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Abstract

Two-way communication is required to support control functions like packet acknowledgement and channel
feedback. Most previous works on the transmission capacity of wireless ad hoc networks, however, focused on
one-way communication; reverse communication from the destination to the source was ignored. In this paper, we
first establish mathematical expression for two-way transmission capacity under the fixing transmission distance (i.e.,
the distance between the source and the destination is a constant), by introducing the concept of two-way outage
and setting different rate requirements in both directions. Next, based on the concept of guard zone and cooperative
communication, methods of increasing two-way transmission capacity are proposed. Simulation results show that the
proposed methods can improve two-way transmission capacity significantly.
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1 Introduction
Recently, more andmore attentions have focused on Inter-
net of Things (IoT) applications. The coexistence of a
massive number of IoT devices poses a challenge in maxi-
mizing the successful transmission capacity of the overall
network alongside reducing the multi-hop transmission
delay in order to support mission critical applications
[1, 2]. As one of the most important and critical part of
the IoTs, considerable progress has been made in the field
of wireless ad hoc networks, particularly with respect to
improving their transmission performance [3]. Two-way
communication is one of the fundamental communica-
tion methods, such as state feedback among IoT devices,
data acknowledgement or route initiation, and update
requests. Two-way transmission capacity of a wireless ad
hoc network refers to the maximum number of successful
transmissions existing per unit network area, constrained
by two-way outage probability. The transmission capacity
provides a framework to derive closed-form bounds for
the interference distribution by using stochastic geometry
when the locations of nodes form a Poisson point process
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(PPP). Most of the previous works on deriving trans-
mission capacity only focused on one-way transmission
capacity (reverse communication from the destination to
the source is ignored), which considered the effect of var-
ious physical and medium access layer techniques such as
successive interference cancellation [4], multiple antennas
[5–8], guard zone-based scheduling [9], and cooperative
relaying [10, 11].
In the landmark work [12], Truong et al. developed the

concept of transmission capacity of two-way communi-
cation in wireless ad hoc networks with the concept of a
two-way outage. Specifically, they derived an upper bound
and an approximation for two-way transmission capacity,
which are shown to be relatively tight for small outage
probability constraints. Finally, they concluded that the
two-way capacity loss is considerable by numerical and
simulation results.
First, we consider two-way transmission in a wireless

ad hoc network, where each source destination pair has
data to exchange from each other and their locations are
modeled as a PPP. The success probability with two-way
transmission is the probability that the communication
in both directions (from source to destination and from
destination to source) is successful simultaneously. Then,
the two-way outage probability is 1—success probability.
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However, the interference received in both directions is
correlated, since the distance between the source and the
receiver of interfering transmission and another distance
between the destination and the sender of interfering
transmission are not independent from each other. More-
over, explicitly computing the correlation between the
above two kinds of distances is also a hard problem. In
[12], Truong et al. assumed that the interference received
in both directions is independent to derive the exact
outage probability and transmission capacity of two-way
simply.
Instead, to get a meaningful insight into two-way trans-

mission capacity without the simple assumption of inde-
pendence, we derive lower and upper bounds for outage
probability and transmission capacity of two-way. The
main contributions of this paper can be summarized as
follows:
Considering correlation of interference in both direc-

tions and using tools of stochastic geometry, we derive
lower and upper bounds for outage probability and trans-
mission capacity of two-way. Specifically, the difference
between the lower and upper bounds of two-way trans-
mission capacity is only constrained by a constant 1

2 + 1
α
,

which is consistent with the result in [13], where α is the
path-loss exponent.
To increase two-way transmission capacity, we intro-

duce the concept of guard zone, which can be modeled as
a disc of radius ϕ centered at the receiving node; interfer-
ing transmissions cannot be allowed to exist within this
disc. Specifically, the difference between the lower and
upper bounds of two-way transmission capacity in this
case is still 1

2 + 1
α
. By setting properly a guard zone size,

we can ignore safely the interference outside ϕ.
Next, combining cooperative communication with

guard zone, two-way transmission capacity can further be
increased. Under decode-and-forward relaying scheme,
we give a method to find the optimal relay node to achieve
maximum successful transmitting nodes per unit area to
satisfy outage probability and data rates.
Finally, theoretical analyses are evaluated by simulation

results.

2 Methods
For the purpose of deriving expression of two-way trans-
mission capacity in a wireless network, considering guard
zone and cooperative communication strategies, we apply
FKG inequality, Cauchy-Schwarz inequality to derive
outage probability, and two-way transmission capacity.
Finally, we utilize the simulator MATLAB to evaluate the
performance of guard zone and cooperative communica-
tion.
The results of this paper in part have been presented

in [12] and [13]. The differences between [12] and [13]
and the present paper are as follows. For simplification

of analysis, [12] assumed that the successful reception
events in two directions are independent. The indepen-
dence assumption was removed in [13] and the upper
and lower bounds on two-way transmission capacity were
shown to be tight. Compared to [13], the present paper
introduces the concept of guard zone and cooperative
communication to quantify the increment in bidirectional
transmission capacity. In addition to this, this paper offers
more additional simulation results for more insights into
the effects of two-way communication.
The rest of this paper is organized as follows. We sum-

marize the related work in Section 3. In Section 4, we
introduce network model and definitions. In Sections 5,
6, and 7, we give the expression of two-way transmission
capacity of a wireless ad hoc network. Simulation results
are shown in Section 8. Finally, the conclusion and future
work are given in Section 9.

3 Related work
In the past few years, most of previous works focused on
the transmission capacity of one way (e.g., [4, 5, 9, 14–20]).
The concept of one-way transmission capacity was first
introduced in [14] and [15] as a way to evaluate the perfor-
mance of specific communication strategies and different
MAC protocols. This performance metric can be used
to characterize a decentralized wireless ad hoc network
under an outage constraint [14].
By using tools of stochastic geometry to quantify the

interference amongmultiple nodes in the network, in [15],
Weber et al. determined the relationship between the opti-
mal spatial density and success probability of transmis-
sions in the network and presented tight upper and lower
bounds on transmission capacity via lower and upper
bounds on outage probability of one-way. Finally, they
applied these results to show how transmission capac-
ity can be used to better understand scheduling, power
control, and the deployment of multiple antennas in a
decentralized network.
However, these prior works all concentrated on investi-

gating transmission capacity in one-way ad hoc networks
(communication from the destination to the source is
ignored). Specifically, two-way communication is needed,
such as state feedback, packet acknowledgement, and
update request. In [12], Truong et al. first developed the
concept of transmission capacity of two-way communi-
cation in wireless ad hoc networks. An improved version
was extended in [13]. In [13], Vaze et al. derived the lower
and upper bounds of two-way transmission capacity. The
obtained bounds are used to derive the optimal solution
for bidirectional bandwidth allocation that maximizes
two-way transmission capacity, which is shown to per-
form better than allocating bandwidth proportional to the
desired rate in both directions. Specifically, they showed
that an intuitive strategy that allocates the bandwidth in
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proportion to the desired rate in each direction is opti-
mal only for symmetric traffic (same rate requirement in
both directions) and performs poorly for asymmetric traf-
fic in comparison to the optimal strategy. However, they
did not consider the problem of how to increase two-way
transmission capacity.
Cooperative communication is one of the popular ways

to increase transmission capacity. In [10], Lee et al.
analyzed the transmission capacity for dual-hop relay-
ing in a wireless ad hoc network in the presence of
both co-channel interference and thermal noise. Specifi-
cally, they first presented the exact outage probability for
amplify-and-forward and decode-and-forward protocols
in a Poisson field of interferers, and then, they derived
transmission capacity of such networks. For cognitive
radio networks, in [11], Jing et al. proposed a coopera-
tive framework in which a primary sender, being aware
of the existence of the secondary network, may select a
secondary user that is not in transmitting or receiving
mode to relay its traffic. The feasible relay location region
and optimal power ratio between the primary network
and the secondary network are derived in the underlay
spectrum sharing model. Based on the optimal power
ratio, they derived the maximum achievable transmission
capacity of the secondary network under the outage con-
straints from both the primary and the secondary network
with or without cooperative relaying. However, reverse
communication from the destination to the source is
ignored.
In fact, two-way communication is closely related to

full-duplex scheme. In other words, a successful prob-
ability of a half-duplex transmission considers one-way
success probability from a sending node to a receiving
node, which is not suitable for full-duplex transmission
cases; both of these successful probabilities of sending
and receiving messages are considered. In [21] , Tong and
Haenggi considered a wireless network of nodes with both
half-duplex and full-duplex capabilities and derived an
optimal throughput by using tools of stochastic geome-
try. In [22], Marašević et al. introduced a new realistic
model of a small form-factor (e.g., smartphone) full-
duplex receiver and quantified the rate gain as a function
of the remaining self-interference and SNR values by con-
sidering the multi-channel case. However, their successful
probability of a transmission was based on half-duplex
rather than full-duplex within the same frequency band
and time.

4 Models and definitions
First, we give the definition of Poisson point process (PPP)
as follows.

Definition 1 [23] The PPP � of intensity measure � is
defined by means of its finite-dimensional distributions:

Pr [�(A1)=n1, ...,�(Ak) = nk] =
k∏

i=1

(
e−�(Ai) �(Ai)ni

ni!

)
,

for every k = 1, 2, ... and all bounded, mutually disjoint
sets Ai for i = 1, ..., k. If �(dx) = λdx is a multiple of
Lebesgue measure (volume) in Rd, � is a locally finite non-
null measure on Rd, we call � a homogeneous PPP, and λ

is its intensity parameter.

It is notable that the Poisson network model can nicely
capture the random geometric properties of networks and
enable the analytical modeling of network interference
statistics in general [24].

4.1 Network model
Consider a wireless ad hoc network consisting of N
transmissions, where the sender and its receiver want
to exchange data between each other. All senders and
receivers construct sender set �T and receiver set �R,
respectively. We assume that each node has a single
antenna and applies full-duplex scheme. We consider a
slotted Aloha random access protocol, where at any given
time, the pair of sender-receiver transmits data to each
other with an access probability pa, and the distance
between them is fixing value, i.e., d.
The set �T is modeled as a homogenous PPP on a two-

dimensional plane with intensity λ0, similar to [13] and
[25]. Due to one-to-one correspondence relationship of
each sender-receiver pair, the set �R is also a homoge-
nous PPP on a two-dimensional plane with intensity λ0.
According to the assumed Aloha random access protocol,
locations of the active senders and receivers �a

T and �a
R

are homogenous PPPs on a two-dimensional plane with
intensity λ = paλ0.

4.2 The residual self-interference (RSI)
The existence of self-interference is a main challenge in
applying full-duplex scheme. Since the interference can-
cellation is a challenging problem and the number of
self-interference cancellation is often related to the wire-
less network capacity, the residual self-interference has
negative effects on the network capacity. Although pre-
vious results generally assumed that self-interference can
be completely eliminated, in the realistic applications, the
self-interference only can be eliminated to the level of
noise in the best case. In this paper, we will describe
the residual self-interference as a constant fraction of the
transmission power P, that is RSI = gP, where g is a
constant fraction [21] and P is transmission power of all
transmitting nodes.

4.3 Interference model
Specifically, we consider the interference-limited wire-
less networks where the noise power is ignored. Signal
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prorogation between senders and receivers is considered
under the Rayleigh fading channel. Namely, the strength
of received power at receiver ri transmitted by sender si
can be represented as Phii/dα , α denotes the path-loss
exponent, and hii denotes the channel fading gain between
si and ri, which is an exponentially distributed random
variable with unit mean, i.e., hii ∼ exp(−1) [25, 26]. Fur-
thermore, the received signal-to-interference ratios (SIRs)
for the transmissions from si to ri and from ri to si are
respectively

γ
f
i = Phii/dα

∑
tj∈�a

T

Phji/dα
ji + gP

(1)

and

γ r
i = Ph′

ii/dα

∑
rj∈�a

R

Ph′
ji/d

′α
ji + gP

, (2)

where dji and hji are the distance and channel fading
gain between sender sj and receiver ri, respectively. Sim-
ilarly, d′

ji and h′
ji are the distance and channel fading gain

between receiver rj and sender si, respectively. gP is the
remaining self-interference.
The network employs frequency duplexing to support

two-way communication, i.e., two separate frequency car-
riers, of which the bandwidths Wf and Wr are used to
transmit data in two directions between each pair of
nodes. We have used the subscripts “f ′′ and “r′′ to indi-
cate the directions, namely forward direction and reverse
direction, respectively. We also refer to the nodes send-
ing information in forward direction as senders and their
partners as receivers [12].
We denote the SIR thresholds in two directions βf and

βr . The relationship between a decoding threshold and the
corresponding transmission rate, i.e., the forward trans-
mission rate Rf and the reverse transmission rate Rr , can
be given by the following equations [12]:

Rf = Wf log2(1 + βf )bits/sec, (3)

Rr = Wr log2(1 + βr)bits/sec. (4)

In this study, we employ the following performancemet-
rics: the probability of failure for two-way transmissions,
denoted as the probability that the signal reception is
failed in at least one direction of a two-way communica-
tion, is given by [12, 13]

pout = 1 − Pr
[
γ
f
i ≥ βf , γ r

i ≥ βr
]
;

the concept of two-way transmission capacity, as shown in
the following definition.

Definition 2 [13] Two-way transmission capacity,
denoted by τ , is defined as

τ = (1 − ε)p−1
out(ε)

(Rf + Rr

Wtotal

)
bits/sec/Hz/m2, (5)

where ε is outage probability constraint, p−1
out(ε) denotes

the inverse, the maximum spatial density of simulta-
neously successful two-way links subject to an outage
probability constraint of ε, and

μ2(ε) = max{λ|pout ≤ ε} = p−1
out(ε),

Wtotal = Wf + Wr is the total available bandwidth.

5 Analysis of two-way transmission capacity
In this section, we derive the upper and lower bounds of
two-way transmission capacity.

Lemma 1 The two-way outage probability of a two-way
transmission can be upper-bounded and lower-bounded by

1 − exp
[
−gdα(βf + βr) − λπC(α)

(
sδf + sδr

)]
,

and

1− exp
[
−gdα(βf + βr) − λπ

(
1
2

+ 1
α

)
C(α)

(
sδf + sδr

)]
,

respectively, where C(α) = 
(1 + δ)
(1 − δ), 
(a) =∫ +∞
0 ta−1e−tdt is the gamma function, sf = dαβf , sr =
dαβr, and δ = 2

α
.

Proof From Slivnyak’s theorem [23], the distribution of a
point process is unaffected by adding a reference receiver
at the origin, from which the sender is d distance away.
Therefore, the interference measured at the reference
receiver under this conditional point process is the same
as the one measured at any place under a homogeneous
PPP. Thus, for a forward direction, the received SIR at the
reference receiver is given by

γ
f
o = Ph/dα

∑
tj∈�a

T

Phjo/dα
jo + gP

, (6)

where h is the channel fading gain between the sender and
the reference receiver and hko and dko are respectively the
channel fading gain and the distance between an interferer
k the reference receiver.
By shifting the entire point process so that the corre-

sponding sender of the reference receiver lies at the origin,
the received SIR at this sender for reverse direction is
given by
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γ r
o = Ph′/dα

∑
rj∈�a

R

Ph′
jo/d

′α
jo + gP

. (7)

The derived process for upper bound of two-way outage
probability is given in Formula (8).

pout (βf ,βr) = 1 − Pr
[
γ
f
i ≥ βf , γ r

i ≥ βr
]

= 1 − Pr
[
γ
f
i ≥ βf , γ r

i ≥ βr
]

= 1 − Pr

⎡

⎢⎣
Phd−α

∑
tj∈�a

R

Phjo/dα
jo + gP

≥ βf ,
Ph′d−α

∑
rj∈�a

R

Ph′
jo/d

′α
jo + gP

≥ βr

⎤

⎥⎦

= 1 − Pr

⎡

⎣h ≥ dαβf

⎛

⎝
∑

tj∈�a
T

hjod−α
jo + g

⎞

⎠ , h′ ≥ dαβr

⎛

⎝
∑

rj∈�a
R

h′
jod

′−α
jo + g

⎞

⎠

⎤

⎦

(∗)=1−exp
(−gdα(βf + βr)

)
E

⎡

⎣exp

⎛

⎝−sf
∑

tj∈�a
T

hjod−α
jo

⎞

⎠ · exp
⎛

⎝−sr
∑

rj∈�a
R

h′
jod

′−α
jo

⎞

⎠

⎤

⎦

(∗∗)≤ 1 − exp
(−gdα(βf + βr)

)
L�a

T ,I (sf ) · L�a
R ,I (sr)

= 1 − exp
(−gdα(βf + βr)

)
exp

[
−λπ
(1 + δ)
(1 − δ)

(
sδf + sδr

)]

(8)

where L�a
T ,I(sf ) and L�a

R,I(sr) denote the Laplace trans-
form of the interference evaluated at sf and sr , respec-
tively, sf = dα

0βf and sr = dα
0βr .

Based on the fact that djo and d′
jo are not indepen-

dent [13], although we cannot establish an equation to
evaluate the expectation with respect to djo and d′

jo in
Formula (8), we derive an upper bound by applying FKG
inequality [27], i.e., inequality (**) holds in Formula (8).
Moreover, term (*) holds since Pr[ hxy ≥ z]= exp(−z)
for an exponentially distributed random hxy with unit
mean [26].
Using the Cauchy-Schwarz inequality, we derive the

lower bound of two-way outage probability, as shown in
Formula (9).

pout (βf ,βr)
(∗)= 1−exp

(−gdα(βf +βr)
)
E

⎡

⎣exp

⎛

⎝−sf
∑

tj∈�a
T

hjod−α
jo

⎞

⎠ · exp
⎛

⎝−sr
∑

rj∈�a
R

h′
jod

′−α
jo

⎞

⎠

⎤

⎦

= 1−exp
(−gdα(βf + βr)

)
E

⎡

⎣
∏

tj∈�a
T

exp
(
−sf hjod−α

jo

) ∏

rj∈�a
R

exp
(
−srh′

jod
′−α
jo

)
⎤

⎦

(∗∗)≥ 1 − exp
(−gdα(βf + βr)

)
⎧
⎨

⎩E

⎡

⎣
∏

tj∈�a
T

[
exp

(
−sf hjod−α

jo

)]2
⎤

⎦

E

⎡

⎣
∏

rj∈�a
R

[
exp

(
−srh′

jod
′−α
jo

)]2
⎤

⎦

⎫
⎬

⎭

1
2

= 1 −exp
(−gdα(βf + βr)

)
exp

[
−λπ

(
1
2

+ 1
α

)
sδf 
(1− δ)
(1 + δ)

(
s
2
α

f + s
2
α
r

)]

(9)

where inequality (**) holds according to the Cauchy-
Schwarz inequality, and calculating process is given in
Eq. (11).
For the Laplace transform of the interference in For-

mula (8), we flip the order of integration and expectation,
and λ′(r) = 2πλr is the intensity function of PPP �a

T .
Then, we calculate the integral, corresponding calculating
process given in Eq. (10).

E

⎡

⎣exp

⎛

⎝−sf
∑

tj∈�a
T

hjod−α
jo

⎞

⎠

⎤

⎦= exp
{
−E

[∫ ∞

0

(
1 − exp

(−sf hrα
))

λ′(r)dr
]}

=exp
{
−E

[
λπ

∫ ∞

0

(
1−exp

(−sf hx−1)) δxδ−1dx
]}

, δ= 2
α
, x=r

1
δ

=exp
{
−λπE

[
(sf h)δ

∫ ∞

0
t(1−δ)−1 exp(−t)dt

]}
, t = sf hx−1

=exp
{−λπE

[
(sf h)δ
(1 − δ)

]}=exp
{
−λTπsδf E

[
hδ
]

(1 − δ)

}

(∗)= exp
[
−λπsδf 
(1 + δ)
(1 − δ)

]
,

(10)

where (*) holds due to E[ hδ]= 
(1 + δ) under Rayleigh
fading [28].

E

⎡

⎣
∏

tj∈�a
T

exp
(
−(sf hjod−α

jo )2
)
⎤

⎦(∗)= exp
[
−λ

∫

R2
1 −

(
1

1 + sf x−α

)2
dx
]

= exp
[
−2πλ

∫

R

(
s2f x

−2α+1 + 2sf x−α+1

(1 + sf x−α)2

)
dx
] 1

2

, δ= 2
α
, x=r

1
δ

(∗∗)= exp
(

−λπ

(
1
2

+ 1
α

)
sδf 
(1 − δ)
(1 + δ)

)
,

(11)

where (∗) functional of PPP [29], (∗∗) holds according to
results in [13].

Theorem 1 Two-way transmission capacity is lower and
upper-bounded by

τ ≥ (1 − ε)
ln
(

1
1−ε

)
− gdα(βf + βr)

πC(α)
(
sδf + sδr

)
(Rf + Rr

Wtotal

)

τ ≤ (1 − ε)
ln
(

1
1−ε

)
− gdα(βf + βr)

πC(α)
( 1
2 + 1

α

) (
sδf + sδr

)
(Rf + Rr

Wtotal

)
,

respectively.

Most importantly, we can see that the upper and lower
bounds of two-way transmission capacity only differ by a
constant.

6 Two-way transmission capacity with guard zone
In ad hoc networks, it may be helpful to suppress
interfering transmissions around the receiving nodes in
order to increase the probability of successful com-
munication. In this section, we introduce the con-
cept of a guard zone, defined as the region around
each receiving node where interfering transmissions
are inhibited. Using stochastic geometry, the rela-
tionship between guard zone size and two-way out-
age probability (or two-way transmission capacity) is
established.
Define the guard zone of a receiving node as a disc of

radius ϕ, denoted by Dϕ ; potential transmissions inside
this disc are inhibited. Before transmitting data, nodes
with some fraction of transmission power broadcast mes-
sage stop to interrupt transmissions within their guard
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zone. Thus, for a forward direction, the received SIR at the
reference receiver is given by

γ
f
o,ϕ = Ph/dα

∑

tj∈�T∩D̄ϕ

Phjo/dα
jo + gP

,

where tj ∈ �T ∩ D̄ϕ denotes the set of nodes transmitting
simultaneously while potential senders inside the disc Dϕ

are inhibited, where D̄ϕ denotes the area out of the guard
zone.
The only difference on calculating outage probability is

the lower bound of integration, and we get Eq. (12).

E

⎡

⎣exp

⎛

⎝−sf
∑

tj∈�a
T

hjod−α
jo

⎞

⎠

⎤

⎦=exp
{
−E

[∫ ∞

ϕ

(
1 − exp

(−sf hrα
))

λ′(r)dr
]}

=exp
{
−λπE

[∫ ∞

ϕ1/δ

(
1 − exp

(−sf hx−1)) δxδ−1dx
]}

δ= 2
α
and x=r1/δ

= exp

⎧
⎨

⎩−λπE

⎡

⎣(sh)δ
∫ ∞

sh 1
ϕ1/δ

t(1−δ)−1 exp(−t)dt

⎤

⎦

⎫
⎬

⎭ t = shx−1

= exp
[
−λπsδf 
(1 + δ)


(
1 − δ, s

1
ϕ1/δ

)]
,

(12)

where 
(s, x) = ∫∞
x ts−1e−tdt being the upper incomplete

gamma function.

Lemma 2 Using the guard zone, the two-way outage
probability of a two-way transmission can be upper-
bounded and lower-bounded by

1 − exp
[
−gdα(βf + βr) − λπC(α,ϕ)

(
sδf + sδr

)]
,

and

1 − exp
[
−gdα(βf + βr) − c

(
sδf + sδr

)]
,

respectively, where C(α,ϕ) = 
(1 + δ)
(1 − δ,ϕ), c =
λπ

( 1
2 + 1

α

)
C(α,ϕ) and 
(s, x) = ∫ +∞

x ts−1e−tdt is the
upper incomplete gamma function.

Theorem 2 Two-way transmission capacity with guard
zone is lower and upper-bounded by

τ ≥ (1 − ε)
ln
(

1
1−ε

)
− gdα(βf + βr)

πC(α,ϕ)
(
sδf + sδr

)
(Rf + Rr

Wtotal

)

τ ≤ (1 − ε)
ln
(

1
1−ε

)
− gdα(βf + βr)

π
( 1
2 + 1

α

)
C(α,ϕ)

(
sδf + sδr

)
(Rf + Rr

Wtotal

)
,

respectively.

Corollary 1 The condition for a positive two-way trans-
mission capacity is given by

g ≤ 1
dα(βf + βr)

· ln
(

1
1 − ε

)
.

Lemma 3 If ϕ satisfies the following inequality, the out-
age probability of forward transmission is at most σ ,


(1 − δ,ϕ) ≥ gβf dα −
ln
(

1
1−σ

)

λπd2βδ
f 
(1 + δ)

.

In theory, outage probability can never be 0 due to the
existence of channel fading. Using guard zone, we con-
sider a transmission as successful if its success probability
is greater than 1 − σ ; corresponding size of guard zone is
denoted by ϕσ .

7 Two-way transmission capacity with
cooperative communication and guard zone

Let Srelay denote the set of all relay nodes. We consider a
two-phase cooperative protocol. During the broadcasting
phase, the sender first broadcasts probing message with
some fraction of transmission power; the relays which can
successfully decode the transmitted signal form a decod-
ing set Cdec ⊂ Srelay, then the sender, its receiver, and
selected relay (selecting process will be given as follows)
broadcast stop message to interrupt interfering transmis-
sions within ϕσ . In the transmission phase, the sender
sends data to the selected relay, and then, the latter
transmits towards the receiver. By using the guard zone,
interference outside ϕσ can be safely ignored (by using
Lemma 3), and there are no interfering transmissions by
message broadcasting, then the received SNR at selected
relay and receiver are PhSR·d−α

SR
gP and PhRD·d−α

RD
gP , respectively.

The received SINR of decode-and-forward (DF) with
relay R and guard zone of size ϕσ can be written as [10]

γSD = min
{
PhSR · d−α

SR
gP

,
PhRD · d−α

RD
gP

}

= min
{
γS,R(S), γR(S),D

}
,

and the forward transmission rate Rf is

RDF
f = Wf min

{
log2

(
1 + γS,R(S)

)
, log2

(
1 + γR(S),D

)}
.

To maximize Rf , the optimal relay for forward transmis-
sion, denoted by R∗, must satisfy the following condition

R∗ : max
{
R ∈ Cdec|min

{
γS,R(S), γR(S),D

}}
.

Using R∗ as the optimal relay for reverse communication
for simplification of analysis.

Proposition 1 If X1 is an independent and identi-
cally distributed (i.i.d.) exponential random variable with
parameter λ1, the probability density function (PDF) of the
new random variable X = X1

a for constant a is given by

pX(x) =
{

λ1ae−λ1ax, x ≥ 0
0, otherwise . (13)
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Proposition 2 If X1 and X2 are two i.i.d. exponential
random variables with parameters λ1 and λ2, the PDF of
the new random variable X = min{X1,X2} is given by

pX(x) =
{

(λ1 + λ2)e−(λ1+λ2)x, x ≥ 0
0, otherwise.

Proof Due to independence of random variables X1 and
X2, we have

FX(x) = Pr[X ≤ x]= 1 − Pr[X > x]
= 1 − Pr[X1 > x,X2 > x]
= 1 − Pr[X1 > x] ·Pr[X2 > x]
= 1 − (1 − FX1(x))(1 − FX2(x)),

where FX(·) is the cumulative distribution function of
random variable X.

Applying Propositions 1 and 2, the outage probability,
considering high SNR, can be written as

pout = Pr
[
min {γSR, γRD} < Rf , min {γDR, γRS} < Rr

]

= Pr[min {γSR, γRD} < Rf ] ·Pr[min {γDR, γRS} < Rr]

= (λ1 + λ2)
2
∫ Rf

0
e−(λ1+λ2)xdx ·

∫ Rr

0
e−(λ1+λ2)xdx

=
[
1 − e−(λ1+λ2)Rf

]
·
[
1 − e−(λ1+λ2)Rr

]

=
[
1 − e−g

(
d−α
SR +d−α

RD
)
Rf
]

·
[
1 − e−g

(
d−α
SR +d−α

RD
)
Rr
]

≤
[
1 − e−g

(
d−α
SR +d−α

RD
)
Rmax

]2
,

where Rmax = max{Rf ,Rr}.
Therefore, to satisfy the given outage probability ε and

data rate (i.e., quality of service (QoS)), relay node must be
properly selected with the following constraint

1
dα
SR

+ 1
dα
RD

≤ 1
gRmax

ln
(

1
1 − ε

1
2

)
, R ∈ Cdec. (14)

Theorem 3 Two-way transmission capacity with coop-
erative communication is lower bounded by

τ ≥ (1 − ε)λ

(Rf + Rr

Wtotal

)
bits/sec/Hz/m2

if the selected relay satisfies Inequality (14).

8 Results and discussion
8.1 Results
Simulations are carried out on networks constructed by
randomly placing nodes on 100 × 100m2. The distance
between a sender and its corresponding receiver is 10 m;
related SIR parameters are set to P =1 mW, βf = 1 dB,
βr=1 dB,Wf=0.99 MHz,Wr=0.01 MHz, α=4, and g=0, as
shown in Table 1. Based on Slivnyak’s theorem, we place
an additional sender on the origin and the coordinate of its

Table 1 Parameters and meanings

Symbol Meaning

�T PPP of sender set

�R PPP of receiver set

pa Access probability

d Fixing distance between the source and the destination

hii Channel fading gain between sender si and receiver ri

τ Two-way transmission capacity

Rf Forward transmission rate

Rr Reverse transmission rate

ε Outage probability constraint

ϕ Radius of guard zone

receiver is (10, 0). The density of relay nodes is set to 0.1,
ε = 0.1 and guard zone size is set to 10 m. Each reported
result in the following parts is the average of 1000 runs,
unless otherwise specified.
We first consider the impact of node density on two-way

outage probability, as shown in Fig. 1. Outage probability
increases over node density increasing, since cumulative
interference gets greater at the typical receiver. Moreover,
outage probability by using cooperative communication
decreases largely compared with results in [12, 13] and
that of using guard zone, which means that the theoretical
analysis for cooperative communication is effective. On
average, the decrements are 91.36% and 74.96%, respec-
tively.
Next, we consider the influence of the transmission dis-

tance. As shown in Fig. 2, over d increasing, two-way
outage probability increases. This is because, on the one

Fig. 1 Two-way outage probability vs. node density. Legends: blue
solid line denotes results in [12, 13]; black and red solid lines are
results with guard zone and cooperative communication, respectively
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Fig. 2 Two-way outage probability vs. transmission distance. Legends:
blue solid line denotes results in [12, 13]; black and red solid lines are
results with guard zone and cooperative communication, respectively

hand, the strength of received signal at the typical receiver
increases due to longer transmission distance; on the
other hand, guard zone size is set to 10 m; when transmis-
sion distance is greater than 10 m, there may exist more
interferers within d and outside ϕ, and the typical receiver
suffers from more interference. Setting d =10 m, the
influence of guard zone size is shown in Fig. 3. We can see
that a greater guard zone leads to a smaller two-way out-
age, since, on the one hand, guard zone interrupts inter-
fering transmissions within ϕ around the typical receiver;

Fig. 3 Two-way outage probability vs. guard zone size. Legends: blue
solid line denotes results in [12, 13]; black and red solid lines are
results with guard zone and cooperative communication, respectively

on the other hand, cooperative communication selects an
optimal relay to increase the strength of received signal at
the typical receiver.
Finally, we consider the impact of two-way outage prob-

ability two-way transmission capacity. As shown in Figs. 4
and 5, two-way transmission capacity first increases and
then decreases. The reason is that capacity expressions are
proportional to (1− ε) ln

(
1

1−ε

)
. Intuitively, as the outage

probability ε approaches towards 1, a high density of links
is allowed in a unit area; however, most of the links fail;
therefore, the amount of successfully received information
actually decreases.
Compared with results in [12, 13], the proposed meth-

ods can decrease two-way outage probability obviously,
then two-way transmission capacity is increased accord-
ing to Theorems 1, 2, and 6.

8.2 Discussion
To simplify deriving process of outage probability, we
assume that the distance between the source and the des-
tination is fixing. In our future research, we will tackle the
following two limitations that exist in almost all existing
research: first, our theoretical analysis considers a more
practical case where the distance between an arbitrary
source-destination pair is random; second, our analysis
ignores the impacts of noise power and node mobility.

9 Conclusion
In this paper, we study two-way transmission capacity of
a wireless ad hoc network by using the tools of stochas-
tic geometry. Furthermore, to increase it, we introduce

Fig. 4 Two-way transmission capacity vs. outage constraint ε .
Legends: blue and black solid lines denote lower and upper bounds
of results in [12, 13], respectively
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Fig. 5 Two-way transmission capacity vs. outage constraint ε .
Legends: blue and black solid lines denote lower and upper bounds
of results with guard zone, respectively

the concepts of guard zone and cooperative communi-
cation; theoretical analysis and simulation results show
that the proposed scheme can effectively decrease two-
way outage and increase two-way transmission capacity.
Remarkably, we give a method of how to select an optimal
relay.
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