
RESEARCH Open Access

A Q-learning-based network content
caching method
Haijun Chen1,2* and Guanzheng Tan1

Abstract

Cloud computing provides users with a distributed computing environment offering on-demand services. As its
technologies become gradually mature and its application becomes more universal, cloud computing greatly reduces
users’ costs while increasing working efficiency of enterprises and individuals (Futur Gener Comput Syst 25:599–616,
2009). Software as a service (SaaS), as a kind of information servicing model based on cloud platforms, is rising with the
developments of Internet technologies and the maturing of application software. The responsibility of a SaaS server is
to timely and accurately satisfy users’ needs for information. An intelligent and efficient content caching solution or
method plays a vital role in that. This paper proposes a reinforcement learning (RL)-based content caching method
named time-based Q Cacher (TQC) which effectively solves the problem of low hit ratio of server caching and
ultimately achieves an intelligent, flexible, and highly adaptable content caching model.

1 Introduction
Cloud computing is regarded as a revolution in enterprise
application deployment and software configuration. Trad-
itional software sales model requires users to purchase,
deploy, use, and maintain software permanently. However,
this puts high requirements on users’ technical experience
and initial costs. At the same time, software also needs to
be regularly updated and maintained, which increases
users’ investment in manpower and material resources.
Internet, through Web services, provides enterprises and

individuals with an innovative business model and flexible
calculation modes. With the emergence of software as a
service (SaaS), applications are moving away from
PC-based or ownership-based programs to Web
delivered-hosted services [1]. The software services are
provisioned on a pay-as-you-go basis to overcome the
limitation of the traditional software sales model. Due to its
flexibility, scalability, and cost-effectiveness, SaaS model has
been increasingly adopted for distributing enterprise soft-
ware systems, such as banking and e-commerce business
software [2, 3]. The number of SaaS services is available in
the markets such as Twitter, Gmail, Saleforce.com, and
Google Maps to configure SaaS-based Web service
systems.

To use cloud computer server facility, it is much faster,
more reliable solution than private client-server model (c/
s). This is the biggest factor to use cloud computer server
and run SaaS today [4]. SaaS is also involving PaaS and
IaaS. But there are several issues to achieving these require-
ments, scalable, configurable, multi-tenant-efficient SaaS
model. To meet these requirements, SaaS infrastructure is
required to have scale-out architecture with data interoper-
able function without any data contamination. It also needs
short latency of time service because Web service is online
and follows the remote client-server model. If service re-
sponse time does not meet these timeliness requirements,
users will not use SaaS application services again.
In addition, Web-based applications also need more

intensive I/O access, putting higher requirements on I/O
performance. To meet this requirement, we are facing
issues of how to create effectiveness for the total computer
system with amount of data and how to reduce computer
facilities in data center. To do this, available memory space
is the big performance factor. If memory space on server is
insufficient, guest OS and application programs will be
flushing between memory and storage. Once VMM server
encounters this situation, the VMM environment would
become very slow [4]. Wilhelm et al. [5] prove that ration-
ally using caching technologies is necessary and important
for reducing worst-case execution times (WCETs) and
improving system performance.

* Correspondence: 18710822156@163.com
1Department of School of Information Science & Engineering, Central South
University, Changsha, China
2Hunan University of Commerce, Changsha, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chen and Tan EURASIP Journal on Wireless Communications and Networking
 (2018) 2018:268
https://doi.org/10.1186/s13638-018-1268-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1268-1&domain=pdf
http://saleforce.com
mailto:18710822156@163.com
http://creativecommons.org/licenses/by/4.0/

SaaS caching model for serving customers in cloud is
shown in Fig. 1. SaaS caching framework can be divided
into four parts: user, SaaS server, caching server, and storage
system. As shown in Fig. 1, users periodically send data
acquisition requests to SaaS services via the Internet. The
requests are diverse, dynamic, in large quantity, and

random. Based on a cloud platform, SaaS server provides
information acquisition service for users in a unified,
on-demand, and efficient way. The server first listens to
and analyses users’ requests and then checks whether the
cache server has cached the data that users need to acquire.
If it has not, the SaaS server then sends the query request

Fig. 1 SaaS caching model

Fig. 2 TQC algorithm structure. On the one hand, TQC listens to the user request to determine whether the cache is hit. a If it is hit, the
result will be returned directly to the user and the Q value of the action will be updated. b If it is missed, the data in the file system or
DB will be loaded to the temporary cache and one or several pieces of data with the smallest Q value in the temporary cache will be
replaced. On the other hand, TQC periodically (at a specific stride) adds data to the temporary cache from the list of known contents,
replaces one or several files with the smallest Q value, and then observes the change of cache hit ratio so as to allow TQC to learn user
requests with low frequency and long period and achieve direct hits

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 2 of 10

to the database. The cache server replaces file system or
database to respond to the data query request sent to the
SaaS server so as to increase the response speed of SaaS
platform. An important indicator of the cache server is
cache hit ratio. In such a caching system, one of the most
important design decisions is the content replacement pol-
icy that determines which content is to be replaced when
the cache is full. The storage system stores all data of the
SaaS platform. In SaaS environments, databases are typic-
ally relational or non-relational such as Oracle, MySQL,
PostgreSQL, mongoDB, and Hbase.
Meanwhile, Wang et al. [6] analyzed where to cache,

what to cache, and how to cache. They point out that cach-
ing policies, deciding what to cache and when to release
cache, are crucial for overall caching performance. The in-
creases in the number and types of SaaS service requests
not only put higher requirements on cache hit ratio, adapt-
ability, and scalability, but also bring severe challenges to
first in first out (FIFO), least recently/frequently used
(LRFU), and other traditional caching algorithms.
Given the important role of cache in increasing the re-

sponse speed of SaaS platform and the shortcomings of
current caching algorithms, the focus of this paper is on
exploring policies to maximize the cache hit ratio and
minimize the required latency. To achieve this, this
paper, based on Q-learning, implements an intelligent
caching policy, which we call time-based Q cacher
(TQC). The specific contributions of this paper are as
follows:

a) Realizes an intelligent and model-free cache
updating and replacement policy.

b) Provides a cache hit ratio 8–12% higher than that
of current algorithms with the same cache size.

c) The algorithm not only has short-term memory
capability but can also learn the pattern of users’
long-term and low-frequency requests.

d) The algorithm can not only passively learn the
caching policy based on users’ requests but also
autonomously load data into cache and generate
a caching policy by observing the cache hit ratio.

The rest of this paper consists of the following parts:
the second part, which introduces the caching algorithm
and the caching model; the third part, which introduces
the TQC algorithm; the fourth part, which evaluates the
performance of the algorithm; and the fifth part, which
provides a summary and the future research direction.

2 Related work
Common methods used to increase the cache hit ratio in
reality are mainly improved based on FIFO and LRFU [7]
algorithm proposed by Lee et al. Wang et al. [8] propose a
practically feasible centrality-based heuristic method that
does not depend on global content distribution informa-
tion as required by the optimal solution. The algorithm
searches for the latest caching policy based on shortest
path tree (SPT) and in a heuristic manner.
Psaras et al. [9] propose the ProbCache algorithm which

approximates the caching capability of a path and caches
contents probabilistically to leave caching space for other
flows sharing (part of) the same path and to fairly multiplex
contents in caches along the path from the server to the cli-
ent. ProbCache considers each path of caching entities as a
pool of caching resources and tries to find optimal ways of
distributing content in these caches. Jeswani et al. [10]
propose the DiffCache algorithm which computes a cache
composition with the objective of minimizing transfers
from repository, thereby reducing request service time. The
algorithm is based on the phenomenon that image tem-
plates often have high degree of commonality. They exploit
the presence of this commonality among template files to
generate different files or patches between two templates. A
patch file can be applied on another template to generate a
new template. Instead of caching large templates, they can
cache patches and templates and effectively cater to a larger
set of template requests by paying a small cost of patching
time, while saving the time to fetch the complete template
file from the repository. Neumann et al. [11] propose the
hybrid cloud storage framework (HCSF) which includes
cache synchronization with table storage and provides
cloud application developers with single point of data ac-
cess. Their article demonstrates how the data consistency
and persistence of tabular storage can be combined with a
volatile but fast distributed cache, while adhering to the
CAP theorem.
Identifying and predicting user’s behavior and inter-

ested content are often more valuable than simply pro-
viding services to users. Traditional caching decisions
are driven by user requests. Statistical decision-making
based on the popularity, size, type, and location of

Table 1 File type and size (MB)

Type Size (MB) M

Minimum 1 20,000

Smaller 8 20,000

Average 16 20,000

Larger 32 20,000

Maximum 64 20,000

Table 2 Simulation parameter settings

Duration T 24 h

Interval T 1 h

Cache capacity C 32 to 64 GB

File request rate B 250 to 500 times/min

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 3 of 10

content has high requirements on hardware resources
and poor flexibility. Its algorithm does not offer long-term
memory and intelligence. Recently, Mnih et al. [12]
combine deep learning and reinforcement learning algo-
rithms, using game video images (high-dimensional sen-
sory information) and game scores as inputs to simulate a
human player playing the Atari 2600 game. In the absence
of explicitly defined game rules and human experience,
the intelligent agent, through studying human behavior,

ultimately attains the level of human professional players
and surpasses all similar algorithms. Besides, Silver et al.
[13] propose a new search algorithm that combines Monte
Carlo simulation with value and policy networks. Using
this search algorithm, their program AlphaGo achieved a
99.8% winning rate against other Go programs and
defeated the human European Go champion by 5 games
to 0. The above two achievements have aroused great con-
cern of AI researchers.

Fig. 3 Effect of cache capacity on hit ratio. The figure shows the comparison for the cache hit ratios of different policies when request rate is 500 times/
min and the cache capacity C is 64 GB and 32 GB respectively. It can be seen that LRU, LFU, FIFO, and TQC policies all have the same hit ratios when the
cache is not full. When t_full = 4.5 h, C = 64 GB, t_full = 2.5 h, C= 32 GB, and the cache is full, different replacement policies start replacing the contents.
a and b, consequently, the hit ratios of LRU, TQC, and LFU begin to increase and that of FIFO gradually decreases. In general, the performance of TQC is
better than the other three policies. When there is hotspot data, the efficiency of LRU is very good. But sporadic and periodic batch operations will lead to
a sharp drop of LRU hit ratio and a serious pollution of the cache. FIFO does not take into account the characteristics of data popularity, so its hit ratio
reaches peak of 25% and 12.5% at t_full, then begins to decline and fluctuates around 22.5% and 12.5%. Although the hit ratios of the two are not very
different, compared with TQC, LFU records all the access counts of files and as the cache capacity increases, LFU needs to cost more. Therefore, TQC saves
more time than LFU and the hit ratio of TQC is also about 12% higher than that of traditional methods

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 4 of 10

Heess et al. [14] study the partially observable state
problem in reinforcement learning. They extend two re-
lated, model-free algorithms for continuous control-deter-
ministic policy gradient and stochastic value gradient to
solve partially observed domains using recurrent neural
networks trained with back-propagation through time, to
solve challenging memory problems such as the Morris
water maze. Blundell et al. [15] restrict the size of Q table
by removing the entries of the least and recently accessed
updates as soon as a large state sequence is received.
Meanwhile, they combine the non-parametric nearest-
neighbors model and solve the two problems that
reinforcement learning consumes large amounts of mem-
ory and lacks a way to generalize across similar states.
Schaul et al. [16] make improvements based on the fact
that experience transitions were uniformly sampled from a
replay memory [17] and propose the prioritized experi-
ence replay (PER) method. They applied the two methods
to DQN [13] algorithm and made comparison. The results
showed that the performance of PER was far better than
common experience replay algorithm.
Our work is close to that of Chiocchetti et al. [18]. In dy-

namic network conditions, they made several improve-
ments to the Q-routing algorithm in order to apply it to
various network contexts. Their article achieved a distrib-
uted reinforcement learning based on the reward informa-
tion exchanged between routers in the network so as to
improve the cache hit ratio. Caarls et al. [19], combining
the Q-routing algorithm and MEC algorithm, propose the
Q-caching algorithm aiming at the minimum user down-
load time. They exploit the fact that Q-routing computes
the cost-to-go and use it to make not only routing but also
caching decisions in a weighted least frequently used
(WLFU) manner, evicting the item with the minimum ex-
pected cost (MEC) to retrieve. Then, Q-routing and MEC

are combined in order to efficiently route requests and
store content with the goal of minimizing the download
time experienced by users.
Based on user’s location, Q-routing and Q-caching

passively calculate the frequency of content access and gen-
erates the Q table. In reality, acquisition of SaaS data by
users or applications is often in large amounts, diverse,
low-frequency, and in long periodicity, for example, acquir-
ing SaaS content in every 15 min or a longer period. Mak-
ing caching or replacement decisions driven by user access
behaviors and calculating the recent frequency of content
access put serious challenges on computing performance
and storage space and even are impossible. To solve the
problem of caching solution by directly calculating and ana-
lyzing user behaviors, we propose viewing from caching
server, using Q-learning to improve cache hit ratio, and let-
ting caching server execute a specific action in a specific
time in order to indirectly learn user behaviors and inter-
ested content.

3 Methods/experimental
Q-learning algorithm was proposed by Watkings and
Dayan. It uses a direct approximation approach to solve
Bellman’s optimal equation in order to obtain the opti-
mal value function [20]. Rummery and Niranjan made
some modifications to Q-learning and proposed the
state action reward state action (Sarsa) algorithm [21].
Both Q-learning and Sarsa interact with environment ε
by constructing an agent. In a specific environment sta-
tus, the agent generates a specific action and the envir-
onment returns different rewards to the agent. The
purpose of training an agent is to maximize its reward.
In this section, we describe the design of the TQC

caching policy. We make decisions on content caching
and releasing by manipulating the cache space of the

Fig. 4 Request rate evaluation. The figure shows the hit ratios of different policies when cache capacity C is 32 GB and request rate is 250 times/min

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 5 of 10

server. The goal of TQC is twofold: (i) minimize manual
involvement in the caching policy and implement an in-
telligent model-free caching policy and (ii) increase the
cache hit ratio and reduce the time required for users to
obtain data from the SaaS platform. In particular, due to
the size of the cache, we only add the contents of the
group <time, request, action, hitrate> with the highest Q
value (the highest cache hit ratio) in the table Q to the
cache. The TQC periodically updates the Q value of

each record in the table Q and replaces the contents of
the cache according to the change of the Q value (Fig. 2).
In order to guarantee the exploration ability of the algo-
rithm, we divide the cache into two parts. One is 20%
and the other one is 80%. Twenty percent of the space
stores the requests, missing the contents of the cache.
The advantages of this design can speed up the conver-
gence rate of the algorithm and ensure the algorithm’s
exploration ability.

Fig. 5 Periodic increase of data objects. a The changes of hit ratio at cache capacity C= 64GB and C= 32GB. 3a shows that when the cache capacity is
32 GB, at t= 6, 12, and 18 h, each time new data is generated, LFU robustness is the best and TQC efficiency will decline, because TQC needs some time
to learn new files. b indicates that TQC outperforms LFU over a long period of time when the cache increases to 64 GB. This is mainly because LFU
accumulates a large number of access requests for a long time which requires more time to judge new data and replace old data. Based on the learning
mode of time series, with very little storage space and computing resources, TQC can learn low-frequency and long-period request patterns so as to
enhance the overall performance of the algorithm

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 6 of 10

TQC uses time series as the basis of learning. By conven-
tion, we calculate the hit ratio of the cache at t+ 1 based on
the discount factor γ. The calculation formula of the hit ratio

is Ht ¼
P
t0¼t

T
γt

0−tht0 , t= stride(s, τ) t ∈ oneday which denotes

the discrete time node with the stride of s and the
unit of τ in a certain time range T (1 day). h = hitra-
tet(q, a) indicates the cache hit ratio when the user
request q is received and the action a is executed at
time t. We define an optimal value function Q�

t ðq; aÞ
(i.e., the maximal cache hit ratio) where data =
map(q) indicates that the user request q is mapped to

an actual data block by the map function and a rep-
resents the action sequence. The specific formula is
Q�

t ðd; aÞ ¼ maxπE½Ht jdt ¼ d; at ¼ a;π� where π is a
caching policy which maps the time series and the
request sequence to the action sequence a = π(t, q).
The optimal Q value function indicates that at time t
each caching policy selects a valid caching action
from the action sequence a for the request sequence q
and maximizes the hit ratio of the entire cache. The opti-
mal value function obeys an important and widely used
principle (Bellman 1957) of optimality. An optimal policy
has the property that the residual decision must be the

Fig. 6 File average access time. a The average response time for four cache policies to retrieve all files. It can be seen that TQC is better than LFU
and LRU, and FIFO is the worst policy. b The average access time of five file types. The average response time of FIFO for all objects is the
highest. And the time cost of LFU and TQC is the smallest. However, TQC has five types whose response time is not more than 50 ms, LFU has
two while LRU has none. TQC can eventually achieve a stable state for each file after a long time of learning

Fig. 7 Variation trend of average file response time over time. The figure shows the changes of average response time for several policies. The
average access time for LRU and FIFO is constantly changing due to the variability of the cache contents of LRU and FIFO, resulting in the loss of
cache data. Conversely, TQC and LFU do not exhibit this behavior, thus increasing stability. It can be seen that the convergence of TQC is slower
than LFU but the average time cost of TQC after convergence is 6 ms and that of LFU is 26 ms. This indicates that the performance of TQC is
superior to that of LFU for dynamic changes of file access

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 7 of 10

optimal policy for the state resulting from the first deci-
sion regardless of the initial state and the initial decision.
That is, if the optional caching action that the optimal

function Q�
t ðd

0
; a

0 Þ executes for each request is known,
the optimal caching policy is to select a caching ac-
tion sequence that maximizes the subsequent cache
hit ratio based on these request states sequences: ht
+ γQt'

∗(q', a'). The optimal Q value function is shown
in Eq. 1:

Q�
t q; að Þ ¼ Eq0�ε ht q; að Þ þ γ maxa0Qt0

� q
0
; a

0
� �

jq; a
h i

ð1Þ

In many reinforcement learning algorithms, the esti-
mation of the action-value function is done by iteratively
updating the Bellman equation as shown in Eq. 2. Rich-
ard Sutton [11] proved that iterative updating can con-
verge to the optimal value function when Qt→
Q∗ as t→∞.

Qtþ1 q; að Þ ¼ E hitratet q; að Þ þ γ maxa0Qt q
0
; a

0
� �

jq; a
h i

ð2Þ

Based on the Bellman equation, the calculation method
of TQC optimal cache hit ratio is shown in Eq. 3 where
count(t, q) represents the access counts of user request q
at time t:

Q�
t q; að Þ ¼

XT
t¼1

count t; qð Þ hitratet q; að Þ þ γ maxa0Q
� q

0
; a

0
� �h i

ð3Þ

Our updating method of the cache hit ratio divides the
Bellman equation into instantaneous hit ratio and the sum
of historical hit ratios based on the time series and finally
multiplies them by the time t and the access counts of the
contents corresponding to user request q. The updating
method of Formula 4 uses Robins-Monro stochastic ap-
proximation method to iteratively update the Bellman
equation so as to estimate the action-value function:

Qtþ1 q; að Þ ¼ 1−ηt q; að Þ� �
Qt q; að Þ þ ηt q; að Þ

hitratet q; að Þ þ γ maxa0∈ActionQt0 q
0
; a

0
� �h �

ð4Þ

where η is the learning rate. We set the value of η to 0.6
in the initial period of learning to make the algorithm
tend to exploration. Then, we increased the exploitation
probability of TQC by linearly reducing η. Finally, we fix
the value of η to 0.2 to make the algorithm maintain
20% of the exploration capacity.
Because SaaS requests have a certain time periodicity,

compared with LFU, Q-routing and Q-caching, TQC fo-
cuses on cache hit ratio. The outer loop of Algorithm 1 ini-
tializes the cache and table Q then processes each user
request. For requests that have hit the cache, TQC updates

the hit ratio, access counts, and the Q value of the contents.
The inner loop of the algorithm (a) maps the user request
to the actual data of the database or the file system through
the map function; (b) adds the data directly to the cache
when the cache is not full; (c) replaces the contents of the
cache using ε − policy when the cache is full; (d) executes
action at, observes the number of hits, and calculates the Q
value; and (e) selects the valid action from the action list
after the timeout of the updating timer, actively loads the
contents into the cache, and updates the whole Q table.

Compared with existing algorithms, TQC has the
following advantages: first, the end-to-end way of learn-
ing is a model-free algorithm to improve the cache hit
ratio. Without passing any artificial experience to the

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 8 of 10

algorithm, TQC can show a very good performance. Its
hit ratio continues to increase until convergence. Sec-
ond, the partitioned cache accelerates the convergence
of the algorithm while ensuring the exploration of un-
known contents and learning ability. Third, the learning
style based on the time series only needs very little com-
puting time and storage space. It will be able to learn
long-period and low-frequency user request behaviors.
Fourth, the learning style of active exploration allows
user requests to directly hit the cache, which greatly re-
duces the time that a user’s first request needs for read-
ing data from the database or file system.

4 Results
The following simulation experiment evaluated four dif-
ferent caching policies namely LFU, LRU, FIFO, and TQC
from cache space size, request rate, data amount, and
average access time and got the digital analysis results. We
selected 100,000 files of different sizes and types as the ob-
jects to be cached as shown in Table 1. The cache space
size ranges from 32 to 64 GB. The time detection range of
hit ratio is from 0 to 24 h. And the stride size is 1 h. File
request rate ranges from 250 to 500 times/min. The spe-
cific parameters are shown in Table 2.
Comparing Fig. 4 with Fig. 3b, it can be seen that with

the increase of request times, TQC hit ratio increases
the fastest followed by LFU, LRU, and FIFO. It shows
that TQC can achieve good learning effect with a large
number of request samples. Comparing Fig. 4 with 3a, it
can be found that simultaneous increases of cache cap-
acity and request rate can make the hit ratio of TQC
reach the steady state faster. For example, at t = 5 h,
LFU, TQC, and LRU achieve the steady state at 500
times/min and need nearly twice the time to achieve the
steady state at 250 times/min.
In a real network, the number of contents is increasing

continuously. Suppose at t = 0, the number of files M =
100,000.1000 new files are generated every 6 h and these
new files reach the highest degree of accesses within 6 h
(Figs. 5, 6, 7, and 8).

5 Discussion
The methods based on statistics and manual caching
policy not only put high requirements on computational
resources and storage space but also have poor scalabil-
ity and flexibility, which usually only adapt to specific
environments. This paper proposes the cache manage-
ment policy TQC based on reinforcement learning
(Q-learning). Compared with traditional cache manage-
ment methods, TQC not only eliminates the need to
manually customize the cache rules but also has strong
adaptability. In addition, TQC caching policy is more in-
telligent. The algorithm can well sense and predict
low-frequency and long-period user requests, taking the

first step in active caching and direct hit of requests. In
the future, TQC will be based on distributed architecture
and combined with neural network technology for pre-
diction of continuous state spaces (user requests) so that
the TQC hit ratio and SaaS response speed can reach a
higher level.

Abbreviations
FIFO: First in first out; IaaS: Infrastructure-as-a-service; LFU: Least frequently
used; LRU: Least recently used; MEC: Minimum expected cost; PaaS: Platform-
as-a-service; PER: Prioritized experience replay; RL: Reinforcement learning;
SaaS: Software as a service; Sarsa: State action reward state action;
SPT: Shortest path tree; TQC: Time-based Q Cacher; WCETs: Worst-case
execution times; WLFU: Weighted least frequently used

Acknowledgements
Not applicable.

Funding
This research is supported by Natural Science Foundation of Hunan Province
of China (No. 2016JJ4045) and Educational Commission of Hunan Province
of China (No. 17A114). We thank the National Supercomputing Center in
Changsha for providing with the technical support of this research.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions
HC made substantial contributions to conception and design, or acquisition
of data, or analysis and interpretation of data and been involved in drafting
the manuscript or revising it critically for important intellectual content, and
he has also given final approval of the version to be published. Each author
should have participated sufficiently in the work to take public responsibility
for appropriate portions of the content; GT agreed to be accountable for all
aspects of the work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated and resolved.
Both authors read and approved the final manuscript.

Authors’ information
Haijun Chen received B.S. degrees at the School of Computer Science and
Technology, National University of Defense Technology, Changsha, China, in
1997, and M.S. degree in software engineering from Hunan University,

Fig. 8 Learning rate detection. We investigated the impact of
learning rate on response time. It can be seen that the average
response time of TQC reaches the minimum value of 8 ms when
the learning rate is about 0.15

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 9 of 10

Changsha, China, in 2006. He is currently pursuing Ph.D. degree at Central
South University, Changsha, China. His research interests include wireless
sensor networks, machine learning, and neural network.
GuanZheng Tan received B.S degree in aeronautical power plant control
engineering from Nanjing University Of Aeronautics and Astronautics,
Nanjing, China, in 1983, and M.S. degrees in automatic control theory and
application from National University of Defense Technology, Changsha,
China, in 1988, and Ph.D. degrees in mechanical manufacture and
automation from Nanjing University Of Aeronautics and Astronautics,
Nanjing, China, in 1992; he worked as a professor at the School of
Information Science and Engineering of Central South University, Changsha,
China. His research interests include artificial intelligence and application,
bionic robot and intelligent bionic system, advanced control theory and
advanced calculation, and biomedical image processing.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 28 July 2018 Accepted: 10 October 2018

References
1. L. Wu, S.K. Garg, R. Buyya, SLA-based resource allocation for software as a

service provider (SaaS) in cloud computing environments[C]// Ieee/acm
international symposium on cluster, cloud and grid IEEE Computer Society
2011:195–204

2. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009) Elsevier
Science, Amsterdam, The Netherlands

3. M. A. Vouk, “Cloud Computing-Issues, Research and Implementation”. In
Proceedings of 30th International Conference on Information Technology
Interfaces (ITI 2008), Dubrovnik, Croatia

4. H. Takahashi, K. Mori, H.F. Ahmad, Efficient I/O intensive multi tenant SaaS
system using L4 level cache[C]// IEEE international symposium on service
oriented system engineering. IEEE Computer Society, 2010:222–228

5. R. Wilhelm, J. Engblom, A. Ermedahl, et al., The worst-case execution-time
problem—overview of methods and survey of tools. Cheminform 7(3), 36 (2008)

6. X. Wang, M. Chen, T. Taleb, et al., Cache in the air: exploiting content
caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2),
131–139 (2014)

7. D. Lee, J. Choi, J.H. Kim, et al., LRFU: a spectrum of policies that subsumes
the least recently used and least frequently used policies. Acm Sigmetrics
Perform. Eval. Rev. 50(12), 1352–1361 (2001)

8. Y. Wang, Z. Li, G. Tyson, et al., Design and evaluation of the optimal cache
allocation for content-centric networking. IEEE Trans. Comput. 65(1), 95–107
(2016)

9. I. Psaras, K.C. Wei, G. Pavlou, In-network cache management and resource
allocation for information-centric networks. IEEE Trans. Parallel Distrib. Syst.
25(11), 2920–2931 (2014)

10. D. Jeswani, M. Gupta, P. De, et al., Minimizing latency in serving requests
through differential template caching in a cloud[C]// IEEE, International
conference on cloud computing. IEEE, 2012:269–276

11. R. Neumann, S. Taggeselle, R. Dumke, et al., Combining query performance
with data integrity in the cloud: a hybrid cloud storage framework to enhance
data access on the Windows Azure platform (2012), pp. 518–525

12. V. Mnih, K. Kavukcuoglu, D. Silver, et al., Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

13. D. Silver, A. Huang, C.J. Maddison, et al., Mastering the game of Go with
deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

14. N. Heess, J.J. Hunt, T.P. Lillicrap, et al., Memory-based control with recurrent
neural networks. Comp. Sci. (2015)

15. C. Blundell, B. Uria, A. Pritzel, et al., Model-Free Episodic Control. 2016
16. T. Schaul, J. Quan, I. Antonoglou, et al., Prioritized experience replay. Comp.

Sci. (2015)
17. L.J. Lin, Self-improving reactive agents based on reinforcement learning,

planning and teaching. Mach. Learn. 8(3), 293–321 (1992)

18. R. Chiocchetti, D. Perino, G. Carofiglio, et al., INFORM: a dynamic interest
forwarding mechanism for information centric networking[C]// ACM
SIGCOMM Workshop on Information-Centric NETWORKING. 2013:9–14

19. W. Caarls, E. Hargreaves, D.S. Menasché, Q-caching: an integrated
reinforcement-learning approach for caching and routing in information-
centric networks. Comp. Sci. (2015)

20. C.J.C.H. Watkins, P. Dayan, Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
21. M. Riedmiller, Neural fitted q iteration – first experiences with a data

efficient neural reinforcement learning method[C]// European conference
on machine learning. Springer-Verlag, 2005:317–328.

Chen and Tan EURASIP Journal on Wireless Communications and Networking (2018) 2018:268 Page 10 of 10

	Abstract
	Introduction
	Related work
	Methods/experimental
	Results
	Discussion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	References

