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Abstract

In the UAV path planning study, due to the relative movement of multiple targets and the UAV, long-term and
large-scale UAV, autonomous tracking has not been achieved. Therefore, aiming at this problem, this paper uses radar
to provide a real-time feedback on target position, estimates the later motion state of the target according to its
position, and then perform dynamic path planning by combining the feedback data and the state estimation result.
Finally, The UAV path is optimized in real time. Experiments show that the proposed scheme can better plan the UAV
path when multiple targets are in motion, thus improving the intelligence of the UAV and the capability of long time
tracking.
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1 Introduction
With the development of UAV technology, UAVs have
achieved a wide application in the field of military and
civil aviation remote sensing, communications relay, and
so on [1]. At the same time, with the increase of the UAV
payload and the improvement of the radar miniaturization
technology, the UAV radar has gradually become an im-
portant part of the UAV load.
At present, the UAV radar is mainly composed of

synthetic aperture radar, and the working frequency bands
are concentrated in the millimeter wave band
(30~300 GHz), the Ku band (12~18 GHz), and the X band
(8~12 GHz) [2]. UAV SAR has high resolution and long
detection range. It can work all day and around the clock,
penetrate clouds and obstacles, and track moving targets
and sudden rapid maneuvering targets. Because of the
strong anti-interference ability and around-the-clock ap-
plication of radar, the UAV can use radar sensors to obtain
environmental information during flight and process it
through signal processing algorithms and target tracking
technology, which provides reliable environmental infor-
mation for UAVs.
Radar is an important sensor in the field of target track-

ing and recognition. The electromagnetic radiation has
strong reliability, but it also has some shortcomings. Due

to the complex electromagnetic environment in the
low-altitude airspace, the clutter signal noise is relatively
strong, which will seriously affect the radar’s ability to de-
tect moving targets. Compared with the infrared imaging
system, the visible light sensor has strong denoising ability
and imaging capability. It can provide clearer image
information and is less susceptible to electromagnetic
interference. The radar target tracking is based on the
measurement information of the point target for filtering
and tracking, and the visible light sensor tracking is based
on the image matching degree [3, 4]. In the field of UAV
target tracking, a hot research trend is how to combine
the advantages of point target tracking and image tracking
together to solve the problem of imaging blur of simple
image targets at long distances and the interference of
close-range targets by low-altitude airspace.
At present, in the aspect of moving target tracking by

UAV, the existing autonomous tracking of the single mov-
ing target has been extensively studied and applied. How-
ever, as to the problem of multiple moving target tracking,
the UAV operation still relies on operator’s observing in
order to control the UAV flight path, and the autonomous
flight path design has not been realized. Therefore, this
paper combines the tracking, prediction, and path plan-
ning of single moving target by UAV, so as to realize UAV
autonomous path planning for multiple targets.
In order to achieve long-term and large-scale UAV au-

tonomous tracking of multiple moving targets, this
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paper studies the UAV autonomous optimization based
on multiple moving target tracking. There are n moving
targets to be tracked, and a UAV starts from a point to
reach the positions of these targets. After each target is
visited once, the UAV will return to the starting point.
The UAV path problem means how to find the shortest
path of the process above. In order to realize the UAV
autonomous path planning [5], this paper divides the
scheme into three steps.
The first step is to obtain the specific motion equation

of the moving targets after selected. Because of the con-
tinuous relative movement of the UAV and the targets, co-
ordinates of the targets will constantly change and need to
be updated in real time. In order to obtain the motion
equation of the moving targets, the positions of the targets
are obtained by radar in this paper, and the interception,
tracking, track calculation, and tracking state determin-
ation of the targets are completed by radar data process-
ing. In radar data processing, the motion trajectory of the
target is established through correlation and filtering pro-
cessing, which effectively eliminates false detection caused
by residual clutter and updates the target position.
The second step is to predict the positions of moving

targets. Because the position of a target is constantly chan-
ging, tracking its present position will lead to longer track-
ing time. Therefore, this paper uses the method of
estimating the target position to optimize the UAV path.
Due to the state change and uncertainty of moving targets,
Kalman filtering method [6, 7] is used in this paper. In the
radar target tracking filtering algorithm, Kalman filtering
is the most representative, which is both based on the
measurement information of the point target and predict-
ing the position of the target at the next moment to
achieve tracking [8, 9]. Kalman filtering is a recursive algo-
rithm for solving the state optimal estimation. It can up-
date the current state and predict the state of the next
moment by filtering only the state information of the
previous moment. This tracking algorithm is characterized
by small calculation and nice real-time ability [10, 11]. And
the Kalman filtering method [12] is a time domain method
which solves the problem of optimal filtering based on state
space. It has high applicability to the estimation of moving
targets that frequently change motion states.
The last step is to use predicted positions to dynamically

plan the UAV path, which means to quickly and accurately
design a non-repeating shortest path after obtaining the
specific positions of the targets. This problem is called the
traveling salesman problem (TSP) in the unified research
[13, 14]. Due to the complexity of TSP, when the scale of
targets is large, the time complexity of the exact solution
method will increase exponentially, and it will lead to high
the real-time requirements during the operation of the
UAV. The number of targets is considered to be about 10,
and the universality of the algorithm should be

considered. Therefore, ant colony algorithm is adopted in
this paper instead of the exact algorithm to obtain the ap-
proximate shortest path optimal solution. The basic
principle of the ant colony algorithm is to imitate the ant
colony foraging behavior in the natural world, use a
pheromone to control the direction of ant’s movement,
and autonomously and effectively approach the optimal
path ultimately [15]. However, although the basic ant col-
ony algorithm has a strong global optimization ability, it
takes a long time to solve the problem, and it is easy to fall
into a local optimum and cause the algorithm to stall. To
solve this, Stutzle and Hoos [16] proposed the maximum
and minimum ant colony algorithm. Only the pheromone
of the ant with the optimal algorithm is updated; thus, the
convergence speed of the algorithm is improved. Li et al.
[17] use prior knowledge to limit the increment of phero-
mone in the ant colony algorithm and increase the road
weight factor, so as to effectively avoid the stagnation of
the algorithm. Therefore, this paper combines the im-
proved methods of scholars to optimize the ant colony al-
gorithm, thus solves the problem of long solution time
and falling into the local optimum in the route plan using
ant colony algorithm.
In general, in order to solve the problem of UAV au-

tonomous flight path planning, this paper improves the
method of UAV single moving target. Firstly, radar is used
to track multiple moving targets to obtain the real-time
position and motion information of multiple moving tar-
gets. Then, the Kalman filter method is used to predict
and estimate the positions of the moving targets. Finally,
the improved ant colony algorithm is used to process the
acquired information to design a shortest UAV flight path
that can track multiple moving targets. The scheme can
realize the near-optimal UAV flight path by means of
computer vision under the scene of UAV multiple moving
targets tracking, thereby reducing manual operations and
improving the UAV autonomous flying capability.

2 Algorithm implementation
2.1 Overall algorithm flow
This paper presents an algorithmic process for UAV au-
tonomous planning. Firstly, the radar sensor mounted on
the UAV is used to obtain the positions of the moving tar-
gets and their changes and then estimates the positions of
the targets after a certain period of time according to the
changes of their positions. After obtaining the estimated
motion states, the shortest path plan under the estimated
target position obtained by using the improved ant colony
algorithm. Finally, when the UAV performs the calculated
path flight, it updates the positions of the targets and the
path in real time to achieve the UAV path planning re-
quirement for multiple moving targets. The specific flow
chart is shown in Fig. 1.
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2.2 Radar target location and prediction
Radar target location plays a crucial role in radar target
tracking. However, there is a state noise in the target
environment and system noise in the radar system.
These two kinds of noise can cause an inevitable error
between the true state and the measured state of the
cloud target. In order to eliminate this error, a lot of
research has been carried out at home and abroad,
mainly to develop filtering methods [18], such as
Kalman filtering.
Kalman filter is a recursive estimator that implements

the estimation of motion states through the principle of
feedback control [19]. After observing the positions of
the targets by radar, the current states of the targets
can be predicted according to the historical motion
states of the targets. The basic state model of the tar-
gets includes the observation equation and the state
equation as follows:

Zk ¼ HkXk þ Vk

Xk;k−1 ¼ Ak;k−1Xk−1 þ Bk−1Uk−1

�
ð1Þ

Where Zk represents the observed value of the target
state, Hk represents the observation matrix, Xk repre-
sents the real state at time k, Xk, k − 1 represents the
target state estimated from the previous state, Ak, k − 1

represents the state transition matrix from k − 1 to k, Bk

− 1 represents the system control matrix at time k − 1, Uk

− 1 represents the noise that influences the current mo-
tion law of the targets such as acceleration and deceler-
ation of the moving targets, Q is the self-covariance of
Uk − 1, and Vk represents the observation noise, which in
this experiment represents the deviation during the
tracking process, and R is the covariance of Vk.
The flow of the Kalman filter in each frame is shown

in Fig. 2.
Therefore, the observation states of the radar can be

filtered by the above formula to obtain the state equa-
tion of the targets, because the UAV takes a long time in
the process of approaching the target. If only relying on
the existing states of the targets, the direct interval of
the control signal and the delay in the signal transmis-
sion may cause the flight direction to be updated back-
ward, so that the shorter tracking path cannot be
obtained. Thus, in this paper, the predicted positions in
the Kalman filter algorithm are extracted in order to
take control of the UAV.
From the Kalman filter formula, the prediction equa-

tion of the next coordinate Xk + 1, k and its covariance
matrix Pk + 1, k can be obtained as:

Xkþ1;k ¼ Akþ1;kXk þ BkUk

Pkþ1;k ¼ Akþ1;kPkA
T
kþ1;k þ BkQkB

T
k

�
ð2Þ

In this paper, the principle of optimizing the algorithm
path through the Kalman filter is shown in Fig. 3. If the
prediction algorithm is not added, due to the delay of
the UAV flight control signal, the UAV will move to-
wards the direction of the obtained target position and
reach position 3. At the same time, the target will move
during the flight of the UAV and reach position 2.
Therefore, the prediction algorithm added in this paper
corrects the flight direction of the UAV and makes the
UAV reach position 4 where it is close to the target pos-
ition, when it gets the target position next time.

2.3 UAV path planning
Taking into account the real-time requirement of UAV
path planning, the ant colony algorithm is used. But the
ant colony algorithm is slow in convergence and easy to
fall into the local optimal solution [20]. So, this paper fo-
cuses on the optimization of ant colony algorithm. The
probability of stagnation of the algorithm is reduced by

Fig. 1 The flow chart of the algorithmic process
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Fig. 2 The flow of Kalman filter

Fig. 3 The schematic of the algorithm
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limiting the increment of pheromone update and the dy-
namic change of volatile factors; thus, the UAV dynamic
path planning can be realized.
Firstly, information is initialized for each target:

τij 0ð Þ ¼ m=dmin ð3Þ
where τij(0) represents the pheromone from target i to
target j, m represents the number of ants, and dmin rep-
resents the distance between the closest two targets.
Then, the ants transfer on the basis of the pheromone:

pkij tð Þ ¼
ταij ijð ÞηβijX

s∈allowedk

ταij ijð Þηβij
; j∈allowedk

0; other

8>><
>>:

ð4Þ

Where pkijðtÞ represents the probability that ant k trans-

fers from city i to city j; ηij(t) represents the concentration
of pheromone on the path at time t; ηij(t) = 1/dij repre-
sents the degree of expectation of ants from target i to tar-
get j; α represents the information heuristic factor, which
indicates the influence of pheromone on the transition
probability; β represents the expected heuristic factor,
which indicates the influence of visibility on the transition
probability of ants; allowed = {1, 2,…, n} − tabuk represents
the targets which ant k has not visited; and tabuk repre-
sents the targets that the ant k has passed.
Then update of pheromone partially:

τij t þ 1ð Þ ¼
1−ρð Þτij tð Þ þ ε Lworst−Lbestð Þ; best path:
1−ρð Þτij tð Þ−ε Lworst−Lbestð Þ; worst path:
1−ρð Þτij tð Þ; other

8<
:

ð5Þ
where ρ represents the pheromone volatility coefficient, ε
represents the pheromone enhancement coefficient, and
Lbest, Lworst represent the length of the optimal path and the
worst path, respectively, for all ants in this cycle. In order to
increase the size difference of the pheromone between the
optimal path and the worst path, this paper adopts the
maximum and minimum ant system to strengthen the op-
timal solution and weaken the worst solution.
To avoid too much pheromone difference caused by

the maximum and minimum ant system, which will lead
to the stagnation of the algorithm, the amount of all
pheromone should be limited as:

τij tð Þ ¼
τmax; if τij tð Þ > τmax

τij tð Þ; if τmin < τij tð Þ < τmax

τmin; if τij tð Þ < τmin

8<
: ð6Þ

where τmax represents the maximum pheromone value;
τmin represents the maximum pheromone value.
Finally, the ant colony will gradually converge on the

best path through the constant updating of pheromone.

If the number of cycles is small at this time, the ant col-
ony path will be modified by the crossover and mutation
of the genetic algorithm, so the pheromone can be up-
dated again. Thereby, it can reduce the occurrence of
the local optimal solution.
The specific process is shown in Fig. 4.
The experimental principle of this paper is shown in

Fig. 5. By predicting the position of each target, the UAV
re-adjusted the tracking sequence to the targets and ad-
justed the first tracking target from the no. 1 target far
away from the UAV to the no. 2 target approaching the
UAV, thus reducing the total path length of UAV. So, the
planned path is more adaptive to the targets’ movement.

3 Simulation experiment and results
3.1 The experiment of Kalman prediction algorithm
At first, there is the simulation experiment of Kalman
prediction in the paper to verify the accuracy of the pre-
diction algorithm. There is a target which moving along
a sinusoidal trajectory. And the target will give a feed-
back position for every 10 frames to simulate the radar.
And the Kalman prediction algorithm will predict the
position of the target 10 frames later. And the current
position of the target will be compared with the pre-
dicted position before 10 frames. The experimental re-
sults are shown in Fig. 6.

Fig. 4 The flow chart of ant colony algorithm
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3.2 Single moving target tracking experiment
In order to prove the validity and feasibility of the algo-
rithm, simulation experiments on single target tracking
and multi-target tracking of the UAV are conducted.
First of all, a simulation experiment of radar single tar-

get tracking is conducted. The UAV radar sensor is used
to obtain the observation position of the target, and the
Kalman filter method is used to predict the position of
the moving target. The experiment adopts two kinds of
UAV tracking methods, target state position tracking
and target predicted position tracking. In this paper, the
UAV of target state position tracking is called the

comparison UAV, and the UAV of target predicted pos-
ition tracking is called the experimental UAV. In the ex-
periment, the speed of the UAV is set to two pixels per
frame, and the target moving speed is about one pixel
per frame. The experimental results are shown in Fig. 7.

3.3 Multiple moving targets experimental verification
Then, a simulation experiment for the UAV path plan-
ning of multi-moving target tracking is conducted. Based
on the radar obtaining the position of a single moving
target, multiple moving targets are observed. After that,
according to the states of the targets, the ant colony

Fig. 5 The schematic diagram of the path planning method

Fig. 6 The experimental results of the Kalman prediction algorithm
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algorithm is used to determine the target tracking se-
quence and path. The simulation results are shown in
Fig. 8.

4 Discussion of the results
4.1 Discussion of the Kalman prediction algorithm experiment
As shown in Fig. 6, in the 150th and 350th frames, when
the target motion state changes a little, the predicted
position before 10 frames can coincide with the current
position of the target, and it can still be above the trajec-
tory of the target’s motion. And in the 250th frame,
when the target is in the case of a large movement direc-
tion change, the Kalman prediction algorithm can also
be adjusted quickly with only minor deviations. It means
that the Kalman prediction algorithm can effectively pre-
dict the target position.

4.2 Discussion of single moving target tracking experiment
Figure 7 shows that by predicting the target position ac-
cording to the state of the observed target by radar, the

experimental UAV makes a judgment on the target mo-
tion direction and corrects the direction in advance,
thereby reducing the path length required to reach the
target and shortening the time required to get close to
the target. The tracking efficiency is improved and the
path planning is optimized.

4.3 Discussion of multiple moving targets experimental
verification
As is shown in the 60th frame of Fig. 8, the experimen-
tal UAV modifies the flight path and the tracking se-
quence, and in the 70th frame, after 10 frames, the
comparison UAV is modified for the moving target
tracking sequence to the same as the experimental
UAV. It shows that the proposed algorithm can better
adapt to the motion changes of multiple moving tar-
gets, track the moving targets, and update and correct
the UAV path in advance, thus improving the tracking
efficiency of the UAV.

Fig. 7 The experimental results of the simulation of a single moving target

Fig. 8 The experimental results of the simulation of the path planning of multiple targets
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5 Conclusions
In this paper, aiming at the problem of UAV path planning
for multiple moving targets, after the targets are deter-
mined, radar is used to observe the targets and obtain
their observation positions. According to the observation
positions of the targets, the Kalman filtering is used to ob-
tain the state positions and the predicted positions of the
targets, and the ant colony algorithm is used to perform
path planning for multiple moving targets. The experi-
mental results show that by predicting the position of the
moving targets for path planning, the UAV path can be
corrected and updated in advance, which improves the
tracking efficiency of the UAV, thus enhancing the
intelligence of the UAV multiple moving targets tracking.

Abbreviations
TSP: Traveling salesman problem; UAV: Unmanned aerial vehicle

Funding
This work was supported by the “Fundamental Research Funds for the Central
Universities,” no. NS2017062.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions
BW, JB, LZ, and QS conceived the idea of the paper. BW and JB designed
and performed the experiments. BW, JB, and BW analyzed the data. LZ and
QS wrote the paper. BW, JB, LZ, and QS revised the paper. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 8 August 2018 Accepted: 28 September 2018

References
1. X. Wang, Vision-based detection and tracking of a mobile ground target

using a fixed-wing UAV. Int. J. Adv. Robotic Syst. 11(156), 1–11 (2014).
https://doi.org/10.5772/58989

2. L. Liu, J.I. Bo, Status and development of radar on UAV. Mod. Nav. 3,
227–230 (2014)

3. Y. Zhang, S. Hu, Research on radar/visible light surveillance and tracking
methods of target in low altitude airspace. Comput. En. Appl. 54(6), 234–240
(2018). https://doi.org/10.3778/j.issn.1002-8331.1610-0149

4. X. Liu, F. Li, Z. Na, Optimal resource allocation in simultaneous cooperative
spectrum sensing and energy harvesting for multichannel cognitive radio.
IEEE Access. 5, 3801–3812 (2017). https://doi.org/10.1109/ACCESS.2017.2677976

5. P. Han, M. Chen, S.D. Chen, et al., Path planning for UAVs based on
improved ant colony algorithm. J. Jilin Univ. 31(1), 66–72 (2013). https://doi.
org/10.3969/j.issn.1671-5896.2013.01.011

6. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans.
ASME J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

7. G.Y. Kulikov, M.V. Kulikova, Accurate cubature and extended Kalman filtering
methods for estimating continuous-time nonlinear stochastic systems with
discrete measurements. Appl. Numer. Math. 111, 260–275 (2017). https://
doi.org/10.1016/j.apnum.2016.09.015

8. S. Chen, H. Liu, J. Chen, L. Shen, Penetration trajectory planning based on
radar tracking features for UAV. Aircr. Eng. Aerosp. Tec. 85(1), 62–71 (2013).
https://doi.org/10.1108/00022661311294067

9. X. Liu, M. Jia, X. Zhang, W. Lu, A novel multi-channel Internet of Things
based on dynamic spectrum sharing in 5G communication. IEEE Internet
Things. 99, 1 (2018). https://doi.org/10.1109/JIOT.2018.2847731

10. X. Wang, R. Wang, N. Li, H. Fan, et al., A method of estimating the velocity
of moving targets for use in high-resolution wide-swath SAR imaging.
Remote Sens. Lett. 9(4), 305–313 (2018). https://doi.org/10.1080/2150704X.
2017.1420263

11. X. Liu, M. Jia, Z. Na, W. Lu, et al., Multi-modal cooperative spectrum sensing
based on Dempster-Shafer fusion in 5G-based cognitive radio. IEEE Access.
6, 199–208 (2018). https://doi.org/10.1109/ACCESS.2017.2761910

12. A. Ahmadreza, K. Ali, M. Ali, An IMM algorithm based on augmented kalman
filter for maneuvering target tracking. Sci. Res. Essays. 6(34), 6787–6797
(2011). https://doi.org/10.5897/SRE10.980

13. G. Dantzig, S. Johnson, Solution of a large-scale traveling-salesman problem.
Oper. Res. 2(4), 393–410 (2010). https://doi.org/10.2307/166695

14. M. Manfrin, M. Birattari, T. Stützle, et al., Parallel ant colony optimization for
the traveling salesman problem. Lect. Notes Comput. Sci. 4150(2), 224–234
(2016). https://doi.org/10.1002/j.1538-7305.1965.tb04146.x

15. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of
cooperating agents. IEEE T. Syst. Man. Cy. B. 26(1), 29 (1996). https://doi.org/
10.1109/3477.484436

16. T. Stutzle, H. Hoos, MAX-MIN Ant System and local search for the traveling
salesman problem. IEEE Int. Conf. Evol. Comput., 309–314 (2002). https://doi.
org/10.1109/ICEC.1997.592327

17. S. Li, Y. Zhang, Y. Gong, The research on the optimal path of intelligent
transportation based on ant colony algorithm. J. Changchun Univ. Sci. Tech.
4, 122–126 (2015). https://doi.org/10.3969/j.issn.1672-9870.2015.04.027

18. S.L. Sun, Z.L. Deng, Multi-sensor optimal information fusion Kalman filter.
Aerosp. Sci. Technol. 40(6), 1017–1023 (2004). https://doi.org/10.1016/j.
automatica.2004.01.014

19. B. Chen, S. Zhao, P. Zhu, J.C. Principe, Quantized kernel least mean square
algorithm. IEEE Trans. Neural Netw. Learn. Syst 23, 22–32 (2012). https://doi.
org/10.1109/TNNLS.2011.2178446

20. H.M. Botee, E. Bonabeau, Evolving ant colony optimization. Adv. Complex
Syst. 1(2), 149–159 (1998). https://doi.org/10.1142/S0219525998000119

Wang et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:239 Page 8 of 8

https://doi.org/10.5772/58989
https://doi.org/10.3778/j.issn.1002-8331.1610-0149
https://doi.org/10.1109/ACCESS.2017.2677976
https://doi.org/10.3969/j.issn.1671-5896.2013.01.011
https://doi.org/10.3969/j.issn.1671-5896.2013.01.011
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.apnum.2016.09.015
https://doi.org/10.1016/j.apnum.2016.09.015
https://doi.org/10.1108/00022661311294067
https://doi.org/10.1109/JIOT.2018.2847731
https://doi.org/10.1080/2150704X.2017.1420263
https://doi.org/10.1080/2150704X.2017.1420263
https://doi.org/10.1109/ACCESS.2017.2761910
https://doi.org/10.5897/SRE10.980
https://doi.org/10.2307/166695
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/ICEC.1997.592327
https://doi.org/10.1109/ICEC.1997.592327
https://doi.org/10.3969/j.issn.1672-9870.2015.04.027
https://doi.org/10.1016/j.automatica.2004.01.014
https://doi.org/10.1016/j.automatica.2004.01.014
https://doi.org/10.1109/TNNLS.2011.2178446
https://doi.org/10.1109/TNNLS.2011.2178446
https://doi.org/10.1142/S0219525998000119

	Abstract
	Introduction
	Algorithm implementation
	Overall algorithm flow
	Radar target location and prediction
	UAV path planning

	Simulation experiment and results
	The experiment of Kalman prediction algorithm
	Single moving target tracking experiment
	Multiple moving targets experimental verification

	Discussion of the results
	Discussion of the Kalman prediction algorithm experiment
	Discussion of single moving target tracking experiment
	Discussion of multiple moving targets experimental verification

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

