5, l9, l10, l20, l27, l26}

9 L14 = {l1, l6, l14, l15, l11, l17, l22, l29, l28}
10 L15 = {l4, l8, l23, l22, l16, l10, l13, l19, l24, l25}

function of J as the dependency on the network size,
where we try to keep the relationships among Q, J, and I
similar to those for the network in Fig. 4.
In the simulation experiments, after setting ηN = 15msec,

σN = 3 msec [35, 36], and 	dev = 40 ppm [30, 31],
we selected K abnormal links out of 29 links randomly
and evaluated the five schemes in 1000 tomography ses-
sions. For each given K, all combinations for the locations
of abnormal links were realized, so the total tomogra-
phy sessions resulted in 29CK × 1000. The threshold θ in
(11) is set to 0.1, and the adjustable parameter ξ in �1/�2
optimization is optimized.
For the evaluation, we define two metrics [37] to quan-

tify two different types of errors that can occur in our
identification problem. The first type of error corresponds
to the case where normal links are falsely identified as
abnormal links, and we refer to such errors as false pos-
itives. We quantify the number of these errors using the
false positive rate (FPR) defined (erroneous identification
rate) as

FPR
(
ÊA
)

=
∣∣∣ÊA \ EA

∣∣∣
∣∣∣ÊA

∣∣∣
(101)

where ÊA is the set of the links identified to be abnor-
mal links, and EA is the set of the actual abnormal links.
On the other hand, the second type of error occurs when
the abnormal links are not identified correctly. We refer to
these errors as false negatives, and we quantify the num-
ber of these errors using the false negative rate (FNR)
defined (unidentified error rate) as

FNR
(
ÊA
)

=
∣∣∣EA \ ÊA

∣∣∣
∣∣EA

∣∣ . (102)
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We can evaluate a tomography scheme to be accurate if
its errors in terms of the above two performance met-
rics are suitably small. Especially when both the FPR and
FNR equal zero, we can say that a perfect identifica-
tion is accomplished, defining perfect identification ratio
(PIR) as the ratio of the number of perfect identifications
divided by the number of tomography sessions.
We will show the performance of the following five

delay tomography schemes by simulation experiments;
we refer to the subtractive delay tomography schemes
with and without the route ordering in Section 5.4 as
“Mid-Ave/Sub” and “Rand/Sub,” respectively, the differ-
ential delay tomography schemes with and without (90)
as “Order/Diff” and “Rand/Diff,” respectively, and further-
more, the conventional delay tomography scheme assum-
ing a perfect clock synchronization between S and D only
at the beginning of the tomography session as “Conv.” If
we can select a J×J full-rankmatrixB for (37), we can per-
form the non-compressed sensing-based abnormal link
identification. However, no J × J full-rank matrix always
exists for a given network. In fact, for the network with
Q = 14 and J = 29 in Fig. 4, we can construct no 29 × 29
full-rank matrix.

8 Result and discussion
Figure 5a, b, and c show the dependencies of the PIR, FPR
and FNR on the value of abnormal link delay (ηA), respec-
tively, for the network in Fig. 4 with Tprobe =10 s andK = 1.
We can see from these figures that the Conv scheme does
not work well at all for smaller abnormal link delays due
to the normal link delays and clock skew, even though
perfect clock synchronization has been accomplished at
the beginning of the tomography session. On the other
hand, the Sub and Diff schemes have better performances
than Conv scheme. The route ordering is effective for
both schemes. In particular, the Order/Diff scheme out-
performs the other four schemes in all the range of ηA and
especially when ηA is larger than 150 msec, which cor-
responds to be larger than around ten times the normal
link delay (ηN = 15 msec), it can perfectly identify the
abnormal link. The performance of the Rand/Diff scheme
is worse than the Sub schemes, especially for the smaller
values of abnormal link delay. Let us discuss the reason for
the phenomenon by an additional simulation experiment.
Since Tprobe = 10 s in these figures, the magnitude of
the clock skew is still less than 1 msec (= |	skTprobe| <

80 × 10−6 × 10 = 0.8 × 10−3), whereas that of the total
normal link delays on a route is in the order of several tens
of milliseconds from the system assumption. Therefore,
the dominant source in es or ed can be the Gaussian-
distributed normal link delays. If an abnormal link delay is
much small, that is, x ≈ 0, we have ys ≈ us or yd ≈ ud. A
false positive error occurs when the delay over at least one
route which can be composed of only normal links reaches

a

b

c

Fig. 5Dependency on the abnormal link delay. a PIR, b FPR, and c FNR

the identification threshold θxmax, so its probability is
given by

PFP = 1 −
∫ +θxmax

−θxmax

∫ +θxmax

−θxmax
· · ·

∫ +θxmax

−θxmax

p(u1,u2, · · ·uI−1)du1du2 · · · , duI−1

(103)

where p(u1,u2, · · · ,uI−1) is the joint probability density
function (pdf) of u1,u2, · · · , uI−1. Figure 6 shows the
result on the probability that at least one normal route
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Fig. 6 Probability that a false positive error occurs

delay exceeds the delay ζ seconds under the above condi-
tion. From this figure, we can see that, for ζ < 0.13 s, the
route delay for the Rand/Diff scheme exceeds ζ more fre-
quently than that for the Sub schemes, whichmeans PsFP <

PdFP resulting in the superiority of the Sub schemes over
the Rand/Diff scheme for the smaller values of abnormal
link delay in Fig. 5a.
Figure 7a, b, and c shows the dependencies of the PIR,

FPR, and FNR on the probing packet transmission inter-
val (Tprobe), respectively, for the network in Fig. 4 with
ηA = 1.0 s and K = 1. 	dev is extremely small
in the practical setting, so both Sub and Diff schemes
are insensitive to the clock skew caused by 	dev when
Tprobe is smaller. However, these figures indicate the
superiority of the Diff schemes; the Diff schemes can
perfectly identify the abnormal link keeping the FPR
and FNR to zero even for larger Tprobe such as more
than 1000 s, while the Sub schemes incorrectly iden-
tify an abnormal link when Tprobe reaches around 300 s
since the mismatch of clock frequency between S and
D keeps giving monotonously increasing bias to the
route delay measurements during the tomography ses-
sion. Furthermore, the Rand/Sub scheme corresponds
to the one proposed in [13], so comparing the perfor-
mances between the Rand/Sub andMid-Ave/Sub schemes
in Figs. 5 and 7, respectively, we can see that the
route ordering/selection improves the performance of the
Sub scheme.
The routes were selected to be 1-identifiable, but Fig. 8a,

b, and c shows the dependencies of the PIR, FIR, and FNR
on the identifiability (K), respectively, for the network in
Fig. 4 with Tprobe = 10 s and ηA = 1.0 s. It is natural that
in Fig. 8a, the PIRs of all the five schemes are one at K = 1
and then they decrease as K increases. The Sub schemes o

utperform theRand/Diff scheme. Figure 8b and c shows that
the FPR dominates the degradation of the PIR, so this phe-
nomenon comes from the same reason as that observed
for the Sub schemes in Fig. 5a, namely, the Diff schemes
increase the probability that the delay of at least one nor-
mal route exceeds the identification threshold. However,
the most important fact is that the Order/Diff scheme
shows the best performance.
Figure 9a, b, and c shows the dependencies of the PIR

on the network size, assuming Tprobe = 10 s and K = 1
for ηA = 0.1 s, ηA = 0.5 s and ηA = 0.9 s, respectively. In
all the three figures, as J increases, the PIRs tend to gradu-
ally improve to 1.0, which means that larger size networks
are more advantageous in terms of abnormal link iden-
tifiability. This is because larger-size networks give more
information on the single abnormal link throughmore dif-
ferent measurement routes. It is obvious to see that the
PIR more improves for larger ηA for all the five schemes,
but the superiority of the Order/Diff Scheme is outstand-
ing; it can keep the PIR closer to 1.0 even for smaller ηA in
smaller-size networks.
Finally, Table 2 compares the computational complex-

ities of the tomography schemes, where the common-
alities to all the five schemes are omitted such as link
delay estimation and abnormal link identification. The
Mid-Ave/Sub and Order/Diff schemes show better per-
formance in the above simulation experiments with addi-
tional computational cost for route ordering besides that
of route delay subtraction O(I). The computational com-
plexities of average calculation of route length and route
ordering for the Mid-Ave/Sub scheme are O(I) and O(1),
respectively, where average calculation dominates the
complexities. On the other hand, the route sorting for the
Order/Diff scheme takes O

(
I2
)
in worst case. However, it
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a

b

c

Fig. 7 Dependency on the probing packet transmission interval.
a PIR, b FPR, and c FNR

is important to note that the route ordering can be exe-
cuted only once in an off-line manner before tomography
session.

9 Conclusions
This paper proposed two kinds of synchronization-free
delay tomography such as subtractive and differential
schemes.We theoretically derived the optimal route refer-
ence and ordering methods for the two schemes and then
confirmed their robustness against clock asynchronism,

a

b

c

Fig. 8 Dependency on the identifiability. a PIR, b FPR, and c FNR

clock skew, and normal link delays in a realistic wireless
sensor network by simulation experiments. The subtrac-
tive scheme is simple, namely, does not care about the
order of all measurement routes; it puts just a route as
the reference at the middle of tomography session whose
number of routes is closer to the average of those of links
over all the measurement routes. On the other hand, the
differential scheme is little complicated; it needs to order
all measurement routes with linear computational com-
plexity in terms of the number of links, and it shows the
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a

b

c

Fig. 9 Dependency on the network size. a ηA = 0.1, b ηA = 0.5, and
c ηA = 0.9

Table 2 Computational complexity

Scheme Route ordering Route delay subtraction

Conventional – –

Rand/Sub – O(I)

Mid-Ave/Sub O(I) O(I)

Rand/Diff – O(I)

Order/Diff O
(
I2
)

O(I)

highest robustness against the clock asynchronism, clock
skew, and normal link delays. The differential scheme
can keep its identification accuracy even for much longer
transmission interval of probing packet, so it is much
harmless to normal sensor data traffic.
Compressed sensing-based delay tomography scheme is

applicable for networks where non-compressed sensing-
based scheme does not work, and it can identify abnormal
links more accurately for larger-size networks. These two
facts are its main advantages.
We have discussed the proposed schemes in a simple

scenario, but we expect that they will be feasible in other
scenarios such as passive proving strategy or where mul-
tiple source and destination nodes are selected. We leave
the application to other scenarios and real-world trace to
verify the proposed schemes as our future works.

Endnote
1We intentionally use G = (N ,L) instead of G = (V , E)

because we call the elements not “vertex” and “edge” but
“node” and “link,” respectively, in this paper.

Appendix 1: Proof of Theorem 2
Define the subtractive routing matrices using the m1th
and m2th route references are B(m1) and B(m2), respec-
tively. When B(m1) is K-identifiable, Spark

(
B(m1)

) =
�1 > 2K . Now, Spark

(
B(m1)

) = �1 implies that the
smallest number of column vectors of B(m1) is �1 which
are linearly dependent, so picking up different �1 column
vectors arbitrarily out of the J − 1 column vectors of B(m1)

as b(m1)
1 ,b(m1)

2 , · · · ,b(m1)
q , · · · ,b(m1)

�1
and a nonzero vector

as η = [
η1, η2, · · · , ηq, · · · , η�1

]�, the following equation
is satisfied:

[
b(m1)
1 ,b(m1)

2 , · · · ,b(m1)
q , · · · ,b(m1)

�1

]
η = 0. (104)

Applying the fundamental manipulation on the addition
of equations to (104), it can be converted to

⇒
[
b(m2)
1 ,b(m2)

2 , · · · ,b(m2)
q , · · · ,b(m2)

�1

]
η = 0 (105)

where b(m2)
1 ,b(m2)

2 , · · · ,b(m2)
q , · · · ,b(m2)

�1
correspond to the

column vectors of B(m2). Conversely, we can derive

[
b(m2)
1 ,b(m2)

2 , · · · ,b(m2)
q , · · · ,b(m2)

�2

]
η = 0 (106)

⇒
[
b(m1)
1 ,b(m1)

2 , · · · ,b(m1)
q , · · · ,b(m1)

�2

]
η = 0. (107)

Consequently, Spark(B(m1)) = Spark(B(m2)), that is,
whichever route we may select as the reference, the sub-
tractive routing matrix is K-identifiable.
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Appendix 2: Proof of Theorem 3
In this case, there is no guarantee that the abnormal
links are correctly identified. However, applying the fun-
damental manipulation on the subtractive matrix/vector
equations, we have

y(m1) = B(m1)x ⇔ y(m2) = B(m2)x (108)

that is, a set of solutions in selecting them1th route as the
reference is equivalent to that in selecting the m2th route
as the reference.
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