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Abstract

The rapid development of wellness smart devices and apps, such as Fitbit Coach and FitnessGenes, has triggered a
wave of interaction on social networks. People communicate with and follow each other based on their wellness
activities. Though such IoT devices and data provide a good motivation, they also expose users to threats due to the
privacy leakage of social networks. Anonymization techniques are widely adopted to protect users’ privacy during
social data publishing and sharing. However, de-anonymization techniques are actively studied to identify
weaknesses in current social network data-publishing mechanisms. In this paper, we conduct a comprehensive
analysis on the typical structure-based social network de-anonymization algorithms. We aim to understand the
de-anonymization approaches and disclose the impacts on their application performance caused by different factors,
e.g., topology properties and anonymization methods adopted to sanitize original data. We design the analysis
framework and define three experiment environments to evaluate a few factors’ impacts on the target algorithms.
Based on our analysis architecture, we simulate three typical de-anonymization algorithms and evaluate their
performance under different pre-configured environments.
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1 Introduction
Nowadays, social network services have been developed
rapidly as a fast-growing business. Social network web-
sites/applications (e.g., Facebook, Youtube, Twitter, Red-
dit) are getting more and more popular. Users create
their personal profiles in a social network platform, shar-
ing their information and interacting with their friends.
These activities make social network platforms become
huge social data resources, which have great commercial
value and significant sociological impacts. Considering
the commercial benefit and the social impact of these
social network information, the social network service
providers may release their social data (consists of users’
data) to third parties for academic (e.g., healthcare, social
behavior research) or commercial (e.g., market predic-
tion, targeting advertisement) purposes. However, it will
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consequently introduce the risk of leaking users’ sensitive
information (e.g., identity, location, personal interests) [1].
On the other side, the rapid development of wellness

smart devices and apps, such as Fitbit Coach and Fit-
nessGenes, has triggered a wave of interaction on social
networks. People communicate with and follow each
other based on their wellness activities. Though such IoT
devices and data provide a good motivation [2], they also
expose users to threats due to the privacy leakage of social
networks [3].
To protect users’ privacy during social data publish-

ing and sharing, the most straightforward solution is
to anonymize data by removing users’ identities, i.e.,
Personally identifiable information. However, recent
research demonstrates that this naïve solution is vul-
nerable to auxiliary information-based de-anonymization
[1, 4, 5]. As an improvement, the edge-editing-based
anonymization scheme is proposed to conceal the social
data structure by adding/deleting (Add-Del) and switch-
ing edges in the social graph [6]. As a widely adopted
approach in relational data anonymization, k-anonymity is
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introduced to protect social network data privacy against
different attacks. For example, Zhou et al. proposed the
k-neighborhood anonymity against neighborhood attack
[7]; Liu et al. proposed k-degree anonymity aiming at
degree attacks [8]; Zhou et al. [9] aggregated graph
partitioning, block alignment, and edge copy techniques
and presented k-automorphism to prevent neighborhood
attack, degree attack, subgraph attack, and fingerprint
attack [10, 11]. In addition, anonymization approaches
based on aggregation/class/cluster [10, 12, 13], differential
privacy mechanisms [14–17], and random walk meth-
ods [18] are also proposed to preserve users’ private
information.
De-anonymization (DA) techniques are actively stud-

ied to identify vulnerabilities in current social net-
work data-publishing mechanisms [4]. Typically, these
approaches can be classified into two categories, seed-
based de-anonymization [4, 5, 19–22] as well as
seed-free de-anonymization [23]. A seed-based de-
anonymization approach usually consists of two stages [4].
The first stage is to identify some common (seed)
users between the anonymized social graph and the
auxiliary network graph; the second stage is to con-
duct de-anonymization propagation iteratively accord-
ing to social graph structural properties. Nilizadeh et
al. proposed community-level-based de-anonymization
[19] that can be used to improve other existing seed-
based de-anonymization mechanisms [5, 20–23]. Seed-
free de-anonymization approaches utilize figure (nodes
or edges) properties as the fingerprints and conduct
graph matching to de-anonymize the sanitized graph data
[23]. Besides, some semantic-based de-anonymization
methods are developed to break link privacy [24] or
infer private attributes [25]. Ji et al. gave a survey on
the graph data anonymization and de-anonymization
approaches [26].
There are many factors that influence the imple-

mentation performances (e.g., accuracy, scalability) of
the existing DA algorithms, for example, the methods
(anonymization) sanitizing the original data, parameter
configuration, the size of the testing graph, link direc-
tion, and density distribution of graph nodes. However,
in most existing de-anonymization approaches, they
usually aim at one specific anonymization approach
or occasionally, do not provide any specification of
the methods sanitizing the raw data. Meanwhile,
some of them also neglect the evaluation on the de-
anonymization accuracy under different parameter
configuration.
In this paper, we conduct a comprehensive analysis

on the typical structure-based de-anonymization algo-
rithms in social networks to understand the structure-
based de-anonymization approaches and disclose the
impacts on their application performance caused by

the factors mentioned above. We design the analyz-
ing framework and define three experiment environ-
ments to evaluate the factors’ impacts on the target
algorithms. Based on our analyzing architecture, we
simulate three typical de-anonymization algorithms, N-
DA scheme [4] proposed by Narayanan et al., Ji-DA
scheme [27] proposed by Ji et al., and the stucture-
attribute graph-based Ji-DeSAG scheme [28], and eval-
uate their performance under different pre-configured
environments.

1.1 Experimental method
Our analyzing architecture includes three key modules,
Anonymization Module, De-Anonymization Module, and
Configuration Module, as well as two datasets, original
data and Anonymized Data. In the experiments on the
first two DA schemes, N-DA and Ji-DA, we use a sub-
set of the Twitter social network as our testing dataset,
which is one of the most popular social networks. The
dataset [29] consists of 90,907 users and 443,399 “fol-
low” relationships. In the third experiment, we use a
“Movie” dataset consisting of a star-director-film-writer
network [30].
The evaluation results show that for the N-DA scheme,

the parameter θ ought to be set as a small value
to obtain high accuracy regardless of the anonymzia-
tion methods and graph data topology. For the Ji-DA
scheme, the graph topologies make differences in accu-
racy, in which depth-spread dataset is weaker to Ji-
DA attack. In addition, according to the testing results,
the k-degree anonymization method is more vulner-
able to this attack. Similarly, the Ji-DeSAG is more
efficient to k-degree anonymization method. Moreover,
we analyze the three weight parameters and demon-
strate that the weight of inheritance similarity is the
major impact factor to the accuracy of de-anonymization
approaches.

1.2 Contribution
The contributions made by this paper are summarized as
follows:

• We make a comprehensive analysis of different
dimensions’ influences on the accuracy of
de-anonymization algorithms.

• We design the analyzing architecture and define
three experiment environments. We simulate three
typical structure-based de-anonymization algorithms
and evaluate their performance under different
pre-configured environments.

• Based on our evaluation, we conclude the parameter
impacts on the testing approaches and the influences
introduced by the topology properties of testing
datasets.
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1.3 Paper organization
The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 elaborates the back-
ground of this paper and gives a brief overview of
our work. Section 4 presents the experimental design
of the comprehensive analysis on online social network
de-anonymization approaches. Section 5 illustrates the
evaluation results and corresponding findings. Section 6
concludes the paper.

2 Related work
2.1 Graph anonymization methods
Naïve ID removal is a simple way to anonymized users,
and it can keep the best utility of the published data.
But it has been proved to be extremely vulnerable to
structure-based de-anonymization attacks. Ying et al. [31]
developed spectrum preserving randomization methods,
Sptcr Add/Del and Spctr Switch. The main idea of Spctr
Switch (Add/Del) is to randomly switch(add/del) two
edges according to the eigenvalues of the graph’s adja-
cency matrix and eigenvalues of the related Laplacian
matrix.
Zhou et al. [7] developed an approach to defend the

neighborhood attack. Firstly, the neighborhoods of all
users are extracted and encoded as minimum depth-first
search code, and secondly, group users with similar neigh-
borhoods greedily together and then make any neigh-
borhood in one group k − 1 isomorphic neighborhoods
in the same group. Liu et al. [32] devised a systematic
framework for identity anonymization on graphs. First, a
new k-anonymous degree sequence (any degree appears
at least k times) is created based on the degree sequence
of the original graph. Then, an anonymous graph is con-
structed based on the k-anonymous degree sequence. Zou
et al. [9] proposed a k-automorphic method to protect
privacy against all structural attacks conducted before
their method and developed a k-match (KM) algorithm to
implement the method. A k-automorphic network means
that for any vertex of the network, it cannot be dis-
tinguished from its k − 1 symmetric vertices based on
structural information. Similarly, Cheng et al. [33] pro-
posed a k-isomorphic method against structural attacks.
They considered both NodeInfo (users identifying infor-
mation such as names) and LinkInfo (relationships among
users). For the k-isomorphsim, a graph is divided and
anonymized into k subgraphs that are isomorphic.
Hay et al. [10] proposed a partition-level based graph

anonymization algorithm which partitioned users and
described the graph at the partition level that consisted
of supernodes denoting partitions and superedges denot-
ing the density of edges. Thompson et al. [13] presented
two new and efficient clustering methods for undirected
graphs: bounded t-means clustering and union-split clus-
tering algorithms that divided similar graph nodes into

clusters with a minimum size constraint. Mittal et al. [18]
proposed an anonymization based on random walks pro-
viding link privacy for perturbing the structure of the
social graph in the way that replace the edge (i, j) by
another edge (i,u), where u is the destination of a random
walk starting from j.
Sala et al. [14] developed a differentially private graph

model called Pygmalion which can preserve as much
of the original graph structure as possible, while inject-
ing enough structural noise to guarantee a chosen
level of privacy against privacy attacks. Wang et al.
[34] developed private dK-graph generation models that
enforced rigorous differential privacy in graph gener-
ation while preserving utility. Xiao et al. [17] trans-
formed direct edges to connection probabilities via hier-
archical random graph (HRG) and inferred the social
structure in the sampled HRG model using the Markov
chain Monte Carlo (MCMC) method satisfying differ-
ential privacy to preserve essential network structural
properties.

2.2 Graph de-anonymization attacks
2.2.1 Structural user-based attacks with seed
Backstrom et al. [35] presented the first structural de-
anonymization approach in social networks. They used
both active and passive attacks in links prediction. As for
active attacks, an adversary is able to produce some new
“sybil” nodes in the social graph before it is published and
to link the “sybil” nodes to those whose privacy him/her
wishes to violate. So the adversary makes the sub-graph
stand out after original graph being published anony-
mously. As for passive attacks, colluding adversaries rec-
ognize their own sub-graph in anonymized graph which
could re-identify users around them. Narayanan et al.
[4] proposed a two-stage de-anonymization algorithm of
large scale only based on the network topology. The main
idea is to re-identify the same node that exists both in
the target graph and the auxiliary graph. In the first stage,
seed nodes are found in the target graph while using
the auxiliary information. In the second stage, seed map-
pings were used to make large propagation, where the
number of commonly mapped nodes was utilized to cal-
culate a similarity score and those who have high scores
would be regarded as matches. Then, Narayanan et al.
[36] combined de-anonymization with link prediction to
de-anonymize the dataset published by Kaggle.com. Sim-
ulated annealing-based weighted graph matching is intro-
duced for the seed stage and the propagation stage is pro-
moted into two phases using different threshold to select
mappings. In their link prediction, random forests are uti-
lized to make prediction among links which make up for
the limitedness of pure de-anonymization. Nilizadeh et al.
[19] exploited a divide-and-conquer method to promote
de-anonymization algorithms. First, the social structure
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is used to make huge networks to several community-
level networks and then a two-step graph matching tech-
nique is taken into the communities which make the
big problem into smaller ones. Nodes mapping is imple-
mented inside communities and then expanded to the
whole network.

2.2.2 Structural set-based attacks with seed
Srivatsa et al. [5] developed a de-anonymization attack
to mobility traces using social networks as a side chan-
nel. Firstly, node betweenness centrality metric is used
to find k landmark nodes with the highest scores. Sec-
ondly, three methods are presented to the propagation
matching, namely, distance vectors, spanning tree match-
ing, and local sub-graph features. Ji et al. [37] discovered a
unified similarity-based de-anonymization attack in both
social networks and mobility traces. Structural similarity,
relative distance similarity, and inheritance similarity are
defined and combined to calculate the unified similarity
in propagation process.

2.2.3 Structural attacks without seed
Assuming two graphs have the same nodes and start
matching the highest degree nodes from the set in two
graphs, Ji et al. [38] proposed a seedless cold start
optimization-based de-anonymization algorithm. Sharad
et al. [39] proposed machine learning-based techniques
to de-anonymize nodes in graphs using structural fea-
tures. They first developed an automated learning model
based on neighborhood degree distribution designing a
random-forest classifier to predict users’ similarity and
then presented an end-to-end anonymization attack based
on the previous model to re-identify nodes in graphs. Lee
et al. [40] proposed a seedless de-anonymization method
incorporating multi-hops neighborhood information and

exploiting an improved machine learning technique
for matching. Wu et al. [41] provided a systematic
study on the effect of overlapping communities on de-
anonymization without seed, aiming at minimizing the
de-anonymizaiton error.

2.2.4 Structure-attribute-based attacks
Chen et al. [42] utilized user names and the network
topology to de-anonymize users. They used user names
to reduce the candidates of mapping and then com-
bined the structure information and Levenshtein distance
of user names in similarity computing to improve the
mapping accuracy. Ji et al. [28] conducted an analy-
sis of attribute-based anonymity on structure-attribute
graph (SAG) data and proposed a new de-anonymization
framework for SAG data by adding attribute similar-
ity to existent structure-based de-anonymization. Qian
et al. [43] utilized knowledge graph to represent arbi-
trary prior knowledge of attackers and computed the
node structural similarity and the attribute similarity to
de-anonymization using a knowledge graph. Jiang et al.
[44] proposed a de-anonymization scheme based on a
structure-attribute framework taking structure charac-
teristics and node properties into consideration, which
improved the accuracy of node mapping. Attribute infor-
mation used in de-anonymization can help obtain better
performance. Because it provide more auxiliary informa-
tion. Besides, users’ behavior information are also impor-
tant in social network privacy inference [45]. In future
works, behavior information can be also used as auxiliary
information to de-anonymization.
According to the discussion in [26] and our anal-

ysis results, we present the comparison of represen-
tative structure-based de-anonymization algorithms in
Table 1.

Table 1 Comparison of representative de-anonymization methods

DA approach Vulnerable Anonymization Method Performance Category

Edge-edit k-Anony. U-Split Para.-free Scalable Practical Robust I II III IV

Backstrom et al. [11] × × × √ × • × √

N-DA. [4]
√ • • × √ √ √ √

Srivatsa et al.-DV [5]
√ • • √ • • √ √

Nilizadeh et al. [19] • • • × • • • √

Ji-DA [37]
√ • • × √ √ √ √

Ji-ADA [37]
√ • • × √ √ √ √

Ji-ODA [38]
√ • • × √ √ √ √

Chen et al. [42]
√ • • √ √ √ √ √

Ji-DeSAG [28]
√ • • × √ √ √ √

As for vulnerability of anonymization methods,
√

denotes that the attack can succeed under corresponding anonymization methods, × denotes the attack’s failure, and •
denotes the attack can conditionally succeed. As for performance,

√
represents that the attack is capable of corresponding character, × represents the attack’s incapability,

and • represents the attack is conditionally capable. Category I: structural user-based attacks with seed. Category II: structural set-based attacks with seed. Category III:
structural attacks without seed. Category IV: structure-attribute-based attacks
k-Anony. k-anonymity, U-Split union-split, Para. parameters
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3 Background
In this section, we present the background knowledge
related to the de-anonymization analysis. We introduce
the general models of social data anonymization and
de-anonymization mechanisms and give a brief introduc-
tion to several typical structure-based de-anonymization
approaches.

3.1 Anonymization models
Users and connections in a social network can be mod-
eled into a graph structure. In this paper, a graph G =
(V ,E,W ) is used to represent a social network, where the
node set V = {u|u is a node} denotes the users, the edge
set E = {(u, v)|u, v ∈ V , and a link exists between u and v}
represents the connections among users, and the weight
set W = {wu,v|u, v ∈ V , (u, v) ∈ E,wu,v ∈ R } repre-
sents the closeness degree of every two connected nodes.
If G is an unweighted graph, we just set wu,v = 1 for each
(u, v) ∈ E.
Before social data are published, they will be sanitized to

avoid violation of privacy. The anonymized graph can be
modeled as a graphGa = (Va,Ea,Wa), where Va denotes
the anonymized users, Ea is the sanitized connections
among users, andWa is the sanitized proximity.
As described above, there are several approaches that

an adversary can aggregate auxiliary information about
his target. So, we assume that the adversary has collected
extra information to de-anonymize the sanitized graph.
Similar to anonymized graph, the auxiliary graph denoted
as Gu = (Vu,Eu,Wu) (where Vu,Eu,Wu is the users
with known identities, known connections, and closeness,
respectively) is used to de-anonymizeGa. In order to con-
nect the two graphs, there must be an overlap betweenGa

and Gu.

3.2 De-anonymization mechanisms
3.2.1 Attackmodel
Generally, de-anonymization is to reidentify an
anonymized social graph by using an auxiliary graph,
which means to establish a mapping μ between two
graphs. We denote the true mapping between two graphs
as μ0 : Va

μ0 → Vu
μ0 . A de-anonymization attack on these

two graphs is represented as μ̃ : Va → Vu.
For each v ∈ Va,

μ(v) =
{

v
′
, if v

′ = μ(v) ∈ Vu;
⊥, if μ(v) /∈ Vu,

where ⊥ is a not existing indicator. After an attack, the
outcome mapping is

M =
{
(v1, v

′
1), (v2, v

′
2), · · · , (vn, v

′
n)

}
The mapping is successful on v ∈ Va when

μ(v) =
{

μ0(v), if μ0(v) ∈ Vu;
⊥, if μ0(v) /∈ Vu,

In this paper, we are trying to evaluate the accuracy of
de-anonymization attacks. The accuracy is the fraction of
success divided by the size of anonymized graph.

3.2.2 Structure-based de-anonymization algorithms
Since Backstrom et al. [35] first presented active and
passive attacks by creating sybil nodes in structural de-
anonymization. Here, we introduce the representative
algorithms that will be analyzed in the following sections.
Narayanan et al. [4] proposed a two-stage attack on

large-scale propagation (N-DA). In the first stage, a small
number of seeds are found in the target graph instead of
many sybil nodes. In the second stage, seeds are the key
to make large propagation. However, the similarity scores
calculated to determine the mappings only consider the
information of common nodes so the accuracy is not that
high. In addition, the parameter θ (the difference of the
max similarity score and the second max similarity score
divided by the standard deviation of themapping set) used
in their algorithm was not analyzed in detail, which we
prove to have a significant influence on the accuracy of the
algorithm.
Ji et al. [37] proposed a unified similarity -based

de-anonymization (Ji-DA) in both social networks and
mobility traces. Structural similarity, relative distance
similarity, and inheritance similarity are defined as three
similarity metrics to calculate the unified similarity. An
adaptive de-anonymization (Ji-ADA) is developed to
strengthen the capability of de-anonymization when the
overlap between the anonymized graph and the auxil-
iary graph is very low. The Ji-DA algorithm takes lots of
node information, both local graph attributes and whole
graph attributes, into consideration. However, the param-
eters of the method are too many to control without
being comprehensively analyzed. They introduce three
weight parameters, cS, cD, and cI , to calculate the uni-
fied similarity. Besides, the algorithm also includes other
parameters, e.g., C as the similarity loss exponent, θ as the
de-anonymization threshold, and ε as themapping control
factor. Coincidentally, all these parameters influence the
accuracy of the method respectively.
Ji-DeSAG [28] is a de-anonymization algorithm comb-

ing graph structure and attribute information of users
in the social network based on the structure-attribute
graph (SAG) model. In the SAG model, the attributes are
represented by nodes and links between attribute nodes
and user nodes represent the belonging of attributes
to corresponding users. It combines user-based struc-
tural de-anonymization and set-based structural de-
anonymization techniques. Due to the dependency to
the structure-based DA approach, its accuracy is influ-
enced by the factors related to structure-based de-
anonymization, e.g., similarity rate Sa and weighting
parameter c.
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In the next section, we present our design to
evaluate the de-anonymization capabilities of those
algorithms corresponding to the selected influential
factors.

4 Design and implementation
As we analyzed previously, there are two critical fac-
tors that influence the efficiency of de-anonymization
algorithms, anonymization method and parameter con-
figuration. In this section, we comprehensively analyze
the efficiency of the typical de-anonymization algorithms
with respect to these two influential factors, namely, dif-
ferent kinds of anonymizationmethods and different pref-
erences of significant parameters. We present the overall
architecture in Fig. 1. As shown in Fig. 1, our analyz-
ing architecture includes three key modules, anonymiza-
tion module, de-anonymization module, and configura-
tion module, as well as two datasets, original data and
anonymized data. We illustrate the experiment design
details of these components in the following subsections,
respectively.
Our evaluation scheme targets graph data and algo-

rithms. As the seed production stage is not our priority,
we mainly focus on the propagation stage. In this paper,
seed production can be implemented in the same way as
existing solutions [4, 5, 35, 36]. So, in the following exper-
iments, we assume we have selected k seed mappings,
denoted by Ms =

{(
s1, s

′
1

)
,
(
s2, s

′
2

)
, · · · ,

(
sk , s

′
k

)}
, where

si ∈ Va, s′i ∈ Vu, and s′i = μ(si).

4.1 Dataset preparation
As the first two DA algorithms (N-DA, Ji-DA) only use
network structure information and the third DA algo-
rithm (Ji-DeSAG) use both structure and attribute infor-
mation, we use two different datasets (shown in Table 2)
in our evaluation. In the experiments on the first two
DA schemes, N-DA and Ji-DA, we use a subset of the
Twitter social network as our evaluation input, which is
one of the most popular social networks nowadays. The
dataset [29] consists of 90,907 users and 443,399 “follow”
relationships. And in the third experiment, we use the

Table 2 Graph properties of Twitter dataset

Network Nodes Edges Max.Deg Av.Deg

Twitter 90907 443399 230 9.755

Movie 12285 61962 1501 11.125

Max.Deg represents the maximum node’s degree, Av.Deg represents the average
node’s degree

“Movie” dataset consists of a star-director-film-writer net-
work [30]. It consists of 12285 nodes and 61962 edges
shown in Table 2 that contains both network structure
and attribute information, which are necessary for our
analysis.
As the Twitter dataset is a huge directed graph, before

testing, we first divide the Twitter-network into several
sub-graphs to achieve better evaluation results and turn
them into both undirected or directed sub-graphs accord-
ing to our experiments . We use a center-spread method
to obtain several smaller subsets for experiments. And we
process the raw/orginal data in different ways with regard
to directed and undirected graphs. The dataset splitting
method is listed as follows.We divide the Twitter-network
into several parts to achieve better evaluation results.

• Step 1: When undirected subsets are required, we
transfer the original directed network into an
undirected graph by using the approach mentioned
in the work [46], keeping the edge that only exists
bilaterally. If directed subsets are required, we
directly go to the next step.

• Step 2: Select m max-degree nodes {v1, v2, · · · , vm} in
the original graph G (Twitter dataset) and put them
in the top-degree set denoted as Tset.

• Step 3: Let each vi ∈ Tset be the center. Select the
neighbors (both in_edge neighbor and out_edge
neighbor for the directed graph) of vi and add them
into Tset.

• Step 4: Repeat the Step 3 for n times and obtain a
subset graph_m − n for an undirected graph and
Digraph_m − n for a directed graph.

Table 3 presents the subsets obtained by following Step
1–Step 4.

Fig. 1 Overall architecture. As shown in Fig. 1, our analyzing architecture includes three key modules, anonymization module, de-anonymization
module, configuration module, as well as two datasets, original data and anonymized data
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Table 3 Sub-figures deduced from Twitter dataset

Raw network Nodes Edges Max.Deg Av.Deg

graph_1 − 3 416 785 96 3.774

graph_2 − 2 601 1029 96 3.424

Digraph_1 − 3 1463 3639 230 4.975

Digraph_2 − 2 767 3032 230 7.906

These subsets listed in Table 3 are used as auxil-
iary graphs to re-identify anonymized graphs. To ana-
lyze the structure-based de-anonymization mechanisms
thoroughly, we introduce several anonymized methods
that we use to prepare sanitized social datasets in our
experiments.

4.2 Selected anonymization algorithms
4.2.1 Naïve add/del edgesmethod
For naïve edge-edit anonymized method, we choose
add/del edges method [31] as one of our sanitized
approaches, which protect node and link privacy of graph
data by adding or deleting edges randomly through the
whole graph. We use this method to anonymize all the
datasets with different sizes. When using it, we set the
fraction of edges that we want to edit. For instance, if
we set the edition fraction as 0.1, actually, the overlap
of edges we get will be lower than 0.9. After a sub-
set graph_m − n (Digraph_m − n) being anonymized by
add/del edges method, it is denoted as graph_m−n_add−
del (Digraph_m − n_add − del). The processed subset
samples are listed in Table 4.

4.2.2 k-degree anonymizationmethod
As we discussed in Section 3, k-anonymity-based solu-
tions are also a typical choice for preserving social data
privacy. In this paper, we select a representative vari-
ant of the k-anonymity based method, that is k-degree
anonymization [32], as a candidate algorithm for social
data sanitization/pre-processing. It works as that for every
node there exist at least k − 1 nodes with same degree
in the graph. In the algorithm, we set the different k
to get different anonymized graphs with different over-
laps. We denote a subset graph_m − n (Digraph_m − n)
being anonymized by k-degree anonymization method as
graph_m−n_kda (Digraph_m−n_kda) in this paper. The
preprocessed subset samples are listed in Table 5.

Table 4 Subset samples preprocessed by naïve add/del edges
method

Anonymized network Nodes Edges Edge overlap

graph_1 − 2_add − del 196 431 0.82

Digraph_1 − 2_add − del 379 2384 0.61

Table 5 Subset samples preprocessed by the k-degree
anonymization method

Anonymized network Nodes Edges Edge overlap

graph_1 − 2_kda 196 458 0.82

Digraph_1 − 2_kda 379 2548 0.61

4.2.3 Union-split method
The cluster based methods [10, 47, 48] are similar to the
k-anonymity-based methods. The aim is to make nodes
in a cluster indistinguishable on structure. There are sev-
eral approaches to implement it, such as t-means [47] and
union-split [47]. In this paper, we use union-split method
to anonymize graphs, denoted as graph_m − n_union
(Digraph_m − n_union). Samples are listed in Table 6.
We use these three anonymization approaches in our

evaluation. The target de-anonymization algorithms are
described in the following subsections.

4.3 Target de-anonymization algorithms
As we discussed in Section 2, there are four types of de-
anonymization methods. Because the influential factors
on performance of the de-anonymization method without
seed are similar to those with seed, in this paper, we focus
on three types of seed-based DA algorithms (structural
user-based attacks with seed, structural set-based attacks
with seed, and structure-attribute-based attacks). We
select one representative algorithm in each type to ana-
lyze comprehensively and test their de-anonymizability. In
this paper, we mainly focus on the propagation step, so in
all the algorithms we test, we will take pre-selected seed
mappingsMs as input.

4.3.1 Narayanan et al. de-anonymization (N-DA)
N-DA [4] is a classic de-anonymization algorithm and also
a milestone in the field of de-anonymization researches.
It is efficient to the naïve aonnymization methods and
also is the basis of many other follow-up approaches. As a
result, it is important to analyze this algorithm for better
understanding of structural attacks.
TheN-DA algorithm [4] takes two directed graphsG1 =

(V1,E1) and G2 = (V2,E2) and seed mappings Ms as
inputs. It outputs a mapping μ. In the propagation stage,
for each iteration, it picks an unmapped node v ∈ V1
and calculates a score for each (v, v′

), v′ ∈ V2. The map-
pings between (v, v′

) with a score over a threshold will
remain. When switching the two input graphs, if v′ maps
back to v, then the mapping between v and v′ will be

Table 6 Subset samples preprocessed by union-split method

Anonymized network Nodes Edges Edge overlap

graph_1 − 2_union 196 407 0.82

Digraph_1 − 2_union 379 2230 0.61
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added to the output mapping list. The propagation dose
not converge until no more mappings can be added to
the final list. The score above equals to the number of
common nodes of v and v′ that have been mapped. In
this algorithm, eccentricity in [4] equals the difference of
the maximum similarity score and the second maximum
similarity score divided by the standard deviation of the
mapping set. If the eccentricity of the match scores is big-
ger than the threshold θ , the mapping (v, v′

) with the
maximum score can be added to the final mapping list. θ is
an important parameter that influences the output accu-
racy greatly. In this paper, we will analyze the parameter in
different angles.

4.3.2 Ji et al. de-anonymization (Ji-DA)
Ji-DA [37] is a most recent de-anonymization approach,
which is built upon the strength of several previous work
and aggregates a large amount of graph topology informa-
tion. The evaluation can help to understand how the graph
topology contributes to de-anonymization approaches.
Ji-DA algorithm takes two undirected graphs G1 =

(V1,E1) and G2 = (V2,E2) and seed mappings Ms as
input. The output is the mapping between these two
graphs. For each iteration, it starts from the neighbors of
the already mapped nodesM and calculates a unified sim-
ilarity score s(v, v′

) between every pair of {v|v ∈ V1&v /∈
M} and {v′ |v′ ∈ V2&v

′
/∈ M} to construct a weighted

bipartite graph B based on s(v, v′
). It uses the Hungarian

algorithm to obtain amaximumweighted bipartite match-
ing M′ of B. A threshold and a TOP-K strategy are used to
remove some improper mappings. Finally, the remained
mappings are added into the mappingM. The whole algo-
rithm contains many parameters. In our experiment, we
especially pay attention to the impacts on the similarity
score s caused by three parameters cS, cD, and cI , where
cS, cD, and cI represent the weights of structural similar-
ity, relative distance similarity, and inheritance similarity,
correspondingly.

4.3.3 Ji et al. structure-attribute-based de-anonymization
(Ji-DeSAG)

Ji-DeSAG [28] is based on both user-based struc-
tural de-anonymization and set-based structural de-
anonymization. In the SAG model, the attributes are
represented by nodes and links between attribute nodes
and user nodes represent the belonging of attributes to

Table 7 Representative algorithms and parameters

Algorithm Network topology Parameter

N-DA Directed graph θ

Ji-DA Undirected graph cS , cD , cI , C, θ , ε etc.

Ji-DeSAG (Un)directed graph c

Table 8 Sample subsets selected according to depth-spread

Raw Network Nodes Edges Av.Deg

graph_1 − 2 196 431 4.398

graph_1 − 3 416 785 3.774

graph_1 − 4 1062 1680 3.164

graph_1 − 5 3599 5905 3.281

Digraph_1 − 2 379 1739 9.177

Digraph_1 − 3 1463 3639 4.975

Digraph_1 − 4 7036 15041 4.275

corresponding users. The Ji-DeSAG algorithm is based
on the previous structure-based DA algorithms but the
attribute similarity is added to the similarity score com-
puted between nodes. Both user-based structural DA
and set-based structural DA can be extended to the Ji-
DeSAG algorithms. In this paper, we take the user-based
structural DA promotion as an example to analyze. It
takes two directed graphs G1 = (V1,E1) and G2 =
(V2,E2) and seed mappings Ms as input. It outputs a
mapping μ. In the propagation stage, for each itera-
tion, it calculates a similarity score S for each unmapped
(v, v′

), v ∈ V1 and v′ ∈ V2. S is determined by the
attribute similarity Sa and the structure similarity Ss. Sa
is equal to one minus the attribute difference between
two nodes divided by the max attribute difference, and
Ss is the same as the previous DA algorithm. The sim-
ilarity rate S is calclulated as S = c ∗ Ss + (1 −
c) ∗ Sa, where c is a weighing parameter that balances
the weight between attribute similarity and structure
similarity.

4.4 Critical factors and experiment design
In this subsection, we choose the methods in [4, 28, 37]
as our target algorithms for analysis. In these selected
approaches [4, 28, 37] and other recent de-anonymization
attacks, the number of seeds and noise proportion are two
general pre-conditions for researchers evaluating the effi-
ciency of their approaches. In this paper, besides these

Table 9 Sample subsets selected according to width-spread

Raw network Nodes Edges Av.Deg

graph_1 − 2 196 431 4.398

graph_2 − 2 601 1029 3.424

graph_3 − 2 753 1204 3.293

graph_4 − 2 981 1578 3.217

Digraph_1 − 2 379 1739 9.177

Digraph_2 − 2 767 3032 7.906

Digraph_3 − 2 1096 7702 14.055
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Table 10 Datasets used for N-DA

Original graph Anonymized graph Edge overlap

Digraph_1 − 2 Digraph_1 − 2_add − del 61%

Digraph_1 − 2_kda

Digraph_1 − 2_union

Digraph_1 − 3 Digraph_1 − 3_add − del 58%

Digraph_1 − 3_kda

Digraph_1 − 3_union

Digraph_2 − 2 Digraph_2 − 2_add − del 63%

Digraph_2 − 2_kda

Digraph_2 − 2_union

two factors, we analyze the DA algorithms in the following
aspects.

4.4.1 Algorithm parameter configuration
Most algorithms have one or more parameters, and these
parameters often have great effects on the accuracy of de-
anonymization. We will analyze several key preferences
in [4], [37], and [28]. For the N-DA scheme, we analyze
the influence of accuracy with regard to the eccentricity θ

in different angles. We choose some directed subsets we
described above and use different anonymization meth-
ods. In the Ji-DA scheme, we analyze the effect of accuracy
with respect to three weighing factors cS, cD, and cI to
observe the connections among them. For the Ji-DeSAG
scheme, we analyze the influence caused by the paramter
c. The selected critical parameters are shown in Table 7.

4.4.2 Topology properties of the social data
When it comes to graph de-anonymization, the graph
structure is bound to influence the accuracy. As we
described in the previous part, we have created many
subsets of graph data by using a center-spread method.
Actually, there will be two ways of spreading. One is
depth-spread and the other is width-spread. So, we will
obtain two types of subsets. In this paper, we use both
types to analyze the de-anonymization methods.

Depth-spread In our experiments, we fix the center
nodes and expand to their neighbors in deep-level. The
selected subsets are listed in Table 8.

Width-spread In this paper, we fix the hops of neigh-
bors and choose different number of nodes as center
nodes in width-level. The subsets are shown in Table 9,
and the corresponding evaluation results are illustrated in
Section 5.

4.4.3 Performancemetrics
There are several metrics to evaluate the degree of
the re-identification. Accuracy is the successful rate of
final matches, which equals to the number of success-
ful matches divided by the number of mutually exist-
ing nodes in targeting graph. Another metrics is recall
rate, which is the proportion of correct matches divided
by the number of nodes existing in both graphs. The
error rate and precision are also used to quantify the
de-anonymization results. In addition, receiver operat-
ing characteristic (ROC) curve is selected to measure the

Fig. 2 θ ’s accuracy impact in Digraph_1–2. The results of θ ’s accuracy impact with respect to three anonymization methods in different topologies
in Digraph_1–2
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Fig. 3 θ ’s accuracy impact in Digraph_1–3. The results of θ ’s accuracy impact with respect to three anonymization methods in different topologies
in Digraph_1–3

identification performance considering the true positive
and false positive simultaneously. In most existing de-
anonymization researches, accuracy is usually the first
consideration. Accordingly, in this paper, we use accuracy
as themetrics to evaluate the de-anonymization algorithm
performance.

5 Evaluation
In this section, we evaluate different de-anonymization
approaches described in Section 4 via three different
anonymization methods with several important angles we
mentioned above. In the following part, we will illus-
trate the evaluation on each de-anonymization algorithm

Fig. 4 θ ’s accuracy impact in Digraph_2–2. The results of θ ’s accuracy impact with respect to three anonymization methods in different topologies
in Digraph_2–2
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Table 11 Datasets used for the first experiment of Ji-DA

Original graph Anonymized graph Edge overlap

graph_1 − 2 graph_1 − 2_add − del 82%

graph_1 − 2_kda

graph_1 − 2_union

graph_1 − 3 graph_1 − 3_add − del 82%

graph_1 − 3_kda

graph_1 − 3_union

graph_1 − 4 graph_1 − 4_add − del 82%

graph_1 − 4_kda

graph_1 − 4_union

graph_2 − 2 graph_2 − 2_add − del 82%

graph_2 − 2_kda

graph_2 − 2_union

graph_4 − 2 graph_4 − 2_add − del 82%

graph_4 − 2_kda

graph_4 − 2_union

respectively. All the datasets of the following experiments
are based on the subsets we configured in Section 4.
Our simulation is conducted on a computer with an

Intel Core 3.2 GHz processor and 4 GB RAM.

5.1 Experiment analysis of N-DA
In the experiment on N-DA approach, we evaluate the
influence of θ on the accuracy of N-DA algorithm under
different anonymization methods and graph topologies.
As the seed identification stage is not our primary

purpose, we directly set 50 top-degree nodes as seeds. To
analyze the effects of different anonymization methods
regarding to one subset, we set the edge overlap between
the anonymized graph and the auxiliary graph to be same.
For simplicity, the node overlaps in our experiment are
set as 1, i.e., the edge overlap between Digraph_1 − 2 and
Digraph_1−2_add−del,Digraph_1−2_kda,Digraph_1−
2_union is the same. The datasets we used are listed in
Table 10.
The results of θ ’s accuracy impact with respect to three

anonymization methods in different topologies are shown
in Figs. 2, 3, and 4, respectively.
Observation. The experiment results demonstrate that

regardless of the dataset topology or anonymization
algorithms, the accuracy goes down with the parame-
ter θ getting higher. So, a lower value of the parame-
ter θ will contribute to a higher re-identification accu-
racy. And as the depth-spread dataset gets much lower
accuracy then the width-spread dataset, depth-spread
graphs seem to be more vulnerable to the N-DA
algorithm.

5.2 Experiment analysis of Ji-DA
In this subsection, we evaluate the influence of three key
parameters, different anonymization methods, and graph
topologies on accuracy of Ji-DA.
We set 30 top-degree nodes as seeds and evaluate the

influence of different anonymization methods and graph
topologies. In this experiment, the parameters of the Ji-
DA algorithm are set as follows: C = 0.9, cS = 0.2, cD =
0.6, cI = 0.2, θ = 0.9, δ = 1, and ε = 0.5. The selected

Fig. 5 Effect of the anonymization method on accuracy for depth-spread subsets. The effect of the anonymization method on accuracy for
depth-spread subsets
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Fig. 6 Effect of the anonymization method on accuracy for width-spread subsets. The effect of the anonymization method on accuracy for
width-spread subsets

Fig. 7 Parameters’ accuracy impacts in graph_1-4 with add/del anonymization (graph_1-4_add-del)
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Fig. 8 Parameters’ accuracy impacts in graph_1-4 with k-degree anonymization (graph_1-4_kda)

datasets are listed in Table 11. The accuracy impact
results of different anonymization and graph topologies
are shown in Figs. 5 and 6.
We choose the subset graph_1 − 4 with graph_1 −

4_add−del and graph_1−4_kda (in which the edge over-
lap is 82%) as anonymized graphs to analyze the three
weighing parameters cS, cD, and cI . To set different pref-
erences, we set the full permutation of three parameters
that each value of the parameter varies from the interval
[0.1, 0.8] whose increasing step is 0.1. Besides, the sum of
three parameters cS, cD, and cI is 1. For example, cS = 0.1,
cD = 0.1, cI = 0.8; cS = 0.2, cD = 0.5, cI = 0.3. There
are 36 groups of parameter settings of these three parame-
ters. The other parameters are configured as: C = 0.9, θ =
0.9, δ = 1, and ε = 0.5.
The results of three key parameters regarding to subset

graph_1 − 4 with graph_1 − 4_add − del anonymiza-
tion method are shown in Fig. 7. The results of three key
parameters regarding to subset graph_1−4with graph_1−
4_kda anonymization method are shown in Fig. 8. As we
do not optimize the other parameter such as θ and the
overlap between two graphs is small, the accuracy may
be a little bit low. Nevertheless, our purpose here is not
to maximize the accuracy but to analyze the influence
tendency of the three weighing parameters.
Observation. In the first experiment (anonymization

method and subset topology), the accuracy of depth-
spread graphs is much higher than that of the width-
spread graphs. We check the two groups of datasets,

finding the edges of depth-spread graphs are more than
the edges of width-spread graphs when their nodes are
the same, showed in Table 12. And if the value of Edges

Nodes is
bigger, the accuracy is higher. We think the Ji-DA is more
suitable to attack the networks that havemuchmore edges
than nodes. In addition, based on the testing results, the k-
degree anonymization method is more vulnerable to this
attack.
In the second experiment (three weighing parameters),

we find that the accuracy goes down when cI gets big-
ger, while cS and cD seem to present period tendency.
In [37], cS represents the structural similarity of a node,
which considers the node’s global information and cD rep-
resents the relative distance similarity of a node, which
also considers the nodes’s global information partly. So,
the two parameters have some common meanings. How-
ever, the cI represent the inheritance similarity of a node,
which considers the node’s nearby neighborhoods that

Table 12 Nodes and edges of depth and width datasets

Original graph Nodes Edges Edges
Nodes

graph_1 − 2 196 431 2.199

graph_1 − 3 416 785 1.887

graph_1 − 4 1062 1680 1.582

graph_1 − 2 196 431 2.199

graph_2 − 2 1466 2278 1.554

graph_4 − 2 1844 2827 1.533
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Table 13 Datasets used for the third experiment of Ji-DeSAG

Original graph Anonymized graph Edge overlap

Movie Movie_add − del 48%

Movie_kda

have mapped so it is different from the previous two
parameters. Accordingly, we consider that the parame-
ter cI may influence the re-identification accuracy of this
algorithm greatly. A small value of cI contributes to a high
accuracy.

5.3 Experiment analysis of Ji-DeSAG
In this subsection, we evaluate the influence of critical
parameter c on the accuracy of Ji-DeSAG with respect
to different anonymization methods (naïve add/del edges
anonymization and k-degree anonymization). We use
“Movie” dataset to evaluate the performance, and the con-
figuration is shown in Table 13. As we mentioned in the
previous section that the Ji-DeSAG algorithm is based on
the structure-based DA; here, we evaluate it based on the
structural user-based DA. We improve N-DA by adding
nodes’ attributes similarity when the similarity score is
computed. We set 50 top-degree nodes as seeds and θ =
0.0000001. We set different c to test the accuracy.The
experiment result is shown in Fig. 9.
Observation. We can see from the figure that when c

is smaller than 0.1, the accuracy goes up with c getting
bigger. But when c is bigger than 0.1, the accuracy goes
down slowly with c getting stable and then getting bigger.
So, presence of the attribute similarity Sa contributes to
the performance of the DA algorithm and the weight of Sa
cannot be a big value. And the accuracy of groups using k-
degree anonymizationmethod is higher than groups using
the naïve add/del-edge method, which means Ji-DeSAG is
more efficient to the k-degree anonymization method.

5.4 Results and discussion
According to the evaluation results, we come up to the
following conclusions.
For the N-DA scheme, the parameter θ ought to be

set much lower to obtain high accuracy regardless of
the anonymization methods and the graph data topol-
ogy. For Ji-DA, the results show that the graph topology
makes a difference in accuracy, where the depth-spread
dataset will be more vulnerable to the attack. In addition,
based on the testing results, the k-degree anonymiza-
tion method is more vulnerable to this attack. More-
over, we analyze the three weighing parameters, which
is shown that the weight of inheritance similarity cI is
the major factor influencing the de-anonymization accu-
racy. As the accuracy goes down with cI increasing while
the other parameters seem to have a period trend along
with cI . For Ji-DaSAG, the attribute similarity Sa con-
tributes to the performance of the DA algorithm and
the weight of Sa cannot be a big value. And the Ji-
DeSAG is more efficient to the k-degree anonymization
method.

6 Conclusion
In this paper, we conduct a comprehensive analy-
sis on the typical structure-based social network de-
anonymization algorithms to achieve a deep understand-
ing on the de-anonymization approaches and disclose
the impacts on their application performance caused
by the factors mentioned above. We design the ana-
lyzing framework and define three experiment envi-
ronments to evaluate the factors’ impacts on the tar-
get algorithms. Based on our framework, we simulate
three typical de-anonymization algorithms and evalu-
ate their performance under different pre-configured
environments.

Fig. 9 Effect of weighing parameters c on accuracy of Ji-DeSAG with different anonymization methods. In Figure 9, when c is smaller than 0.1, the
accuracy goes up with c getting bigger. But when c is bigger than 0.1, the accuracy goes down slowly with c getting stable and then getting bigger
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