
Tao et al. EURASIP Journal onWireless Communications and
Networking (2018) 2018:294
https://doi.org/10.1186/s13638-018-1309-9

RESEARCH Open Access

Graph database-based network security
situation awareness data storage method
Xiaoling Tao1,2,3, Yang Liu1†, Feng Zhao1*† , Changsong Yang1,2 and Yong Wang1

Abstract

With the rapid development of the Internet, network security situation awareness has attracted tremendous
attention. In large-scale complex networks, network security situation awareness data presents the characteristics of
large-scale, multi-source, and heterogeneous. Recently, much research work have been done on network security
situation awareness. However, most of the existing methods store different types of data in different ways, which
makes data query and analysis inefficient. To solve this problem, we propose a graph database-based hierarchical
multi-domain network security situation awareness data storage method. In our scheme, we build a hierarchical
multi-domain network security situation awareness model to divide the network into different domains, which can
collect and dispose the awareness data more efficiently. Meanwhile, to unify our storage mode, we also define
network security situation awareness data storage rules and methods based on graph database. Finally, extensive
experiments on real datasets show that our proposed method is efficient compared to state-of-the-art storage models.

Keywords: NSSA, Data storage, Hierarchical multi-domain, Graph database

1 Introduction
With the advancement of network technology and the
expansion of network scale, the network security risks are
increasingly prevalent, such as network attacks, network
vulnerabilities, data and privacy security [1, 2], and so on.
To assess network security threats and predict the future
status, network security situation awareness (NSSA), as a
technology of active large-scale network securitymonitor-
ing, has attracted tremendous attention and has become a
hot research topic.
NSSA has been extensively studied in the past decades.

In 1995, Endsley [3] proposed a three-level theoreti-
cal situation awareness model. In 2011, Zhang et al. [4]
presented a novel multi-heterogeneous sensor-based net-
work security situation assessment model. In their model,
they utilized D-S evidence theory to fuse security data,
which is submitted from multi-sensors. To facilitate the
information security risk management process, Webb et al.
[5] adapted Endsleys situation awareness model and

*Correspondence: zhaofeng@guet.edu.cn
†Feng Zhao and Yang Liu contributed equally to this work.
1Guangxi Colleges and Universities Key Laboratory of Cloud Computing and
Complex Systems, Guilin University of Electronic Technology, Guilin, China
Full list of author information is available at the end of the article

designed a novel situation aware ISRM (SA-ISRM) pro-
cess model. They addressed the problem of the poor
decision-making and inadequate or inappropriate secu-
rity strategies by an enterprise-wide collection, analysis,
and reporting of risk-related information. Although they
can analyze the impact of security incidents on a network
system and accurately evaluate system security, these
schemes cannot uniformly describe and synthetically ana-
lyze the data.
Besides, most of the existing NSSA schemes use rela-

tional databases to store awareness data. Chen et al.
[6] proposed a cloud computing-based network monitor-
ing and threat detection system, which utilized Hadoop
MapReduce and Spark to process the data, and the results
will be restored in the MySQL database server. The detec-
tor detected the malicious behavior of the data in the
MySQL database and returned the detection results to the
MySQL database. Masduki et al. [7] designed an intrusion
detection-based NSSA system, which utilized intrusion
detection software Snort and Bro to collect and analyze
malicious traffic, and the data should be stored in the
PostgreSQL database. However, these awareness schemes
used relational database which cannot satisfy the storage
requirement for heterogeneously multi-source data.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1309-9&domain=pdf
http://orcid.org/0000-0002-5730-2208
mailto: zhaofeng@guet.edu.cn
http://creativecommons.org/licenses/by/4.0/

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 2 of 12

In NSSA, network topology has similar nodes and rela-
tionship types in a graph databases. Personnel manage-
ment is similar to social network. The network attack
graph uses the node and the directed edge to display the
attack path [8]. These network security-related applica-
tion scenarios are in compliance with the characteristics
that the graph database uses the concept of nodes and
relationships to describe the data. Therefore, a graph
database can be used in the NSSA. However, to the best
of our knowledge, it seems that there is no NSSA model
based on graph database model. Therefore, we propose a
graph database-based NSSA data storage method for this
purpose.

1.1 Our contributions
In this paper, we propose a graph database-based hierar-
chical multi-domain NSSA data storage method. In our
method, we can comprehensively obtain network secu-
rity data and store them in a graph database. By using
Neo4j graph database, our method can truly reflect the
network security situation and improve the efficiency of
data query and the visualization of query results. The
main contributions of this paper are as follows:

• We propose a hierarchical multi-domain NSSA
model. We divide the network into many fields to
collect network security situation data. Compared
with the traditional hierarchical models, our model
takes into account dependency and user security,
which can reflect the network security situation more
comprehensively.

• We define storage rules and methods for graph
database-based NSSA data. Our storage method can
effectively solve the problem of differences for data
storage paths by storing the NSSA data into a graph
database Neo4j. By using the Neo4j, we can efficiently
query and analyze the data, and the query results can
be visualized directly.

1.2 Related work
Because of its high efficiency, flexibility, and scalability,
graph databases have been widely used in various fields,
such as social network, recommendation system, power
system, and so on.
In 2016, Constantinov et al. [9] proposed a real-time rec-

ommender engine. In their scheme, they applied a graph
database to store and process social network information,
and they use Neo4j to implement social network real-time
recommendation system. Recently, Gu et al. [10] proposed
a large-scale social network-based parallel layout algo-
rithm. In their algorithm, they introduced the Neo4j graph
database to the proposed parallel computing framework,
which based on the Spark. They stored the data as the
nodes and the relationships between the nodes in Neo4j,

which can adequately utilize the advantages of the social
networks.
In 2015, Zarrinkalam et al. [11] presented a file rec-

ommender system. Their scheme used the Neo4j graph
database to store the background data to improve the
efficiency. Patel and Dharwa [12] proposed a graph
database-based integrated hybrid recommendationmodel
in 2016. They used the Neo4j graph database to store item
data, user preferences, and knowledge graph. Besides, the
graph database is gradually applied in power network. To
store and dispose the power system data, Raikumar and
Khaparde [13] designed a common information mode-
oriented graph database (CIMGDB) in 2017. In the pro-
posed CIMGDB system, they used Neo4j graph database,
which can improve the efficiency for power system data
of any scale. Besides, Kan et al. [14] used Neo4j graph
database to build a network model for a power grid. The
Neo4j in this model is implemented based on the short-
est path search function. And they showed that using
Neo4j for energy network analysis is better than using
PostgreSQL by experiments.
At the same time, graph databases are gradually applied

to the network security field. In 2014, Barik andMazumdar
[15] proposed a graph data model for input informa-
tion storage. In their model, they utilized popular Neo4j
graph database to store the graph information instead of
relational database. Besides, they used graph queries to
generate attack graph and performed the typical analy-
sis tasks over the generated attack graph. In 2015, Noel
et al. [16] proposed a method for modeling, analyzing,
and visualizing attack graphs. Their method can asso-
ciate attack paths with security events. The analyzed
attack graphs are stored in Neo4j, then they queried and
analyzed the attack relationships, and visualized queries
results.
In 2016, Barik et al. [17] used a constrained graphmodel

to analyze network vulnerability, and they proposed an
extended attribute graph model-based graph constraint
specification language, which is used to analyze the attack
graph-based network vulnerability. By implementing the
attribute graph model in Neo4j, they verified that using
these constraints can guarantee the accuracy of the attack
graph generation and analysis process. Ashwin et al. [18]
proposed an efficient and secure information retrieval
framework for content centric networks. Their scheme
used the Neo4j graph database to replace the content
storage in the current CCNx implementation. They use
Neo4j to improve the efficiency of storing and process-
ing large-scale data since Neo4j does not use connection
operations.

1.3 Organization
We organize the rest of this paper as follows: In Section 2,
we give some preliminaries. Then, the proposed method

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 3 of 12

is introduced in Section 3 in detail, including the system
model, data storage rules based on a graph database, and
the hierarchical multi-domainNSSA data storagemethod.
The experiment results are shown in Sections 4 and 5,
including query analysis experiment and query efficiency
comparison experiment. Finally, we give a brief conclusion
of our method in Section 6.

2 Preliminaries
In this section, we introduced some preliminaries. Firstly,
we described the graph database, then, we introduced the
specific instantiation of graph database–Neo4j. Finally, we
gave a short description of the traversal mode of Neo4j.

2.1 Graph database
Graph database is a type of NoSQL database, whose
data storage structure and query method are based
on the graph theory [19]. There are three basic ele-
ments in a graph database, i.e., nodes, relationships, and
properties, respectively. Specifically, nodes are abstract
representations of entities or objects, and they are
connected by relationships. Nodes and relationships
both can have one or more properties [20]. Graph
database supports create, read, update, and delete (CRUD)
operations, with transaction integrity and operation
availability [21].
There are three common kinds of graph data mod-

els, which are property graphs, hypergraphs, and triples.
Among them, the property graphs model can be under-
stood intuitively and easily, which can describe most of
the graph usage scenarios, and it is the most popular
graph data model, for example, Neo4j uses this property
graph model. The property graph model contains nodes
and relationships. Each node can have properties and one
or more labels, while relationships have names and direc-
tions, and it always contains a start node and an end
node [19].

2.2 Neo4j graph database
Neo4j [22] is an open source and high-performance
graph database, which utilizes graph-related concepts to
describe the data model. Neo4j has four basic data ele-
ments: node, relationship, property, and label. Neo4j can
be deployed in the enterprise with the advantages of high-
availability, fault-tolerant, and scalable clusters [23], and it
can store hundreds of trillion entities. Neo4j can support
the operations of storage, query, backup, and redundancy
for large-scale data, and it also has the properties of atom-
icity, consistency, isolation, and durability (ACID) [24].
At the same time, it also supports the query language
Cypher, which is an expressive and efficient declarative
graph database query language [25]. Besides, Cypher is
so scalable that the users can customize their own query
methods conveniently.

2.3 Neo4j traversal mode
Traversal is the operation of moving and accessing a set
of nodes by following the relationship in a graph database
[26]. In Neo4j, each node record contains two pointers,
one points to the first attribute of the node, and the other
one points to the first contact in the link chain.With fixed-
size storage records and pointer IDs, traversal and high-
speed execution can be easily performed by following the
pointers. To traverse a specific relationship from a node to
another, we only need to traverse several pointers in Neo4j
and then perform some low-cost ID computation, which
is considerably less time-consuming than that of the global
index.
In our method, we define the query depth in Neo4j as

follows: when we query from the starting node A to node
B, we define the query depth as one; further, if we query
from node B to another node C, that is, we query from
A, through node B, to node C, we define the query depth
as two, and so on. The query methods are divided into
single query and traversal query, both of them do multi-
query depth query. Although the middle query process
of the single query may contain multiple results, it finally
returns one query result only. Compared with the sin-
gle query, traversal query will return all results of every
depth, and it will only return the number of the nodes
as the result of the query since the amount of the data is
large. Taking Neo4j query as an example, single query and
traversal query respectively perform five kinds of queries
whose query depths are five. The final result of a single
query is only one node; however, the middle result may
have multiple nodes. Specially, count query is the query
whose query result is the number of nodes, and the traver-
sal query is the query which returns a specific number
of nodes.

3 Hierarchical multi-domain NSSA data storage
method

In this section, we presented a hierarchical multi-domain
NSSA data storage method. In the following, we intro-
duced a hierarchical multi-domain NSSA model firstly,
then we defined the graph database-based data storage
rules, and finally, we gave the details of the NSSA data
storage method.

3.1 Hierarchical multi-domain NSSAmodel
Our proposed hierarchical multi-domain NSSA method
contains three layers: basic security layer, security anal-
ysis layer, and threat intelligence layer. Each layer con-
tains one or more corresponding domains. We analyze
the adjacency among different domains and describe
the intersection among adjacent domains as an adjacent
layer to show the connectivity and their communica-
tion. The architecture of the system model is shown
in Fig. 1.

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 4 of 12

Fig. 1 Hierarchical multi-domain NSSA model. This figure shows the architecture of the systemmodel, which includes three layers: the basic security
layer, the security analysis layer, and the threat intelligence layer

• The basic security layer. The basic security layer
contains a topological domain, a system service
domain, a security policy domain, and a personnel
information domain. This layer is used to describe
the basic network environment and the basic safety
information.

• The security analysis layer. The security analysis layer
contains a dependency domain, a network security
domain, and a user security domain. This security
analysis layer is used to record and analyze all kinds
of security problems and security incidents.

• The threat intelligence layer. The threat intelligence
layer contains threat intelligence domains which
based on the STIX. The threat intelligence layer is
used to correlate the contents of the security analysis
layer and restore the attack portrait.

3.2 Graph database-based data storage rules
Neo4j contains four basic data structures: node, label,
relationship, and property. The node is usually used to
store entity information. Each node can have multiple
labels, which are used for indexing and some limited
model constraints. The relationship connects the dif-
ferent nodes, and there can be multiple relationships
between two nodes for different directions. Nodes and
relationships can both have one or more properties, which

are in the form of key-value pairs. Therefore, according
to the hierarchical multi-domain NSSA model and the
Neo4j data structure, we propose the following modeling
rules:

• Node. The entity or object interacting with the
outside is regarded as a node. For easy of processing
and data analysis, all the objects that are related to
other nodes are regarded as a single node, and we
assign the node the name of the entity or object.

• Label. Each node can have one or more labels, so
when a node belongs to a certain domain or some
domains, we use the name of the domain or these
domains as the node label. At the same time, we can
also add the category labels that the node belongs to
for managing query, and label names are all capital
letters.

• Property. Property is the information of a node that
does not interact with other nodes. We regard the
name of the node and the metadata of some
necessary entity or object as properties. Property is
represented as one or more key-value pairs.

• Relationship. The relationship is the connection
between different nodes, such as communication,
subordination, and connection. There can be one or
more different directed relationships between the

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 5 of 12

nodes, and the start node and the end node cannot be
null. Although each relationship can contain one or
more properties, it can only have one type, and the
name of the relationship type can only be capital
letters.

3.3 The details of the NSSA data storage method
In the hierarchical multi-domain NSSA model, we store
the data in a graph database Neo4j, and the storage
method is described as follows:

• Network topology domain. At the basic security
layer, the network topology domain is constructed on
the basis of the corresponding network topology in
the organization. The devices in the network
topology such as the communication device, the
security device, the server, and the user terminal are
taken as a node of the graph database. The properties
of the device which do not communicate with other
nodes are used as the property of the nodes in the
graph database, such as device name, model, and
other information. Similarly, the properties that
communicate with other nodes in the device are
treated as a node respectively, such as the open port
of the device, IP address, operating system, and so on.
The device port consists of the device abbreviation
and the port number, for example, port 5 of the
switch means SW5. These abstracted nodes are
connected to device nodes by the relationship in the
graph database. Besides, the links between the various
device nodes are transformed into “relationships” in
the graph database, and we add in “topology” as a
public label for these nodes to demarcate the area
which the limited nodes are located.

• System service domain. Combining with the network
topology domain, the system service domain takes
the operating system, the open port, the running
service, and the application as a node in the graph
database, which is connected with each other by
relationship in the graph database. Furthermore, they
are added the label “system service” to divide the
region in where the nodes are located.

• Personnel management domain. The departments
and groups in the organization are abstracted to a
node by the personnel management domain
according to the personnel management information.
Besides, each person is treated as a node, their name,
gender, and age, and other information are regarded
as the properties of the node. The person node is
connected to the department or group node through
the relationship in the graph database. At the same
time, the computer or server used or managed by the
person is regarded as a node, which is connected to
personnel nodes through the relationship in the

graph database. Finally, these nodes are assigned the
label “personal management.”

• Security policy domain. It formulates a series of rules
and security policy on the basis of network security
defense equipment in the network environment;
regards the security device, domain, and interface as a
node in the graph database; and connects each other
with their behaviors and the strategy of relationship.
Besides, the label of security policy is added to these
nodes.

• Dependency domain. In the security analysis layer,
the dependency domain captures corresponding
security dependence on the basis of network topology
and the system service information obtained from
basic security layer. Dependencies consist of
operating systems, network services, applications,
services, and programming languages, and they are
abstracted as node. Further, the specific content of
these categories is abstracted as a node, for example,
in the operation system, the Windows systems, Linux
systems, Mac OS, Android, ios, etc, are abstracted as
a node respectively. Then, we can abstract the
CentOS and Ubuntu as a node in the Linux system.
They can be abstracted in this way layer-by-layer, and
they are connected by relationship. Besides, nodes
that contain vulnerabilities are divided into CVE
vulnerabilities, SVSS systems, levels, and solutions,
then they are set the same label as “dependency.”

• Network security domain. Network security domain
is constructed on the basis of the security events and
abnormal information based on the network and the
host. It presents the network security events by the
way of graph database representation and regards
each attack source as a separate node. Besides, the
destination source is regarded as the existing node,
the attack means are connected as relationship, and
the timestamp and the hazard level act as the node
attributes.

• User security domain. The user security domain
utilizes the graph database to describe the user’s
behaviors which exceed the security threshold. Then,
it associates the user with the machine, and it also
associates the abnormal event with the timestamp.
Besides, it connects personnel nodes which belong to
the personnel management domain with the device
nodes in the network topology through operation
behavior.

• Threat intelligence domain. We build the threat
intelligence domain on the basis of the STIX threat
intelligence standard and abstract the attacker and the
victim as a node of the graph database respectively.
The attack technique is regarded as the connection of
the graph database relationship, and the attack
behavior is described as the property of the node.

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 6 of 12

4 Query analysis of graph database-based NSSA
data

4.1 Experiment environment
In order to verify the effectiveness of the proposed NSSA
model and data storage method and minimize unneces-
sary overhead simultaneously, we build a sparrow network
environment as shown in Fig. 2. The network topology
contains four network segments: campus network, office
network, DMZ, and internal application service area. In
order to simulate the office environment, we deploy three
PCs in the office network. In the DMZ, multiple virtual
machines are deployed in two servers to simulate multiple
types of network services, such as DNS service, Web ser-
vice, FTP service, etc., which provide the permission for
external network to access this area. The internal appli-
cation service area deploys several types of application
services in two servers, including database service, FTP
service, and so on.
To obtain the NSSA data, we set up five data collection

points A, B, C, D, and E in the network environment as

shown in the Fig. 2 and simulate the real network attack
methods. To analyze and display the experiment results,
we simplify the data content and quantity. More precisely,
only a proportion of the network topology information,
personnel management information, vulnerability data,
and the attack data are imported into the graph database
Neo4j according to the modeling rules. When the graph
database-based NSSA data is imported, it can query anal-
ysis according to different requirements. We mainly use
Cypher query language to query in the Neo4j web man-
agement console, whose query language is simple and
results can be visualized directly.

4.2 Network topology query analysis
As we have added the topology label to all the devices and
interfaces in the network topology, then we only need to
execute the following query:
MATCH (n: Topology) RETURN n
We can get the network topology shown in Fig. 3,

and we can see the devices and the relationship among

Fig. 2 The network topology of the experiment environment. This figure shows network topology of the experiment environment, which includes
five data collection points A, B, C, D, and E in the network environment

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 7 of 12

Fig. 3 The network topology query results. This figure shows the network topology after we execute the following query: MATCH (n: Topology)
RETURN n. So, we can see the devices and the relationship among them directly

them directly. The network environment in the model
is connected by the Internet, passes the firewalls, and
reaches routers, consisting of three regions: DMZ, office,
and DC, where each area contains several servers
or PCs.

4.3 Network vulnerability query analysis
Network vulnerability data refers to the vulnerability
information that exists in the implementation of the hard-
ware, the security configuration strategy of the software,
and the design of the protocol. Attackers usually use these
vulnerabilities to achieve illegal invasion and destruction.
It is very important to know the loopholes in the net-
work environment and then to repair and prevent them
from happening. To query the vulnerabilities and depen-
dency information in the network, we need to execute the
following query statement:
MATCH (n: Dependency) RETURN n
Subsequently, we can get the vulnerability information

and web server dependencies in the Ubuntu systemwhose
version is 14.04, as shown in Fig. 4.

4.4 Internal attack query analysis
In the experiment, we can find that most of the attacks are
originated from a host whose IP address is “192.168.5.14.”
Therefore, we can query the equipment and personnel
information related to this IP in the graph database.
Firstly, we find the device and the area of this IP by using
the following query statements:
MATCH (e: Employee) - [] - (n ip: “192.168.5.14”) - [] -

(z: Zone) RETURN e, n, z
Then, we obtain the result as shown in Fig. 5.

From Fig. 5, we can see that the host device with IP
“192168.5.14” is PC3, the user of the host is Eric, and the
domains of the IP address is Office.
To get more detailed information about the user Eric,

we then click the “Table” option, and the result is shown
in Fig. 6. From Fig. 6, we can find that the user Eric is a
programmer, and he is waiting a post.
Subsequently, we execute the following query command

to check Eric’s relationship network:
MATCH r = (n name: “Eric”) - [* 1..3] - (e: Employee)

RETURN r

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 8 of 12

Fig. 4 The results of vulnerability and dependency query. This figure shows the vulnerability information and web server dependencies in the
Ubuntu system whose version is 14.04 after we execute the following query: MATCH (n: Dependency) RETURN n

In this query command, we set Eric as the starting node,
and the query depth is from one to three. Through this
query, we can find out all the people who have connection
with Eric. And the query result is shown in Fig. 7.
From the Fig. 7, we can see clearly that Eric was fired by

Bob. Given that Eric is waiting for a post, we can specu-
late that Eric is likely to attack the network deliberately for
revenge or stealing confidential data. Besides, Frank and
Cindy are friends of Eric; therefore, they also should be
closely monitored.

4.5 External attack query analysis
In the experiment, it is found that the outside interacted
frequently with the device whose IP is “192.168.5.8” by
the network traffic monitoring. We suspect that there are
Botnet attacks. Therefore, we perform query command:
MATCH r = (n {name: “192.168.5.8”}) - [:LESTEN-

ING_ON] - (p1: Port) - [:CONNECTS_TO] - (p2: Port) -
[:LESTENING_ON] - (m: IP) RETURN r LIMIT 100
And the query results are shown in Fig. 8. We can see

that other IP addresses are connected to port 25 which
is open for Simple Mail Transfer Protocol (SMTP) for

Fig. 5 The results of the IP query. This figure shows the result of the
following IP query statements: MATCH (e: Employee) - [] - (n ip:
“192.168.5.14”) - [] - (z: Zone) RETURN e, n, z. We can see that the host
device with IP “192168.5.14” is PC3, the user of the host is Eric, and the
domains of the IP address is office

sending email. Hackers usually use port 25 to find SMTP
servers and conduct attacks.

5 Query analysis of graph database-based NSSA
data

In the query efficiency experiment, we use the data of
Neo4j official sandbox network and ITmanagement as the
experiment data. On the one hand, this data can be pro-
cessed conveniently because it is well formatted. On the
other hand, it can be easy for us to make the query mode
and result in multiple databases to be the same since the
data volume is moderate. Therefore, we use this data to
conduct the query analysis comparison experiments. The
database contains a total of 68,122 nodes, 98,610 labels,
150,732 relationships, and 121,098 properties. And the
datacenter contains four zones, and each zone contains its
independent network and ten racks. Every rack has differ-
ent types of servers, which are connected to the switches
by interfaces.
After importing the network and IT management data

from the Neo4j sandbox of the GitHub into our local
Neo4j graph database, the data in the local Neo4j graph
database is exported to a CSV file by using neo4j-shell-
tools. Each piece of data is exported in the form of
“node-relationship-node”. Each node contains node id,
label, and various attribute fields. The relationships are
related to the relational type, which connect the two con-
joint nodes. The CSV file is imported into the MySQL
database by the LOADDATA INFILE function ofMySQL.
Besides, it is imported into the MongoDB database by the
mongoimport function of the MongoDB.
In the experiment, we use a DELL PowerEdge T130

server, which is configured with 4 core Intel(R) Xeon(R)
CPU E3 processors, 32Gbmemory, 4TB hard disk, and the

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 9 of 12

Fig. 6 The detailed information of Eric. To get more detailed information about the user Eric, we then click the “Table” option, and the result is
shown in Fig. 6. From Fig. 6, we can find that the user Eric is a programmer, and he is waiting a post

operation system is Ubuntu14.04. We compare the query
efficiency of single query, count query, and traversal query
on graph database Neo4j, relational database MySQL, and
non-relational database MongoDB, respectively. During
the experiment, the databases are restarted before each
query. To make the results more accurate, we repeat each
query five times, and then, we compute the average value
as the final result.

5.1 Experiment results
Figure 9 shows the running time of single query on Neo4j,
MySQL, and MongoDB respectively, with query depth
varying from 1 to 5. From Fig. 9, we can see that for
MySQL with query depth 1 to 3, the time spent basi-
cally remained the same. But when the query depth
increases to 4, the time spent significantly increased,
which is an order of magnitude higher than that of
MongoDB and Neo4j. MongoDB takes more time than
Noe4j when query depth increases from 2 to 5. The over-
all Neo4j query time is the smallest, and the query time
remains basically the same when query depth increases
from 3 to 5.
Figure 10 shows the results of traverse query on Neo4j,

MySQL, and MongoDB, respectively. Here, the traverse
query only returns the number of the result. As can be

seen from Fig. 10, when the query depth is 2, the query
time of MySQL is obviously higher than that of neo4j
and MongoDB. The Neo4j is superior to MongoDB. More
precisely, when the query depth is less than three, per-
formance gain of Neo4j is not very significant compared
with MongoDB. However, once the query depth exceeds
three, Neo4j outperforms MongoDB tremendously when
processing traverse query.
We also investigate performance of Neo4j with respect

to single query, count query, and traversal query, and the
experiment results are given in Fig. 11. The results show
that single query, count query, and traversal query have
similar running time when the query depth increases from
1 to 4. When query depth is 5 and the number of returned
data items is fixed to 200, the running time of traversal
query is obviously higher than that of single query and
count query, which indicates that the Neo4j affects the
performance of the traversal query with multi-layers and
multi-result.

5.2 Complexity analysis
OurNSSAmodel is based onNeo4j graph database, which
is a complex yet efficient database management system
for graph data. Neo4j uses Lucene index for its internal
data indexing, and the time complexity of Neo4j depends

Fig. 7 Eric personnel relations query results. This figure shows the result of the following query statements: MATCH r = (n name: “Eric”) - [* 1..3] - (e:
Employee) RETURN r. In this query command, we set Eric as the starting node, and the query depth is from one to three. Through this query, we can
find out all the people who have connection with Eric

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 10 of 12

Fig. 8 The external attack query results. The query results after we perform query command: MATCH r = (n name: “192.168.5.8’’) - [:LESTENING ON] -
(p1: Port) - [:CONNECTS TO] - (p2: Port) - [:LESTENING ON] - (m: IP) RETURN r LIMIT 100. We can see that other IP addresses are connected to port 25
which is open for Simple Mail Transfer Protocol (SMTP) for sending email

on the type of query and Lucene index. Generally, for
looking up an entity in the Neo4j database, let us say the
“match” query, the time complexity is O(log(n)), where
n is the number of total entities in the database. For
other type of queries, for example the shortest path query,

since Neo4j employs standard Dijkstra’s algorithm and A∗
search algorithm, the time complexity is O

(
V 2), where

V is the number of nodes in the graph database. Hence,
our NSSA model has the same time complexity as that
of Neo4j.

Fig. 9 The results of single query. Figure 9 shows the running time of single query on Neo4j, MySQL, and MongoDB respectively, with query depth
varying from 1 to 5. From Fig. 9, we can see that for MySQL with query depth 1 to 3, the time spent basically remained the same. But when the query
depth increases to 4, the time spent significantly increased, which is an order of magnitude higher than that of MongoDB and Neo4j. MongoDB
takes more time than Noe4j when query depth increases from 2 to 5. The overall Neo4j query time is the smallest, and the query time remains
basically the same when query depth increases from 3 to 5

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 11 of 12

Fig. 10 The results of traversal query. Figure 10 shows the results of traverse query on Neo4j, MySQL, and MongoDB, respectively. Here, the traverse
query only returns the number of the result. As can be seen from Fig. 10, when the query depth is 2, the query time of MySQL is obviously higher
than that of neo4j and MongoDB. The Neo4j is superior to MongoDB

6 Conclusion
In this paper, we propose a graph database-based hierar-
chical multi-domain NSSA data storage method. In our
method, we use graph database Neo4j to store NSSA data,
which cannot only query the basic network information

easily, but also can query the internal and external attacks
conveniently. Finally, we evaluate the proposed method
through extensive experiments. Compared with MySQL
andMongoDB, the graph database Neo4j is more efficient
when querying network vulnerability.

Fig. 11 The results of the Neo4j database query. The investigate performance of Neo4j with respect to single query, count query, traversal query,
and the experiment results. The results show that single query, count query, and traversal query have similar running time when the query depth
increases from 1 to 4. When query depth is 5 and the number of returned data items is fixed to 200, the running time of traversal query is obviously
higher than that of single query and count query, which indicates that the Neo4j affects the performance of the traversal query with multi-layers
and multi-result

Tao et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:294 Page 12 of 12

Abbreviations
ACID: Atomicity, Consistency, Isolation and durability; CCNx: Content Centric
Networking; CIMGDB: Common Information Mode Oriented Graph Database;
CRUD: Create, read, update, and delete; CVE: Common vulnerabilities and
exposures; D-S: Dempster-Shafer envidence theory; DMZ: Demilitarized cone;
NSSA: Network Security Situation Awareness; SA-ISRM: Situation Aware ISRM;
STIX: Structured Threat Information eXpression ; SVSS: Sacramento Valley
Soaring Society

Funding
This work was supported by the National Natural Science Foundation of China
(No. 61363006), the Open Projects of State Key Laboratory of Integrated
Service Networks (ISN) of Xidian University (No. ISN19-13), the National Natural
Science Foundation of Guangxi (No. 2016GXNSFAA380098), and the Science
and Technology Program of Guangxi (No. AB17195045).

Authors’ contributions
XT, YL, and FZ contributed to the conception and algorithm design of the
study. XT, YL, and YW contributed to the design of experiment scheme. XT, YL,
and CY contributed to the analysis of experimental data and approved the
final manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Guangxi Colleges and Universities Key Laboratory of Cloud Computing and
Complex Systems, Guilin University of Electronic Technology, Guilin, China.
2State Key Laboratory of Integrated Service Networks (ISN), Xidian University,
Xi’an, China. 3Guangxi Cooperative Innovation Center of cloud computing and
Big Data, Guilin University of Electronic Technology, Guilin, China.

Received: 20 August 2018 Accepted: 22 November 2018

References
1. Z. Cai, X. Zheng, in IEEE Transactions on Network Science and Engineering. A

private and efficient mechanism for data uploading in smart
cyber-physical systems (IEEE, 2018)

2. Z. Cai, Z. He, X. Guan, Li Y., in IEEE Transactions onDependable and Secure
Computing. Collective data-sanitization for preventing sensitive
information inference attacks in social networks (IEEE, 2018), pp. 577–590

3. M.R. Endsley, Toward a theory of situation awareness in dynamic systems.
Hum. Factors. 37, 32–64 (1995)

4. Y. Zhang, S. Huang, S. Guo, J. Zhu, Multi-sensor data fusion for cyber
security situation awareness. Procedia Environ Sci. 10, 1029–1034 (2011)

5. J. Webb, A. Ahmad, S. B. Maynard, G. Shanks, A situation awareness model
for information security risk management. Comput. Secur. 44, 1–15 (2014)

6. Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. Nguyen, W. Yu, C. Lu, A cloud
computing based network monitoring and threat detection system for
critical infrastructures. Big Data Res. 3, 10–23 (2016)

7. B.W. Masduki, K. Ramli, M. Salman, in International Conference on Smart
Cities, Automation & Intelligent Computing Systems (ICON-SONICS).
Leverage intrusion detection system framework for cyber situational
awareness system (IEEE, Yogyakarta, 2017), pp. 64–69

8. F. Chen, Y. Zhang, S. U. Jin-Shu, W. B. Han, Two formal analyses of attack
graphs. J. Softw. 21, 49–63 (2010)

9. C. Constantinov, C.M. Poteras, M.L. Mocanu, in 17th International
Carpathian Control Conference (ICCC). Performing real-time social
recommendations on a highly-available graph database cluster (IEEE,
Tatranska Lomnica, 2016), pp. 116–121

10. H. Gu, Z. Han, J. Xu, Framework of parallel layout algorithm based on
large-scale social networks. Comput. Appl. Softw. 34, 73–78 (2017)

11. F. Zarrinkalam, M. Kahani, Paydar S., in International Symposium on
Telecommunications. Using graph database for file recommendation in
pad social network (IEEE, Tehran, 2015), pp. 470–475

12. A.A. Patel, J.N. Dharwa, in International Conference on ICT in Business
Industry & Government (ICTBIG). An integrated hybrid recommendation
model using graph database (IEEE, Indore, 2016), pp. 1–5

13. G. Ravikumar, S.A. Khaparde, A common information model oriented
graph database framework for power systems. IEEE Trans. Power Syst. 32,
2560–2569 (2017)

14. B. Kan, W. Zhu, G. Liu, X. Chen, D. Shi, W. Yu, Topology modeling and
analysis of a power grid network using a graph database. Int. J. Comput.
Intell. Syst. 10, 1355–1363 (2017)

15. M.S. Barik, Mazumdar C., in International Conference on Security in
Computer Networks and Distributed Systems. A graph data model for attack
graph generation and analysis (Springer, Berlin, 2014), pp. 239–250

16. S. Noel, E. Harley, K.H. Tam, G. Gyor, Big-data architecture for cyber attack
graphs representing security relationships in nosql graph databases.
(Citeseer, 2015)

17. M.S. Barik, C. Mazumdar, A. Gupta, in International Conference on
Information Systems Security. ICISS 2016. Lecture Notes in Computer
Science, vol 10063., ed. by I. Ray, M. Gaur, M. Conti, D. Sanghi, and V.
Kamakoti. Network vulnerability analysis using a constrained graph data
model (Springer, Cham, 2016), pp. 263–282

18. A. K. TK, J.P. Thomas, S. Parepally, An efficient and secure information
retrieval framework for content centric networks. J. Parallel Distrib.
Comput. 104, 223–233 (2017)

19. Z. Zhang, G. Pang, J. Hu, L. Su, Neo4j authoritative guide. (Tsinghua
University Press, 2017)

20. L. Zheng, L. Zhou, X. Zhao, L. Liao, W. Liu, in International Conference on
Information Science and Control Engineering. The spatio-temporal data
modeling and application based on graph database (IEEE, Changsha,
2017), pp. 741–746

21. I. Robinson, J. Webber, E. Eifrem, Graph databases. (O’Reilly Media, Inc.,
2013)

22. J. Webber, in Proceedings of the 3rd annual conference on Systems,
programming, and applications: software for humanity. A programmatic
introduction to Neo4j (ACM, 2012), pp. 217–218

23. H. Huang, Z. Dong, in Communications and Networks, International
Conference on Consumer Electronics. Research on architecture and query
performance based on distributed graph database neo4j (IEEE, Xianning,
2013), pp. 533–536

24. A. Sharma, S. Batra, in Fifth International Conference on Advances in
Computing and Communications. Enhancing the accuracy of movie
recommendation system based on probabilistic data structure and graph
database (IEEE, Kochi, 2016), pp. 41–45

25. C.I. Johnpaul, T. Mathew, in International Conference on Advanced
Computing and Communication Systems. A Cypher query based NoSQL
data mining on protein datasets using Neo4j graph database (IEEE, 2017),
pp. 1–6

26. A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j in action.
(Manning Publications Co., 2014)

	Abstract
	Keywords

	Introduction
	Our contributions
	Related work
	Organization

	Preliminaries
	Graph database
	Neo4j graph database
	Neo4j traversal mode

	Hierarchical multi-domain NSSA data storage method
	Hierarchical multi-domain NSSA model
	Graph database-based data storage rules
	The details of the NSSA data storage method

	Query analysis of graph database-based NSSA data
	Experiment environment
	Network topology query analysis
	Network vulnerability query analysis
	Internal attack query analysis
	External attack query analysis

	Query analysis of graph database-based NSSA data
	Experiment results
	Complexity analysis

	Conclusion
	Abbreviations
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

