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Human behavior detection has become increasingly significant in various fields of application. In this paper,
we propose a device-free indoor human behavior detection method with channel state information (CSI) and
principal component analysis (PCA), respectively, in the line of sight environment, non-line-of-sight environment, and
through the wall environment experiments. We divide this method into two parts. It begins with an online phase. A
fingerprint database is established by collecting the original data packets of CSI in different time periods and using the
characteristics of PCA algorithm to reduce the dimension of the original CSI data. Then, some outlier values are
removed by Kalman filter algorithm, and we will get more stable data and fully prepared for the docking experiments.
At the same time, the PCA algorithm’s estimation results are corrected according to the detected real-time motion
speed to reduce the mismatch target. Then, in the offline phase, the classification of data is collected in the real-time
environment by using support vector machine (SVM) algorithm. This method not only reduces the time complexity of
the algorithm but also improves the detection rate of the human's behavior and reduces the error. The processed data
are matched with the data in the fingerprint database, and finally, the detection of different behaviors performed by
humans in an indoor environment is finally achieved according to the matching results. We experimented repeatedly
in three different scenarios, with an average 95% of human behavior detection rate in three different environments. In
addition, we compare the method proposed in this paper with the existing methods in different aspects, such as the
impact of the number of subcarriers, the impact of data packets, and the impact of the test area. The experimental

to other algorithms in terms of average error and indoor activity recognition accuracy, which can more accurately
identify indoor human motion behavior and improve the stability of the system.

Keywords: Principal component analysis, Human behavior detection, Channel state information, Support vector

1 Introduction

Detecting human behavior has aroused increasing atten-
tion in many potential applications, such as indoor intru-
sion detection, campus security, supermarket customer
tracking, patient care, and elderly safety monitoring.

With the continuous progress and development of
wireless sensor networks (WSNs), people’s research
perspective has not only limited to the traditional
location awareness and indoor location [1]. For
example, the typical ultra-wideband (UWB)-based
radar system [2] and the relatively new indoor
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positioning technology based on commercial [3]
Wi-Fi infrastructure have better development advan-
tages in all aspects [4].

A common solution to these problems is to
pinpoint mobile devices in a Wi-Fi infrastructure [5].
Such a solution requires the active participation of
mobile devices [6]. However, in many special
occasions, most people do not carry equipment at
any time. Such as at home or in sensitive areas, the
objects may not carry any electronic devices or power
them off [7]. Thus, device-free indoor human behav-
ior detection is in need, which detects and tracks the
objects that do not carry any electronic devices nor
participate actively in the process [8].
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In traditional indoor location technology, location
service and environment perception are mainly based
on received signal strength indication (RSSI) tech-
nology [9]. For example, researchers used RSSI to
detect pre-positioning of indoor personnel in previ-
ous years [10]. However, in the experimental results
of these technologies, it is found that the positioning
accuracy is low. The main reason is that the stability
of RSSI is low and the value is affected by time, and
also, the time resolution is limited to the data packet
standard [11]. In the IEEE 802.11n standard, the
channel state information (CSI) describes the attenu-
ation factor of each signal on each transmission path
[12]. This is the value of each element in the channel
gain matrix H, such as signal scattering, environmen-
tal weakness, and distance attenuation [13]. Compared
with RSSI, CSI can adapt the communication system
to the current channel conditions [14]. It has obvious
advantages in terms of time resolution, frequency
resolution, and stability [15]. Moreover, it is also
guaranteed high-reliability and high-speed communi-
cation in the multi-antenna system [16].

Wang et al. used a method of deterministic CSI
fingerprinting and threshold-based [17]. In order to
detect a human in an omnidirectional way, Wu et al.
proposed DeMan [8] for device-free detection of
moving and stationary human. DeMan took advan-
tage of amplitude and phase information of CSI to
detect moving human and considered human breath-
ing as an intrinsic indicator of stationary human
[18]. Lv et al. proposed speed independent
device-free entity detection (SIED) which is suitable
for intrusion detection of a different entity moving
speeds [19]. SIED captured the variance of variances
of amplitudes of each CSI subcarrier and combined.
Zhu et al [16] proposed R-TTWD for detection of
moving human by taking advantage of the correlated
changes over different subcarriers. Furthermore, they
extract the first-order difference of eigenvector of
CSI amplitudes across different subcarriers. Research
[20] shows that the CSI can be used to achieve a de-
tection rate of device-free human detection, and CSI
is affected by human movements [21]. However, it is
not optimal in timeliness of the algorithm. Research
[13] shows that the CSI can be used to construct a
low-cost and high-accuracy passive target localization
method based on CSI model, which effectively com-
bines the features of CSI with the target localization,
which does not consider the detection area and de-
tection rate relationship. Research [22] shows that
the CSI is more temporally stable and provides the
capability to benefit from the multipath effect, thus
suitable for accurate human detection [23]. Research
[24] seeks to monitor the position change of entities
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without actively carrying any physical devices. And
research [25] shows that by creating a multiple hier-
archical Dirichlet processes, NotiFi automatically
learns the number of human body activity categories
for abnormal detection.

Previous work on CSI-based human detection
focused mainly on human behavior or used different
methods to detect moving and stationary human
separately [26]. The above papers all make good use
of the characteristics of CSI, but some require
special equipment to improve the positioning
accuracy [27]. Furthermore, the overall performance
and detection rate need to be improved to effectively
achieve the accuracy of human behavior detection
[28].

In view of the problems mentioned above, in this
paper, we present a method for indoor human behav-
ior detection based on principal component analysis
(PCA)-Kalman feature extraction. The process goes
through CSI data collection, feature extraction, model
training to establish the human detection classifier,
and the relationship between CSI fingerprints. We
propose to apply Kalman on the CSI data to reduce
noise and the computing complexity. We will apply
PCA to extract the most contributing eigenvalues
from the original CSI data.

At the same time, this method can reduce the dimen-
sion and reduce the time complexity of the algorithm.
Meanwhile, we propose to apply support vector machine
(SVM) on Wi-Fi CSI to achieve human detection. By
doing this, the results of the classification will be con-
verted into the physical location of the state information.
In this paper, the Wi-Fi signal propagation model is used
to detect the people’s different behavior in the physical
space of human activity. Figure 1 shows the principle of
the propagation of Wi-Fi signals in the physical space.

Whenever human beings live indoors, the radio
signals that are accepted will change significantly,
and the amplitude information of the CSI will also
change sensitively [29]. Based on this principle, we
propose a method based on ubiquitous Wi-Fi signals
to detect personnel behavior [30]. It is feasible to
use CSI data to get from COTS wireless device [31].
And no testers are required to carry any additional
Wi-Fi infrastructure or special sensor [32]. It can
work under the condition of line-of-sight (LOS),
non-line-of-sight (NLOS), and through one wall.

Particularly, this method provides a detection rate
of around 92% for both moving and stationary people,
while identifies human-free scenarios by 95%; all of
which outperforms existing methods by about 20%.
This method is greatly improved in the detection ac-
curacy and overall efficiency compared with the trad-
itional indoor personnel detection method.
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In summary, the main contributions of the paper are
as follows:

a) We propose to use the fine-grained PHY layer
information CSI for human behavior detection and,
to the best of our knowledge, present a method for
indoor human behavior detection based on princi-
pal component analysis (PCA)-Kalman feature
extraction.

b) We adopt Kalman algorithm to reduce noise in CSI
data and apply PCA to extract the most
contributing features from the CSI and reduce the
dimensionality.

¢) Apply SVM classification to perform device-free
human detection regardless of human moving or
stationary.

d) Regarding the performance of human detection,
compare PCA-Kalman with other indoor human
behavior detection methods. Investigate the
parameters that affect the performance of
human detection, such as the number of access
points and the number of the packet and
window size. Experiment results demonstrate
that the PCA-Kalman can achieve high perform-
ance that outperforms traditional CSI-based
system.

The rest of the paper is organized as follows. We
review the related works in Section 2 briefly. In Section
3, we present the method design and the design details
of with PCA-Kalman. We present the experimental
setup with PCA-Kalman in Section 4. Evaluations, com-
parisons, results and discussion are reported in Section
5. Finally, we conclude the work in Section 6.

2 Related works

2.1 Human behavior detection with CSI

With the rise of cloud computing and the Internet
of Things, as an enabling technology, network phys-
ical systems (CPS) are almost everywhere today [33,
34]. Yang et al. [35] proposed a complete data rep-
lica manager solution called “Auto Replica,” working
in distributed caching and data processing systems
using SSD-HDD tier storages. Auto Replica balances
the trade-off between the performance and fault tol-
erance by storing caches in replica nodes’ SSDs. At
the same time, we are in the era of data explosion
and cloud computing [36], and large-scale data ana-
lysis is of great significance in various fields of re-
search and industry [37]. With these technical
supports, indoor positioning technology and indoor
personnel status detection technology will be favored
by all fields of research, and indoor positioning and
indoor personnel status testing will become an es-
sential part of life. Hu et al [38] proposed a method
to detect human motion based on phase eigenvalue
and then combined with covariance matrix and dy-
namic time window algorithm; finally, the experi-
mental results of the HPMD system obtained a
high-detection rate. Zhou et al [39] put forward a
passive indoor location and detection method based
on CSI. This method firstly collects effective CSI
data, uses PCA algorithm for feature extraction and
dimensionality reduction, then establishes fingerprint
database, and finally, carries out on-line detection.
The method is tested in two typical environments of
visual distance and non-visual distance, and the de-
tection rate is as high as 97% in the end. Compared
with the traditional method of human behavior
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detection, this method improves the detection rate
to a great extent. Wang et al [40] used CSI to detect
the basic motion of human body, and CSI can be
applied in real life. It can be seen that the use of
CSI for indoor personnel status detection has devel-
oped very quickly, which will be the future
development trend of wireless sensor network.

2.2 Novel applications based on CSI

Zhu et al [41] used CSI to analyze a series of effects
of human motion on CSI, so a more robust passive
human motion detection method was proposed,
which uses PCA algorithm and spatial diversity pro-
vided by multiple antennas. Through the study of
the quality of each antenna, the best antenna
combination is selected to improve the accuracy of
detection. Yan Wang et al [42] presented device-free
location-oriented activity identification at home
through the use of CSI. Domenico et al [43] pre-
sented a device-free crowd counting and occupancy
estimation system by analyzing the shape of the
Doppler spectrum of the received signal which was
correlated to the number of people moving in the
monitored environment. It can be seen that the de-
tection of indoor human behavior detection using
CSI signals has become a trend for the development
of wireless sensor networks in the future.

2.3 CSl data collection

With the popularity of wireless networks and advances
in orthogonal frequency division multiplexing (OFDM)
technology, the traditional landscape has changed [31].
Channel responses can be extracted from commercial
Wi-Fi devices under 802.11/g/n standards, which
reveals that a set of channel measurements depict the
amplitude and phase of each subcarrier [44]. Because
RSSI cannot distinguish multiple signal propagation
paths one by one [45], different multipath propagation
conditions may lead to different sensitivities based on
human movement, which further affects the results of
human detection [46].

In multi-path indoor environment, wireless signals
can change signal propagation in a more complicated
way through reflection, diffraction and scattering,
and human motion, which results in different
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amplitude signals under different sensitivities [47].
We were tested under three scenes line-of-sight dis-
tance, non-line-of-sight distance, and wall.

In order to evaluate PCA-Kalman’s ability to
achieve LOS, NLOS, and through one wall behavior
recognition. We extensively valuate PCA-Kalman’s
performance in the following three scenarios, as
shown in Fig. 2.

a) LOS. The tester is in the LOS range between the
transmitter and the receiver.

b) NLOS. The tester is not on the LOS between the
transmitter and the receiver, but within their range.

¢) Through the wall. The transmitter and the receiver
are in adjacent rooms.

As shown in Fig. 2, it can be seen that the dis-
tance between the signal sending end and the signal
receiving terminal is different, and the different pos-
ition of the personnel and the different actions of
the body make an influence on the change of the
signal. Therefore, the number of non-visual paths
may interfere with human motion. More paths lead
to more severe fluctuations in the received signals.
In contrast, the LOS path, the person’s movement
has no significant influence on the received signal.
Therefore, from Fig. 3, we can see that in different
environments, the distance between receiver and
transmitter, location, and other factors have great in-
fluence on the sensitivity of received signals. It can
be observed from Fig. 3a, b that there are great dif-
ferences in amplitude signals in different environ-
ments. Figure 3a is more stable than Fig. 3b because
Fig. 3a is collected in an open hall environment and
has less interference. Figure 3b is a collection of data
in a relatively complex laboratory environment,
where there are a lot of electromagnetic interference,
such as mobile phones and computers. And there
are a lot of multipath interference, such as desks
and chairs. This results in a large fluctuation of the
signal in Fig. 3b. Therefore, through the comparison
of two sets of amplitudes of CSI in different envi-
ronments in Fig. 3, it can be concluded that the
amplitude signals of CSI are different under different
conditions. This phenomenon proves that it is
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Fig. 2 Experimental scenario layouts. a Line-of-sight, b non-line-of-sight, and ¢ through one wall
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feasible to use the amplitude signal of CSI as the
characteristic value of indoor personnel state
detection.

In order to better represent the multipath propaga-
tion, in the modeling stage, we use channel impulse
response (CIR) to build the model. In the case of the
linear time constant, CIR can be expressed as:

N
h(‘[) = Zaie—jﬁ,é(r—ri) (1)
i=1

Phase offset and time delay wherever a;. 6; and
r;are respectively the ith path attenuating. N repre-
sents the total number of propagation paths, and
é(r) is a Dirac pulse function. Due to frequency
selective fading during multipath propagation, in
order to better characterize multipath propagation,
we can select a channel frequency response (CFR) in
order to better characterize multipath propagation.
Since CFR is composed of amplitude-frequency
response and phase-frequency response, CSI is
fine-grained information from the physical layer that
describes CFR from the transmitter to the receiver.
Leveraging commodity network interface card (NIC)
with modified firmware and driver, the amplitude
and phase of each subcarrier within a channel can
be revealed to the upper layers for each packet in
the format of CSI.

Each CSI group represents the amplitude and

phase of an OFDM subcarrier, which can be
expressed as:
H(k) = ||H(k)||e"H®) (2)

In the formula above, [|H(k)lland j 2 H(k) are amplitude
and phase of the kth subcarrier, respectively, since the
amplitude information is more stable. Moreover, we use

the amplitude to represent eigenvalue in the following
process.

2.4 CSl feature extraction

In this paper, we collected CSI data in three different
scenarios, and the data were obtained from common
commercial Wi-Fi equipment, which is the real data.
Because of the inherent noise of the environment and
a series of electromagnetic interference, this will make
the data unstable. In this paper, Kalman filter
algorithm is used to reduce noise, and then PCA
algorithm is used to extract the feature of the filtered
eigenvalue. The combination of PCA algorithm and
Kalman filter algorithm is the innovation of this
paper. It not only make use of the better timeliness
of Kalman filter algorithm, but also make use of the
dimension reduction function of PCA algorithm.

Through repeated experiments, the experimental
results show that the method proposed in this paper
has good robustness and is tested in three different
environments, so the method is more practical. We
apply the Kalman algorithm to detect and remove
the noise. In the first place, the goal of indoor exer-
cise should be modeled. Figure 4a shows the raw
CSI data collected from three receiving antennas at
the receiving end, in which the isolated little black
curve represents the noise and is marked with blue
dashed lines. Figure 4b shows the CSI signal after
removing redundant noise using the Kalman filter
algorithm.

In our laboratory environment, we collected 360
dimensional CSI samples. But in the open hall envir-
onment, the CSI sample contains 270 dimensions. At
the same time, high dimensionality causes time com-
plexity. As each dimension may have a different con-
tribution to human behavior detection, we apply
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PCA algorithm to extract the most contributing fea-
tures and reduce the dimensionality of CSI data.
PCA algorithm is based on the maximum variance
of the high-dimensional feature space data, and then
projected into the low-dimensional space through
linear transformation, so that more indexes can be
converted into several unique comprehensive indica-
tors. The core of PCA is to diagonalize the covari-
ance matrix so as to minimize the correlation
between dimensions. Furthermore, it can raise and
preserve the energy of the dimension. Specifically, as
a high-dimensional data set, the raw data is main-
tained to the maximum extent while reducing the di-
mension and eliminating redundant data and noise
as much as possible.

If the CSI signal is directly used as a fingerprint fea-
ture, the dimension of data is high, and the parameter
estimation is difficult and computationally expensive.
Furthermore, we use PCA to extract the features and

remove the correlation between the location features
and the components. This method reduces not only the
dimension and the amount of data, but also the noise in
the CSI signal and the positioning error. Consequently,
we extract the eigenvalues directly from the subcarriers;
thus, we extract more useful eigenvalues. We deployed
N reference points in the selected positioning area. The
position p;(x; ;) of each reference point and the physical
position of N reference points constitute a position space
P=(p1, pa, ..pn)". The CSI signals of the position points
are collected at each reference point, and each reference
point is collected n times. And the collected signal is
taken as the origin of the p;(x; y;). Fingerprint informa-
tion is recorded as an n-dimensional vector, Q; = (csiy,
csiy, ..., csi,)h i€ (1, N), where each CSI signal is again a
complex matrix: m x n x 56.

We use the original position fingerprints of all
reference points to make up an original position
fingerprint space Q of nx N dimension, where Q is

Training

Training of SVM
classification
models for human
behavior detection

Human behavior detection

SVM classification
models for human
behavior detection

Human
detection

N\

i

Feature

extraction PCA

CSI feature
extraction with kK—

CSI data
collection

CSI denoising
with kalman

Fig. 5 System architecture of PCA-Kalman
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the Q=(Qy, Qs ...,Qx)%, which Q is expressed as
each row vector in the matrix. Q represents the
original position fingerprints of the reference points.

3 PCA-Kalman design

This section presents the design of PCA-Kalman in a
top-down manner, with emphasis on indoor human
behavior detection. The architecture of PCA-Kalman
mainly consists of two components: offline training
phase and online testing phase. The working principle
of using PCA-Kalman method to detect the behavior
state of indoor personnel is shown in Fig. 5.

3.1 Offline training phase

In this section, we collect the position coordinates of
each test area and process the received raw data of
CSI. In this process, we leverage Kalman filter
algorithm to reduce the noise of the original data and
use the improved PCA algorithm to extract the most

contributing features and reduce the dimensionality of
CSI fingerprints. In other words, we extract the
nonlinear feature of the original position fingerprint.
Furthermore, we store the processed CSI signal in the
fingerprint database and update the fingerprint data-
base in real time according to the environment
change.

In the first place, we derive a frequency-domain model
of the state of a single channel. The formula can be
expressed as:

Y =HX+N (3)

where Y is the received signal vector, X is a vector of
the transmitted signal, H is the channel matrix, and N
represents additional Gaussian white noise vectors.
According to the previous step, CSI of all subcarriers
can be expressed as:

Fig. 7 The testbeds: the laboratory and meeting room and hall. a Laboratory. b Meeting room. ¢ Hall
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Then, the CSI of a single subcarrier can be expressed

as:
csi = |csi|e/ Seest (5)

where |csi| and Zcsi are the amplitude and phase cor-
responding to the subcarrier, respectively. Furthermore,
we propose to apply Kalman filter algorithm to filter the
amplitude information in the previous step. Suppose X
to represent the state vector of the system at time k. If
the change in the state quantity of the system can be
expressed in the form of a linear equation. Then, the
equation which becomes the state transition equation of
the system can be expressed as:

Xk = FiXr1 + Bl + Wi (6)

where Fj is the state transition matrix, By is the
control matrix, Uy is the control vector, and Wy is the
noise of the transfer process. After Kalman filtering,
these redundant noises are removed effectively.

We use the PCA algorithm to extract the main
features of the original fingerprint space, and remove the

Table 1 The accuracy of each methods under different situations

redundant data to form the feature location fingerprint
space, which can be expressed by the formula:

Q, = (Q1/7Q2/7“'7QN/)T (7)

The specific algorithm is as follows:
Step 1: Based on the above sample space formula, we
can derive a new formula:

7QN)T (8)

Then, we calculate the center of the feature again.
We use the data of each dimension minus the mean
of the dimension data, in order to ensure that the
average value of each dimension is zero. So, M rep-
resents the matrix.

Step 2: Construct the covariance matrix C:

Q = (Qh Q27 oo

1
C=—-MM" 9
o ©)
Step 3: Calculate the eigenvalue A; and eigenvector v;
of the covariance matrix and then select the largest m
eigenvectors:
Step 4: We project the original sample matrix:

Different method in different

The detection accuracy of different actions

scenarios 1 (squat) (%) 2 (ump) (%) 3 (walk) (%) 4 (waved) (%) 5 (turn around) (%)
LOS Sensor 86.82 90.90 85.24 9149 90.88
NotiFi 89.62 92.98 86.34 92.50 92.78
PCA-Kalman 9245 93.95 88.39 94.28 9338
NLOS Sensor 81.82 8040 79.18 8560 80.96
NotiFi 8598 8290 81.24 86.89 8388
PCA-Kalman 8845 84.89 8339 87.28 85.38
through one wall Sensor 79.82 80.90 8225 8049 82.89
NotiFi 7898 7860 81.38 77.49 80.78
PCA-Kalman 80.55 81.95 82.59 81.38 85.30
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Table 2 The robustness evaluation of PCA-Kalman
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Different scenarios in different

The detection accuracy of different actions

experlmental environments 1 (squat) (%)

2 (jump) (%)

3 (walk) (%) 4 (waved) (%) 5 (turn around) (%)

LOS Hall 90.80 89.88
Laboratory 89.85 90.60
Meeting room 83.45 80.94
NLOS Hall 82.10 84.85
Laboratory 83.82 83.85
Meeting room 7840 79.95
Through one wall Hall 80.85 80.10
Laboratory 79.80 7895
Meeting room 69.45 66.95

9123 93.50 92.85
89.26 90.48 91.86
82.39 83.20 83.30
79.25 79.60 79.78
83.25 90.49 81.90
7739 77.30 7740
80.25 80.50 81.89
7824 7549 77.88
7240 63.28 64.40

Finally, we can get matrix Q after dimension
reduction.

3.2 Online behavior testing phase

At this stage, the transmitter is responsible for
collecting real-time CSI data of each testing area.
Similarly, the sender sends data on different behav-
iors made by the tester to the receiving end. Then,
the SVM classifier is applied to the physical position
coordinate state, and the classification result is
obtained. Finally, the state of the estimated position
is obtained. The main steps are as follows:

In the initialization phase, we divided the test area
into 20 squares of the same size. Furthermore, we
use these squares as reference points. The volunteers
traverse the reference points one by one and
perform different action states at each reference
point, such as standing, jumping, squatting, sitting
down, and other common actions.

The obtained CSI data is transferred to the server.
As can be observed from Fig. 6, the changes in CSI
signals vary significantly when testers perform differ-
ent operations. What is more, real-time test data are
collected in real experiment environment.

The next step is to apply the SVM classifier as
follows:

Step 1: We assume that the sampling period for
the CSI data at the receiving end is 7, which is usu-
ally 1.0 s. Firstly, we let a volunteer traverse all ref-
erence points and perform daily actions such as
standing, jumping, squatting, and sitting at the refer-
ence point. Assuming that the receiving end samples

the sample training set is {(x;y)}, i=1, 2, ..., n.
The SVM regression function is
Fl6) =wex+b (10)

In the above formula, W is the weight vector, and b is
the bias vector.

Step 2: By solving the convex quadratic program-
ming problem to solve w and b in Eq. (17), the pre-
dictive function is obtained, and the objective
function is minimized:

QW) = 5[ + C - Renp ) (1)

where C is the penalty factor, Remp(f) is the loss
function.

Fig. 9 The commercial hardware testbed. a Transmitter. b Receiver
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Table 3 Top five abnormal activities

Serial number Abnormal activity Time
1 Squat 10:20
2 Jump 11:40
3 Walk 12:15
4 Waved 13:20
5 Turn around 15:28

Step 3: Using the relaxation factor to convert the
optimization objective function of formula (11) into:

. ’ .
Mmlmlze§||w||2-I—CZ(EH—EL«) (12)

i-1

where ;, &7 are the relaxation factors.

Step 4: To speed up the solution, we choose to
introduce the Lagrange function and solve the
following dual form to obtain multipliers a;,af ,
expressed as:

Page 10 of 17

l !

Maximize = Z (ai-a})y,—¢ Z (@i + o)

i=1 i=1

1 L % %

—EZ(ai—ai) a-aj) < xi,x; >
by

(13)

Step 5: For nonlinear predictive problems, SVM
introduces the mapping function ¢ to map the
original data into a new feature space. Then, we
convert the nonlinear problem into a linear problem
in the new feature space. At the same time, the
SVM regression can be expressed as:

fx) =w-¢x)+b (14)

Step 6: The optimization objective function of formula
(13) is transformed into the following form:

Accuracy (%)

2 3 4
Distance between human and Rx (m)
[ Sensor [N NotiFi NI PCA-Kalman

Accuracy (%)

1 2 3 4 5
Distance between human and Rx (m)

[ Scnsor [N NotiFi I PCA-Kalman
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n
S

I

Types of Abnormal Activities

. Hall Laboratory Ml Meeting room

Fig. 10 a—c The accuracy of abnormal activity detection in different scenarios. d—f The robustness evaluation of PCA-Kalman respectively. a LOS.

b NLOS. ¢ Through one wall. d LOS. e NLOS. f Through one wall
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Fig. 11 Impacts of test area on detection accuracy
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11711 =1
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(15)

Step 7: In this step, we introduce kernel function k(x;
x;) instead of (¢(x,), ¢(x;)) formula. Additionally, (15) is
transformed into the following form of optimization
objective:

! !

Maximize = Z(m—af)yi—SZ(“i + “j)

i1 =

- 1 (16)
-5 Z (o -a) (aj—a,)k(xi,x,)
ij=1
Step 8: What is more, the final SVM prediction func-
tion is:

!
f(xai,a;) = Z(ﬂi-“?)k(’“t,xi) +b (17)

15

Step 9: We use real-time amplitude data collected
and fingerprint data to match. When the testers con-
duct experiments on different actions in the test
area, the amplitude characteristics change with the

change of different conditions. It can be clearly seen
from Fig. 6 that the amplitude changes correspond-
ing to different actions are completely different.

4 Experimental setup

4.1 Hardware testbed

Both the transmitter and the receiver have installed
the Atheros AR 9380 NIC supporting the
IEEE802.11n protocol to facilitate the acquisition of
CSI from the device. As shown in Fig. 9. We have in-
stalled an external antenna of about 1.5 m in length.
And all transmitters are equipped with the Ubuntu
14.04 LTS 32-bit system and the 4.1.10 Linux kernel
version. At the same time, we use open source
drivers, Atheros-CSI-Tool, and Atheros NIC, devel-
oped by Hsieh and others.

The driver modules make it possible to obtain CSI
from Linux kernel when it received signals and saved
them for other process. One of the desktop computers
equipped with Intel Core i3-4150 CPU works as a sender
while another computer works as a receiver. In our sys-
tem, the obtained data is processed using the
PCA-Kalman algorithm in C program.

4.2 Experimental scenarios

We conducted our experiments in a research labora-
tory (8 m x9 m) and a meeting room (6 m x4 m)
both piled with desks and computers as well as a hall

Table 4 The detection rate of different methods in different test areas

Different The detection rate of different methods in different test areas

methods 1 %) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%)
PCA-Kalman 80 90 92 98 97 9% 97 9% 90
PCA 76 87 83 89 93 92 95 92 86
FIMD 21 23 40 80 90 89 80 60 59
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(10 m x9 m) in our campus, which is piled with
desks and computers in the laboratory and meeting
room, thus creating a rather complex multipath envir-
onment, as shown in Figs. 7 and 8. We evaluated the
performance of PCA-Kalman in three rooms’
surroundings (Tables 1 and 2).

In order to construct an offline histogram finger-
print, we gathered data first thing in the morning
when no one was in the lab. In addition, for the
purpose of behavior detection, we generated three test
sets, including three different test areas. The
infrastructure of indoor human behavior detection is
composed of wireless access points (AP) for data
transmission, monitoring points (MP) for data
retrieval, and a server for data processing. Each AP
continuously broadcasts information to facilitate the
Wi-Fi device to find an access point. For complete
coverage of the area of interest, each pair of AP-MP
is placed at the corners or edges, forming diagonal
lines [48]. Each pair of transmitting-receiving anten-
nas is a link (Fig. 9).

5 Numerical results and discussion

In this section, we interpret the experimental setups
and the analysis of system performance and
parameters.

Table 5 The TP rate of different methods in different activity
areas

Different The TP rate of different methods in different activity areas
methods o453 4 s 6 7 8 9

PCA-Kalman 099 063 099 099 098 098 099 099 098 099
PCA 099 031 099 098 099 098 093 099 099 096
FIMD 045 018 091 040 036 099 040 040 087 028

5.1 Feasibility of PCA-Kalman

First of all, we evaluated the rate of detection of
human activities in three different scenarios. As
shown in Table 3, we listed five common behaviors of
people in the table. We have chosen a total of three
scenarios, as shown in Fig. 2. Furthermore, we com-
pare the PCA-Kalman method with the other two
methods. Clearly, Fig. 10 shows that the accuracy of
PCA-Kalman in LOS, NLOS, and through one wall is
much higher than the accuracy of other two methods.
And Table 1 lists the detailed data of Fig. 10a. In
Fig. 10a, the accuracy of PCA-Kalman declines with
the increasing distance; however, the accuracy of
PCA-Kalman shown in Fig. 10b, ¢ is not significantly
reduced. So, the reason for that is when the tester is
far from the receiving end, they are closer to the
transmitting end. The signal transmitted increases,
but the reflected signal decreases.

5.2 Robustness verification

Figure 10d—f shows the detection rate of human ac-
tivity in three different scenarios. And Table 2 lists
the detailed data of Fig. 10b. In each scene, the dis-
tance between the AP and the computer is the same.
The results show that the average accuracy of the
PCA-Kalman method is 89% in the LOS environment,
87% in the NLOS environment, and 74% in the wall
penetration environment. In these three scenarios, the
accuracy of the open hall test was high, reaching up
to 92, 85, and 77%.

In three scenarios, the average detection rate of
meeting rooms was 91, 88, and 75%, respectively.
However, in all three scenarios, laboratories have
lower detection rates of 84, 81, and 70%, respectively.
Furthermore, the average detection rate in the open

hall environment and in the meeting room



Dang et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:214

Page 13 of 17

Fig. 13 Impacts of window size on detection accuracy

S
Q
B
=
2
g 050 ——¥—— PCA-Kalman i
go
A ====0-=-= FIMD
0.4 B
—&A—— PCA
0.3‘ B
02 1 1 1 1 1 Il Il
10 20 30 40 50 60 70 80 90 100

Window size

environment is higher than that in the laboratory.
The reason is that the laboratory environment has
more interference than the other two environments,
such as more work desks and office chairs.

On the other hand, we detect the activity of a tester
at different distances between the transmitter and the
receiver. We found that the closer the distance means
the higher detection rate. In general, the closer the
AP is to the computer, the higher the accuracy is of
the results. This is because the reception effect of the
Wi-Fi signal received is enhanced with the shortening
of the communication distance, thus providing a more
reliable CSI feature extraction to capture the different
movements of the human body.

5.3 The effect of different test areas on the detection rate
In this section, we discuss the effect of different test
areas on the detection rate. In order to detect the
effect of the behavior state of different test areas on
the detection rate, we divided the experimental area
into 20 squares and numbered them in ascending
order. Moreover, in this experiment, we have chosen
a grid of 1 to 9 for testing. As shown in Fig. 11,
obviously, we can see that the detection rate is the
highest in the 4, 5, 6, and 7 grid regions. And Table 4
lists the detailed data corresponding to this figure.

Table 6 The effect of the window size of different methods on
the detection accuracy

Different
methods

Impacts of window size on detection accuracy

10 20 30 40 50 60 70 80 90 100
PCA-Kalman 083 089 091 091 093 095 093 095 097 098
FIMD 075 085 087 088 087 088 087 088 089 091
PCA 028 075 078 079 080 079 072 082 084 076

The main reason is that the distance between the
transmitter and the receiver in these three areas is
relatively close, and there is no excessive signal inter-
ference. However, the detection rates for the first
three grids are lower because the three areas are far
from the receiving end to the sending end with the
interference of multipath effects such as tables and
walls next to them. The results show that the detec-
tion rate of the PCA-Kalman method is higher than
the other two systems.

5.4 Detection of different performance areas

We focused on the following main metrics to evaluate
our detection rate: (a) TP (true positive) for the prob-
ability that the human behavior events are correctly
detected and (b) FP (false positive) for the fraction of
cases in which the system announced a “detected”
event when there was no one moving.

In this section, we compared the detection perform-
ance of PCA-Kalman method with R-PMD and FIMD in
different test areas. First, we split the test area into 10
small areas from 0 to 9, as shown in Fig. 12. And Table 5
lists the detailed data corresponding to Fig. 12a.

Figure 12a shows the TP rates for different test
areas. From the figure, we can observe and guess two
points:

(1) The FIMD method performs well in zones 2, 5, and
8, but shows significant degradation in other areas.
This is because 2 and 5 are in the LOS environment,
while others are in the NLOS environment. The test
TP rate further confirms that FIMD is valid only in
the LOS area and is not suitable for detecting
random movement patterns of personnel. PCA’s TP
rate is far greater than the FIMD over all regions.
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Fig. 14 Impacts of feature number on detection accuracy
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What is more, the PCA-Kalman method is the best
performance. Which further determines the advan-
tages of using PCA [49].

(2) We also noticed that PCA achieved excellent
results, with the exception of zone 3 testing in all
regions, since zone 3 was far from the transmitter
and receiver, resulting in less noticeable changes in
the signal from people.

Because qualified motion detection systems need to
have not only a high-TP rate, but also a low-FP rate.
Therefore, the figure shows that the FP rate is also
low, and we can clearly observe that the PCA-Kalman
method is more stable than the simple PCA method.

At the same time, the detection rate is higher than
that of FIMD method. The above experimental results
confirm that PCA-Kalman is superior to the other
two methods. And in the two aspects of TP and FP,
comparison can show obvious advantages. Similarly,
PCA-Kalman is a more stable method, which can
have a higher detection rate in each experimental
environment.

5.5 Impact of different sliding window sizes

Since the window size to a certain extent represents the
size of the delay, it plays an important role in the overall
performance of the detection rate. Additionally, the
window size indicator is selected to evaluate the
detection rate. Moreover, the window size and
performance are proportional. The effect of time
variance can be alleviated based on a large amount of
data. As can be seen from Fig. 13, the detection rates
of the three systems increase with the increase of the
window size, but when the window size exceeds a
certain set threshold, the time difference of the CSI

will be caused by the different behavior states of the
personnel. And Table 6 lists the detailed data of
Fig. 13.

However, when the window is smaller, it is very dif-
ficult for the system to detect the human. Because
the size of the variance reduces the sensitivity of the
system and lowers in a static environment. The
results show that the PCA-Kalman method can
achieve the best detection performance when the slid-
ing window size is set to 10, and the detection rate is
relatively stable.

5.6 Impact of feature number

As shown in Fig. 14, when we use more features, it
may produce a higher detection rate. Meanwhile, un-
like the eigenvalues of the correlation matrix used in
the FIMD, its principle is partially focused on the ei-
genvalues. However, the covariance matrix we used in
the PCA-Kalman method is more dispersed. And
Table 7 lists the detailed data corresponding to
Fig. 14.

Nevertheless, it can be shown from the figure that
when different features are used and the number of
features increases, the detection rate of PCA-Kalman
method proposed in this paper will also increase.
Moreover, it is not difficult to see that when the
eigenvalue reaches 5, it basically stays steady. In

Table 7 The effect of the number of features of different
methods on the detection accuracy

Different Impacts of feature number on detection accuracy
methods 5 3 4 5 6
PCA-Kalman 0.948 0.958 0.961 0971 0.966
FIMD 0.934 0.948 0.942 0.933 0.935
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contrast, the turning point for method FIMD was 4
and beyond and the detection rate dropped
significantly. The results show that the detection rate
of our proposed PCA-Kalman method is more stable.

5.7 Impact of packet number

We observe that different data packets have a great
influence on the detection accuracy of the experi-
ment. Moreover, we choose different data packets for
testing. As shown in Fig. 15, the true positive (TP)
rate increases as the number of packets increases.
The true negative (TN) rate is almost unaffected. The
reason is that in the absence of a human being, most
of the channel measurements remain stable enough
for a short period of time to capture the feature.

On the contrary, inadequate samples cannot
characterize human time changes because the effects of
human movement are not evenly distributed. Overall,
both TP and TN rates can reach 90%, so the method
described in this article works well.

6 Conclusions

In this paper, we propose a method for detecting indoor
activity using ubiquitous Wi-Fi, called PCA-Kalman, and
extract CSI signals from commercial off-the-shelf
(COTS) Wi-Fi devices. We propose to extract a robust
feature from the CSI signal to detect the behavior
change of indoor personnel. In order to achieve it, we
analyzed the limitations of Kalman filtering technique
and PCA to improve denoising performance and capture
the representative signals of human behavior. Therefore,
the use of CSI is triggered, and the method proposed in
this paper can obtain higher detection rate and robust-
ness without any equipment. Meanwhile, a method of
detecting human behavior without equipment based on

CSI is proposed, by applying SVM to solve the human
behavior detection problem. And we applied on CSI data
to reduce noise and PCA is applied to extract feature
and reduce dimensionality.

Further, the experimental results show that the detec-
tion rate of this method is 95% in three different test areas.
Therefore, the method has strong robustness and stability.
Our repeated tests in different scenarios have been com-
pared with other methods. Besides, PCA-Kalman method
has a high stability and good detection rate of indoor
personnel behavior detection method. However, there are
some shortcomings in our approach. For example, when
there are multiple people, this will affect our experimental
results. Moreover, we will solve the problem in the future.
In addition, in this paper, the experiment of this method is
carried out in the 2.4 G band. In order to further improve
the overall performance and efficiency, in the future, we
will explore the performance and efficiency of indoor
personnel status detection in the 5 G band.
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