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Abstract

In the past few years, a large variety of IoT applications has been witnessed by fast proliferation of IoT devices (e.g.,
environment surveillance devices, wearable devices, city-wide NB-IoT devices). However, launching data collection
from these mass IoT devices raises a challenge due to limited computation, storage, bandwidth, and energy support.
Existing solutions either rely on traditional data gathering methods by relaying data from each node to the sink, which
keep data unaltered but suffering from costly communication, or tackle the spacial data in a proper basis to compress
effectively in order to reduce the magnitude of data to be collected, which implicitly assumes the sparsity of the data
and inevitably may result in a poor data recovery on account of the risk of sparsity violation.
Note that these data collection approaches focus on either the fidelity or the magnitude of data, which can solve
either problem well but never both simultaneously. This paper presents a new attempt to tackle both problems at the
same time from theoretical design to practical experiments and validate in real environmental datasets. Specifically,
we exploit data correlation at both temporal and spatial domains, then provide a cross-domain basis to collect data
and a low-rank matrix recovery design to recover the data. To evaluate our method, we conduct extensive
experimental study with real datasets. The results indicate that the recovered data generally achieve SNR 10 times
(10 db) better than compressive sensing method, while the communication cost is kept the same.
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1 Introduction
As Internet-of-Things (IoT) applications are proliferating
rapidly in recent years, the vastly distributed IoT devices
and the resultant large volume of sensing data attract lots
of research effort and have triggered a wide range of appli-
cations, such as smart city, transportation, and agricul-
ture, owing to its capability of completing complex social
and geographical sensing applications. Such social and
geographical sensing usually requires large amounts of
participants (usually IoT devices) to sense the surrounding
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environment and collect data from the sensing devices to a
data sink due to limited computation, storage, and energy
support.
Due to the scale of mass data generated in IoT net-

works, it is difficult to continuously gather the origi-
nal data from the network, since such collection usually
requires considerable effort of communication and stor-
age at intermediate nodes. A traditional way of solving
this problem includes wavelet-based collaborative aggre-
gation [1], cluster-based aggregation and compression
[2, 3], and distributed source coding [4, 5]. All of them
utilize the spatial correlation of device readings among
device nodes. But they may meet robustness issues when
dealing with cross-domain (temporal and spatial) event
readings and behave limited capacity in compression.
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In recent years, it is suggested that compressed sensing
(CS) may benefit the compression in data aggregation
scenarios. It avoids introducing excessive computational,
communication, and storage overheads at each device.
Therefore, it meets the capacity limitation at each sensing
device and is viewed as a promising technology for data
gathering in IoT networks.
However, compressive sensing is based on constant

sparsity, which means a stable/fixed transform basis
(though unnecessary to known) is required according
to prior information of sensed data. Such a situation
hardly holds in real cases, and data with changing spar-
sity would impact the recovery quality significantly. In
order to address this problem, Wang et al. [13] pro-
posed an adaptive data gathering scheme based on CS.
The “adaptive” here has twofold meaning: for one, the
CS reconstruction becomes adaptive to the sensed data,
which is accomplished by the adjustment of autoregres-
sive (AR) parameters in the objective function, and for
the other, the number of measurements required to the
sensed data is turned adaptively according to the variation
of data. To further deal with the varied sensing data,Wang
et al. suggested that each time when the reconstruction
is accomplished at sink node, the result is approximately
evaluated and forms a feedback to the device nodes. The
intuition here is that the temporal correlation between
historically reconstructed data could help estimate cur-
rent reconstruction result at sink node. It is notable that
compression of original readings with CS-based method
[6–8] or matrix completion-based method [9, 10] will
reduce the quality of recovered data at sink node and rout-
ing the raw data to sink to preserve the fidelity brings
considerable overhead. There is a conflict between high
compression ratio and high fidelity.
Data gathering and recovery with event readings is

another problem studied in compressive sensing-based
data gathering. A well-known method to tackle this prob-
lem is to decompose data d into dn + dα , assuming dα

is sparse in time domain since the abnormal readings are
usually sporadic. However, when environment changes
occur, it may result in a significant amount of readings
beginning to change, which would further make dα not
sparse in spatial domain. Besides, though dn is sparse
in spatial domain under a proper basis and dα is sparse
in time domain, they are not necessarily sparse at the
same time under the same basis. Therefore, it is doubt-
ful that the sparsity of d could preserve cross time and
space domain. Furthermore, the proper basis may vary in
accordance with different events.
In this paper, we consider the temporal and spatial

correlation of the sensed data and provide a low-rank
matrix recovery-based data aggregation design, which
could compress the data and address the event data gath-
ering problem at the same time. Compared with the

existent work of data gathering in device networks, our
approach has the following contributions:

• In IoT sensing and data aggregation scenarios, note
that either the fidelity problem or the magnitude
problem can be solved well but never both
simultaneously. This paper presents a new attempt to
tackle both problems at the same time in large-scale
IoT networks with diverse time/space-scale events
and reduce global-scale communication cost without
introducing intensive computation or complicated
transmissions at each IoT device.

• The experiments of this paper on a real
environmental IoT sensing network observe that
constant sparsity hardly holds in real cases with
diverse time/space-scale events, while low-rank
property may be true. This observation may provide a
fresh vision for research in both compressive
sampling applications and IoT sensing and data
aggregation scenarios. This paper further generalizes
the low-rank-based optimization design to a nuclear
norm-based optimization design, to make the
proposed approach more general and robust.

• Theoretical analysis indicates that our matrix
recovery-based method is robust over diverse
time/space-scale event readings. The extensive
experimental results show that event readings are
almost kept unaltered under the proposed design and
our method outperforms typical compressive sensing
[11] in terms of SNR by 10 times (10 db) generally in
the meanwhile.

This paper is organized as follows. Section 2 intro-
duces the preliminaries and the network model. Section 3
proposes the data gathering and recovery design.
Section 4 analyzes communication overhead of the pro-
posed method with comparison to compressive sensing.
Section 5 presents the experimental results with real envi-
ronmental IoT sensing datasets from [12]. Then, we sum-
marize related work in Section 6. Finally, we give out
the discussion in Section 7 and conclude this paper in
Section 8.

2 Preliminaries and assumptions
2.1 Matrix recovery
Let X denote the original data, where X is aM×N matrix
and is no longer to be sparse even in a proper basis (differ-
ent from compressive sensing). Let rank(X) = r, where r
is assumed to be much smaller thanmin{M,N}.
According to [13], in order to recover X from a lin-

ear combinations of X ij, the number of the combinations
needed is no larger than cr(M+N), where c is a constant.
LetA denote a linear map from RM×N space to Rp space;

we have the following optimization problem:
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min
X

||X||∗ s.t.AX = b (1)

where b is the vector, and || · ||∗ denotes the nuclear
norm (the sum of σii in SVD decomposition). Note that
we replace the rank (the number of the nonzero singular
values) with the nuclear norm (the sum of the singu-
lar values), which makes the problem become a convex
optimization problem and be solvable if p ≥ Cn5/4rlogn
(where n = max(M,N) and C is a constant) [13]. Consid-
ering noisymeasurements, we furthermodify the problem
in the following format:

min
X

μ||X||∗ + ||AX − b||L2 s.t.A(X) = b (2)

2.2 Network model
We consider a participatory IoT sensing network in which
a base station (BS) continuously collects data from par-
ticipatory IoT devices. Due to the scale of mass data and
the limited ability in computation, storage, bandwidth,
and energy at each device, these devices need to com-
press data with light computation overhead before data
transmission. Suppose there are N resource-constrained
IoT devices in the network, whose positions can be deter-
mined after deployment via a self-positioning mechanism
such as those proposed in [14–16]. Then, the data col-
lection path could be predetermined by the base station
and be aware by each device. We further assume that
the clocks of all nodes are loosely synchronized [17–19].
In particular, t1, t2, · · · , ti, · · · , tj, · · · are used to represent
the time instants in the network, where ti < tj given i < j,
i, j ∈ Z+. Every time instance, a device generates a read-
ing.N (u) is denoted as the n nearest neighbors of an open
neighborhood of u. Note that N (u) could be the one-hop
neighborhood or any neighboring area containing more
nodes.
In this paper, we assume that participatory IoT devices

follow a semi-honest model [20]. Specifically speaking,
they are honest and follow the protocol properly except
that they may record intermediate results. We assume
that the messages are securely transmitted within the net-
work, which can be achieved via conventional symmetric
encryption and key distribution schemes.

3 Temporal-spatial compressive sampling design
3.1 Problem formulation
Given M time instances and N devices in the network,
the original data in the network can be represented by a
m×nmatrix X, where each row represents the readings in
the network at a time instant and each column represents
the readings of an IoT device at a different time instant.
X ij(1 ≤ i ≤ M, 1 ≤ j ≤ N) denotes the reading of each
node j at time instant ti.
Let A denote a linear map from RM×N space to

Rp space and vec denote a linear map to transform a

matrix to a vector by overlaying one column on another;
we have

A(X) = � · vec(X)

where � is a p × MN matrix. Let � be a random matrix
satisfying the RIP condition [21]. Before deployment, each
device is equipped with a pseudo-random number gen-
erator. Once the device produces a reading at some time
instance, the pseudo-random number generator will gen-
erate a random vector of length p with the combination
of current time instance and the device’s ID as random
seed. The elements of this random vector is i.i.d. sampled
from a Gaussian distribution of mean 0 and variance 1/p.
Note that this pseudo-random number generation at each
device could be reproduced by the base station by using
the same generator.
p, the dimension of A, means the number of elements

(namely the combinations) to recover X. Typically, p
should be not less than cr(3m + 3n − 5r) [13]. There-
fore, the problem can be formulated as the following
optimization problem:

min
X∈RM×N

1
2
||A(X) − b||2F + μ||X||∗ s.t.AX = b (3)

where the first part is for noise and the second part is for
low rank.

Remark 1 In IoT networks, devices may produce erro-
neous readings due to noisy environment or error-prone
hardware. The erroneous readings usually occur at spo-
radic time and locations and thusmay have few impacts on
the data sparsity of the network. Thus, outlier/abnormal
reading recovery/detection could still work in compres-
sive sensing-based data gathering. However, device mea-
surements on the same event usually have strong inter-
correlations and geographically concentrated in a group
of devices in close proximity. Such events may spread in
diverse time and space scale and result in dynamic sparsity
of the data, which would further violate the assumption of
constant sparsity in compressive sensing and thus lead to
poor recovery.

Remark 2 Given N M − dim signal vectors generated
from N devices within M time instances, a good basis to
make these vectors sparse may not be easy to find. Inter-
estingly, [22] has analyzed different sets of data from two
independent device network testbeds. The results indicate
that the N×Mdim data matrix may be approximately low
rank under various scenarios under investigation. There-
fore, suchN×M temporal-spatial signal gathering problem
with diverse scale event data that cannot be well addressed
by CS method could be tackled under the low-rank frame-
work1.
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3.2 Path along compressive collection
In this paper, we provide a generalization of current
data gathering methods on temporal-spatial signals with
diverse scale events, during which device readings are
compressively collected along the relay paths, e.g., chain-
type or mesh topology, to the sink.
At each device sj, given the reading produced from sj

at time instance t1, sj generates a random vector �1j of
length p, with time instance t1 and its ID sj as the seed, and
computes the vector X1j�1j. At the next time instance t2,
sj generates a random vector �2j, computes X2j�2j, and
adds it to the previous vector X1j�1j. At time instance
tM, sj computes XMj�Mj and would have the summation

Sj =
M∑

i=1
X ij�ij.

In the network, each device sj continuously updates its
vector sum Sj till time instance tM. After that, device sj
relays the vector Sj to the next device si. Then, si adds Sj
with its vector sum Si and forwards Si + Sj to the next
device. After the collection along the relay paths, the sink

receives
M∑

i=1
X ij�ij.

Remark 3 During data gathering, each node sends out
only one vector of fixed length along the collection path,
regardless of the distance to the sink (The property of the
fixed-length vector will be discussed in Section 4).

Considering event data, recall that the row of data
matrix X (the signal in the network) represents the data
acquired at some time instance from all devices and each
column of matrix X represents the data got from one
device at different time instances.
Outlier readings could come from the internal errors

at error-prone devices, for example, noise, systematic
errors, or caused by external events due to environmental
changes. Former internal errors are often sparse in spatial
domain, while the latter readings are usually low rank in
time domain. They both keep sparse at the corresponding
domain but together may lead to dynamic changes of data
sparsity.
Let matrix X be decomposed into two parts, the normal

one and the abnormal one: X = Xn + Xs. We could have:

AX = A (Xn + Xs)

= A·[I, I] (Xn,Xs)
T

=[A,A] [Xn,Xs]T s.t.A(X) = b
(4)

Based on Eq. 1, [A,A] is a new linear map. The formu-
lated problem could be solved in the framework of matrix
recovery. That is, given the observation vector y ∈ Rp, the
original data matrix X∗ could be recovered in R2M×N .

3.3 A basic design of data recovery
This section provides the generalization of data recov-
ery method from compressive sensing to the realm of
matrix recovery. The advantages of such an extension are
twofold: (1) it exploits the data correlation in both time
and space domains and (2) the diverse scale of event data,
which wouldmute the power of CSmethod due to sparsity
changes, could be tackled with the proposed method.
According to Eqs. 3 and 4, the general form of the prob-

lem could be expressed with the following minimization
problem:

min
X∈Rm×n

1
2
||A(X) − b||2F + μ||X||∗ s.t.A(X) = b (5)

where A(x) = �T(x) given T(·) as the transformation
of a matrix to a vector by overlaying one column of x on
another. � is a p × MN random matrix.
Note that Eq. 3 is the Lasso form of Eq. 2. In relaxed

conditions, its solution is the solution of Eq. 2 [23]. There-
fore, we consider Eq. 3 (Eqs. 3 and 5 are essentially same)
instead of the original problem in Eq. 2.
This problem could be further transformed into the

following form:

min
X∈Rm×n

F(x) � f (x) + P(x) (6)

where f (x) = 1
2 ||A(X) − b||2F and P(x) = μ||X||∗

Note that both parts are convex, but only the first part is
differential while the second part may not. Then, we could
have

∇f (X) = A∗(A(X) − b)

where A∗ is the dual operator of A.
Since A∗(X) = �TX, we have

∇f (X) = A∗(A(X) − b) = �T (�∗T(X) − b)∗

Because∇f is linear, it is Lipschitz continuous. Then, we
could have a positive constant Lf to satisfy the following
inequation:

||∇f (X) − ∇f (Y )||F ≤ Lf ||X − Y ||F ∀X,Y ∈ RM×N

Lemma 1 A rough estimation of Lf
√

MN · max
i

{(
�T�

)2
i )

}
,

where
(
�T�)2i

)2 is the ith column of the matrix �T�.

Proof ||∇f (X) − ∇f (Y )||2F = ||�T (�∗T(X − Y ))||22

Set �T� =
⎛

⎜
⎝

a11 · · · a1,MN
...

...
ap1 · · · ap,MN

⎞

⎟
⎠,
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T(X − Y ) =
⎛

⎜
⎝

x11
...

xMN

⎞

⎟
⎠,

and h = max
i

{(
�T�

)2
i

)
,then

||�T�T(X − Y )||22 =
p∑

j=1

(MN∑

i=1
ajixi

)

≤ h(x1 + . . . + xMN )2

≤ M · N · h(x1 + . . . + xMN )2

= MNh||X − Y ||2F
Thus, Lf ≤ √

MNh.

Remark 4 A much smaller Lf could be found in various
real scenarios and may help converge quickly. The experi-
mental results of this paper show that the Lf could be much
smaller than the rough estimation above, given the matrix
sampled from a Gaussian distribution.

Considering the following quadratic approximation of
F(·) of Eq. 6 at Y :

Qτ (X,Y ) � f (Y )+ < ∇f (Y ),X − Y >

+ τ

2
||X − Y ||2F + P(X)

= τ

2
||X − G||2F + P(X) + f (Y )

− 1
2τ

||∇F(Y )||2F

(7)

where τ > 0 is a given parameter, G = Y − τ−1∇f (Y ).
Since the above function of X is strong convex, it has a

unique global minimizer.
Considering the minimization problem

min
X∈RM×N

τ

2
||X − G||2F + μ||X||∗ (8)

whereG ∈ RM×N . Note that ifG = Y − τ−1A∗(A(Y )−b),
then the above minimization problem is a special case of
Eq. 7 with f (X) = 1

2 ||A(X)−b||22 and P(X) = μ||X||∗ when
we ignore the constant term.
Let Sτ (G) denote the minimizer of (6). According to

[24], we further have

Sτ (G) = U · diag((δ − μ/τ)+) · VT

given the SVD decomposition of G = Y − τ−1A∗(A(Y ) −
b) = U ·diag(δ)·VT . Here, for a given vector x ∈ Rp, we let
x+ = max{x, 0} where the maximum is taken component-
wise.
Based on the accelerated proximal gradient(APG)

design given [13, 24], we further denote t0 = t1 = 1 and
τk = Lf and {Xk}, {Yk}, {tk} as the sequence generated by
APG. For i = 1, 2, 3, · · · , we have

• Step 1: Set Yk = Xk + tk−1−1
tk

(
Xk − Xk−1

)

• Step 2: Set Gk = Yk − (τk)
−1A∗(A(Yk) − b).

Compute Sτk (Gk) from the SVD of Gk
• Step 3: Set Xk+1 = Sτk (Gk)

• Step 4: Set tk+1 = 1+
√

1+4(tk)2
2

Lemma 2 For any μ > 0, the optimal solution X∗ of
Eq. 3 is bounded according to [13, 24]. And ||X||F < χ

where

χ =
{
min

{||b||22/(2μ), ||XLS||∗
}
if A is surjective

||b||22/(2μ) Otherwise
(9)

with XLS = A∗(AA∗)−1b
Based on this lemma, we could reach a deterministic

estimation of the procedure and speed of convergence of
data recovery.
Let {Xk}, {Yk}, {tk} be the sequence generated by APG.

Then, for any k ≥ 1, we could have

F(Xk) − F(X∗) ≤ 2Lf ||X∗ − X0||2F
(k + 1)2

Thus,

F(Xk) − F(X∗) ≤ ε if k ≥
√
2Lf
ε

(||X0||F + χ) − 1.

Let δ(x) denote dist(0, ∂(f (x)) + μ||X||∗) , where δ(x)
represents the convergence speed of data recovery. It is
easy to see that the process naturally stops when δ(x) is
small enough.
Since ||X||∗ is not differential, it may not be easy to com-

pute δ(x). However, there is a good upper bound for δ(x)
provided by APG designs [24].
Given

τk(Gk − Xk+1) = τk(Yk − Xk+1) − ∇f (Yk)
= τk(Yk − Xk+1)

− �T (� · vec(Yk) − b)

Note that

∂(μ||Xk+1||∗) ≥ τk(Gk − Xk+1)

let

Sk+1 � τk(Yk − Xk+1) + ∇f (Xk+1) − ∇f (Yk)
= τk(Yk − Xk+1) + A∗(A(Xk+1) − A(Yk))

= τk(Yk − Xk+1) + �T (� · T(Yk − Xk+1))

we could have

Sk+1 ∈ ∂(f (Xk+1) + μ||Xk+1||∗)
Therefore, we have δ(Xk+1) ≤ ||Sk+1||.
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According to the derivation above, the stopping condi-
tion could be given as follows,

||Sk+1||F
τkmax{1, ||Xk+1||F} ≤ Tol

where Tol is a tolerance defined by user, usually moder-
ately small threshold.

4 Advanced design of data recovery
This section provides a generalization of previous low-
rank-based matrix recovery design to a nuclear-form-
based design. Suppose X0 denotes an M × N matrix
with rank r given the singular value decomposition (SVD)
U�V ∗, whereM ≤ N ,
 is r×r,U isM×r, andV isN×r.
Let subspace T denote the set of matrices of the form

UY ∗ + XV∗, where X (Y ) is an arbitrary M × r (N × r)
matrix.UY ∗ and XV∗ are bothM×N matrices. The span
of UY ∗ and XV∗ have dimension of Mr and Nr, respec-
tively, and the intersection of two spans has dimension of
r2. Therefore,

dT = dim(T) = r(M + N − r)

Let T⊥ denote the subspace of matrices spanned by the
family (xy∗) and x and y denote arbitrary vectors orthog-
onal to U and V , respectively. Note that the spectral
norm || · || is dual to the nuclear norm. We have the
subdifferential of the nuclear norm at X0

∂||X0||∗ = {Z : PT (Z) = UV∗and||PT⊥(Z)|| ≤ 1}
where UV∗ is equal to

√
r under the Euclidean norm.

Theorem 1 Given X0, an arbitrary M × N rank-r-
matrix, and || · ||, the matrix nuclear norm, considering a
Gaussian mapping � with m ≤ c · r(3M + 3N − 5r) for
some c > 1, the recovery is exact with probability at least
1 − −2e(1−c)n/8, where n = max(M,N) [13].

Here the Gaussian mapping � is an M × N random
matrix with i.i.d., zero-mean Gaussian entries with vari-
ance 1/p. It adopts a linear operator where [�(Z)]i =
tr(�∗

i · Z).
By stacking the vector(column) of Z on top of one

another, � could be equivalently written by a p × (MN)

dimensional matrix. Then, we have the dual multiplier

Y = �∗ · �T (�∗
T · �T )−1(UV ∗)

Remark 5 According to this theorem, each device sends
out only one vector of fixed length of cr(3M + 3N − 5r)
along the collection path at the end of time M, with an
overwhelming recovery probability of the original data.

Given p < (M + N − r)r, we could always find two dis-
tinct matrices Z and Z0 of rank at most r with the property
A(Z) = A(Z0), no matter what A is. Let U ∈ RM×r ,V ∈

RN×r be two matrices with orthogonal columns, consider-
ing the linear space of matrices

T = {
UX∗YV ∗ : X ∈ RN×r ,Y ∈ RN∗r}

Note that the dimension of T is r(M + N − r); if p <

(M + N − r)r, there exists Z = UX∗YV ∗ = 0 in T
such that �(Z) = 0, since we have �(UX∗) = �(YV ∗)
for two distinct matrices of rank at most r. Interestingly,
different from the results in compressive sensing, the
number of measurements required is within a constant of
a theoretical lower limit—No extra log factor.
Comparing with compressive sensing (CS)-based data

gathering design, the length of vector sent by each device
at each time instance with CS -based design is O(logN).
Based on recent results on the bounds for low-complexity
recovery models [25], the total amount of vectors col-
lected during all M time instances will be O(MN log(N))

in compressive sensing.
When M is larger than O(N/ log(N)), the proposed

design will exhibit advantage in communication overhead.
When M and N have the same order of magnitude, the
proposed method has similar communication overhead
compared with CS-based method.
Before estimating the recovery error and its upper

bound, we first introduce the restricted isometry property
(RIP):

Definition 1 Let r = 1, 2, . . . , n, the isometry constant
δr of A is the smallest quantity such that

(1 − δr)||X||2F ≤ ||A(X)||22 ≤ (1 + δr)||X||2F
holds for all matrices of rank at most r.

If δr is bounded by a sufficiently small constant between
0 and 1, we say that A satisfies the RIP at rank r .

Theorem 2 Suppose X∗ is the solution of the recovery
method. Given the noise z satisfying ||�∗(z)|| ≤ ε and
||�T(z)||∞ ≤ η, for some ε ≤ η , if δr < 1

3 with r ≤ 2, then
||X − X∗||F ≤ (ε + η)+

Based on this theorem, given a random matrix � prop-
erly chosen from i.i.d. zero-mean Gaussian distribution
with variance 1/p, the error of the proposedmethod could
be bounded under the noise.
Based on the above analysis, we could see that (1) the

vector kept by each device is bounded by cr(3M+3N−5r)
and (2) the communication overhead of the network, i.e.,
the total number of message, is O(Ncr(3M+ 3N − 5r)).
Comparing with the overhead of CS-based data gathering
method, which are M · (2cs logN + s) and MN · (2cs log
N + s), respectively, for low-rank data [25], it is easy
to see that the proposed method could outperform CS-
based data gathering methods in terms of communication
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given a large collection periodM. To compare with matrix
completion-based method, we take STCDG proposed in
[22] as an example under the same assumption that N
nodes are deployed randomly. According to [13], the over-
head of STCDG can be derived as O

(
n5/4N1/2r log n

)

(n = max(M,N)). STCDGmay suffer a much larger over-
head compared with our method under large-scale IoTs.

Remark 6 According to the analysis, the larger the sam-
pling period M at each device, the better the communica-
tion overhead efficiency the proposed method has.

5 Results
To evaluate data recovery quality and robustness of the
proposed method, we conduct experiments on both arti-
ficial datasets and real sensor datasets. Artificial datasets
are constructed by a 100× 100 matrix representing a ran-
dom deployed sensor network of 100 nodes within a 100-h
duration. The real sensor datasets are extracted from
CitySee project [12], which has deployed a large-scale
wireless sensor network consisting of multiple sub-
networks in a urban area in Wuxi, China. Specially, we
compare the proposedmethodwith a compressive sensing
(CS)-based method proposed in [11] on the temperature
and humidity data generated from 55 sensors in 115 h.
The CS-based method proposed in [11] generates sam-

pling matrix randomly and keeps original readings sparse
in DCT domain. To detect abnormal readings, [11]
decomposes the original reading d = d0 + ds where d0
contains the normal readings and ds contains the deviated
values of abnormal readings and constructs a sparse basis
for d = [d0, ds]. The sink reconstructs sensor readings
with linear programming (LP) techniques [26]. We gen-
erate sampling matrix with the same distribution in CS-
based method and our proposed method with sampling
rate about 47% on original readings (115 × 55 matrix).
In data gathering and recovery problem, event read-

ings usually result in dynamic and diverse sparsity changes
in both time and space domains, which may seriously
undermine the foundation of CS-based method during
environment changes. Prior works [6, 27–30] have made
an attempt to tackle data recovery with small-scale event
readings with CS-based methods, e.g., events reported

from several devices brought by device accidents or small-
range environment change. However, when events spread
in large range and various time scales, it is doubtful
whether CS-based data gathering method could deal with
it or not. In this paper, we conduct the experiments to
study the data recovery quality on the data with both
small-range events and large-range events on both CS-
based method and the proposed method.

5.1 Recovery quality and robustness study on data with
large-scale events

As shown in Figs. 1 and 2, the proposed method achieves
high recovery quality with large-range event in Figs. 1c
and 2c. Event readings are recovered almost exactly the
same as the original data in spatial domain. As shown in
Fig. 3b, c, although large-range event leads to dynamic and
diverse scale of sparsity changes and brings more chal-
lenge to data recovery, the proposed method generally
achieves about 10 db better recovery quality than that of
CS-base method. We further confirm the observation in
(1) snapshot in spatial domain and time domain of humid-
ity data with large-range event recovered by the proposed
method and CS-based method at the 5th, 25th, and 50th
nodes in Figs. 4, 5, and 6, respectively, and (2) snapshot in
spatial domain of temperature data with large-range event
at 115 h recovered by MR method and CS-based method
in Fig. 7.
In the meanwhile, CS-based method could not recover

the data as shown in Figs. 1b and 2b. The recovered data
in the event area are almost overwhelmed in the noise
due to the changes of the sparsity foundation of CS-
based method. And the recovery quality of CS method
in other areas (except event area) is affected by event
readings due to the violation of static sparsity. Therefore,
CS-based method has limited recovery capability and less
robustness against large-scale event compared with the
proposed method.

5.2 Recovery quality and robustness study on data with
small-scale events

As shown in Fig. 8, the humidity data with small-range
event is plotted in 3D contour maps. It is obvious that the
proposed method recovers the data in high quality. Event

Fig. 1 3D contour map of humidity data with a large-range event. a Original humidity data with a large-range event. b CS-recovered humidity data
with a large-range event. cMR-recovered humidity data with a large-range event



Zhonghu et al. EURASIP Journal onWireless Communications and Networking         (2019) 2019:18 Page 8 of 15

Fig. 2 3D contour map of temperature data with a large-range event at 115 h. a Original temperature data with a large-range event. b CS-recovered
temperature data with a large-range event. cMR-recovered temperature data with a large-range event

readings are easy to observe by the small hill in the map
of Fig. 8a, c, while CS-based method can only recover the
data to some degree as shown in Fig. 8b, since event read-
ings are recovered in low quality as the recovered data
in the event area are almost overwhelmed in the noise.
What is worse is that some areas are obviously altered due
to the change of sparsity. It is easy to find that CS-based
method provides much worse recovery robustness against
small-scale event compared with the proposed method.
As shown in Fig. 3b, our method generally achieves

about 10 db better recovery quality than CS-based
method under small-scale events. We further confirm the
observation in comparison of snapshot in time domain
of humidity data with small-range event recovered by
the proposed method with that of CS-based method at
arbitrary mode respectively in Fig. 9.

5.3 Recovery quality and robustness study on data
without events

The temperature data and humidity data (original, recov-
ered by CS-based method and recovered by the pro-
posed method) are plotted in a 3D contour map in
Figs. 10 and 11. As shown in Figs. 10c and 11c com-
pared with Figs. 10a and 11a, the contour map of data
recovered by the proposed method makes little change
compared with the original data. As artificial datasets
are generated randomly, the 2D contour map in Fig. 12
gives the comparison more obviously. We also plot

the temperature data and humidity data in 2D con-
tour maps as shown in Figs. 13 and 14 to make the
result more clear. The result is further confirmed on
the study of recovery quality quantitatively measured in
SNR. Assuming Xj ∈ RM denoting the reading of the
jth node and X̂j denoting the recovered reading respec-
tively, SNR of node j in time domain is defined as
SNRj = −20 log10

||Xj−X̂j||2
||Xj||2 . It is shown that our pro-

posed method achieves about 20 db gain in the recovered
data in Fig. 3a. We also measure the recovery perfor-
mance by the root mean square error (RMSE). In time

domain, the RMSE of node j is RMSEj =
√

∑M
i=1 (X̂ij−Xij)

2

M .
In spatial domain, the RMSE of time slot i is RMSEti =√

∑N
j=1 (X̂ij−Xij)

2

N . RMSE measurement on temperature and
humidity data is shown in Figs. 15 and 16 which indicates
that our method brings less error than CS method.
As shown in Fig. 10b, compressive sensing-based

method can recover the temperature data in some degree.
It is interesting to observe that CS-based method could
hardly keep recovery quality stable, while the proposed
method can achieve much better recovery quality as
well as robustness. It can be further confirmed with
the comparison of the SNR result of both methods at
each sensor. The proposedmethod outperforms CS-based
method in SNR with about 10 times (10 db) as shown
in Fig. 3a.

Fig. 3 SNR comparison of MR and CS methods among different datasets. a SNR of MR- and CS- recovered temperature data. b SNR of MR- and
CS-recovered temperature data with a small-range event. c SNR of MR- and CS-recovered temperature data with a large-range event
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Fig. 4 Comparison of MR and CS methods on humidity data with large-range event at the 5th node. a Data recovered by MR at the 5th node.
b Data recovered by CS at the 5th node

Fig. 5 Comparison of MR and CS methods on humidity data with large-range event at the 25th node. a Data recovered by MR at the 25th node.
b Data recovered by CS at the 25th node

Fig. 6 Comparison of MR and CS methods on humidity data with large-range event at the 50th node. a Data recovered by MR at the 50th node.
b Data recovered by CS at the 50th node
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Fig. 7 Comparison of MR and CS methods on temperature data with large-range event. a Data recovered by MR. b Data recovered by CS

Fig. 8 3D contour map of humidity data with a small-range event. a Original humidity data with a small-range event. b CS-recovered humidity data
with a small-range event. cMR-recovered humidity data with a small-range event

Fig. 9 Comparison of MR and CS methods on humidity data with small-range event. a Humidity data recovered by MR at an arbitrary node.
b Humidity data recovered by CS at an arbitrary node

Fig. 10 3D contour map of temperature data. a Original temperature data. b CS-recovered temperature data. cMR-recovered temperature data
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Fig. 11 3D contour map of humidity data. a Original humidity data, b CS-recovered humidity data. cMR-recovered humidity data

6 Related work
In device networks, data gathering usually results
in considerable communication overhead. Traditional
approaches dealing with such problem include distributed
source coding [31, 32], in-network collaborative wavelet
transform [33–35], holistic aggregation [36], and clustered
data aggregation and compression [37, 38]. Though these
approaches to some extent utilize the spatial correlation
of device readings, they lack the ability to support the
recovery of diverse-scale events.
In the past decade, compressive sensing (CS) has gained

increasing attention due to its capacity of sparse signal
sampling and reconstruction [39, 40] and triggered a large
variety of applications, ranging from image processing to
gathering geophysics data [41].
In terms of data gathering, various CS-based

approaches have been proposed to the decentralized
data compression and gathering of networked devices,
aiming to efficiently collect data among a vast number of
distributed nodes [6, 27, 28]. Liu et al. [7] present a novel
compressive data collection scheme for IoT sensing net-
works adopting a power-law decaying data model verified
by real data sets. Zheng et al. [8] propose another method
handling with data gathering in IoT sensing networks by
random walk algorithm. Xie and Jia [42] develop a clus-
tering method that uses hybrid CS for device networks
reducing the number of transmissions significantly. Li
et al. [43] apply compressive sensing technique into data

sampling and acquisition in IoT sensing networks and
Internet of Things (IoT). Mamaghanian et al. [44] pro-
pose the potential of the compressed sensing for signal
acquisition and compression in low complexity ECG data
in wireless body device networks (WBSN). Zhang et al.
[29] propose a compressive sensing-based approach for
sparse target counting and positioning in IoT sensing
networks. Tian and Giannakis [45] utilize compressed
sensing technique for the coarse sensing task of spec-
trum hole identification. In addition, there are several
papers researching in CS for device network focusing on
throughput, routing, video streaming processing, and
sparse event detection in [30, 46–48].
Cheng et al. [49] focus on dealing with continuous

sensed data. Extracting kernel or dominant dataset from
big sensory data in WSN provides another compressing
method in [50, 51].
In recent years, low-rank matrix recovery (LRMR)

extends the vectors’ sparsity to the low rank of matri-
ces, becoming another important method to obtain and
represent data after CS given only incomplete and indi-
rect observations [10]. Keshavan et al. compared the
performance of three matrix completion algorithms based
on low-rank matrix completion with noisy observations
[52]. Zhang et al. [53] present a spatio-temporal com-
pressive sensing framework on Internet traffic matrices.
Yi et al. [9] take advantage of both the low-rankness and
the DCT compactness features improving the recovery

Fig. 12 2D contour map of artificial data. a Original artificial data. b CS-recovered artificial data. cMR-recovered artificial data



Zhonghu et al. EURASIP Journal onWireless Communications and Networking         (2019) 2019:18 Page 12 of 15

Fig. 13 2D contour map of temperature data. a Original temperature data. b CS-recovered temperature data. cMR-recovered temperature data

Fig. 14 2D contour map of artificial data. a Original contour data. b CS-recovered contour data. cMR-recovered contour data

Fig. 15 RMSE comparison of MR and CS methods on temperature data. a RMSE in spatial domain. b RMSE in time domain
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Fig. 16 RMSE comparison of MR and CS methods on humidity data. a RMSE in spatial domain. b RMSE in time domain

accuracy. Compared with prior work based on LRMR,
our method achieves better compression ratio and lower
communication overhead.

7 Discussion
According to the analysis and experimental study, it is
interesting to observe that the proposed method enables
IoT networks the ability of dealing with both fidelity prob-
lem and magnitude problem simultaneously with diverse
time/space-scale events and reduce global-scale commu-
nication cost without intensive edge computation.
The experiments of this paper on a real environmen-

tal IoT sensing network also reveal that constant sparsity
hardly holds in real cases with diverse time/space-scale
events, while low-rank propertymay be true.While events
may violate constant sparsity in compressive sensing and
reduce the recovery quality severely, the recovery quality
of the proposed method still keeps the fidelity of event
readings, which is about 10 times (10 db) better than
typical compressive sensing [11] in terms of SNR. This
observation may provide a fresh vision for research in
both compressive sampling applications and IoT sensing
and data aggregation scenarios.
However, it is worth noting that there is still limitation in

the cases that low rank property does not hold in the net-
work. To deal with this problem, this paper further gener-
alizes the low-rank-based optimization design to a nuclear
norm-based optimization design, to make the proposed
approach more general and robust. In future work, we
would like to focus on enhancing the performance of our
method in IoT networks with events.

8 Conclusion
In this paper, we have shown the effectiveness and valid-
ity of cross-domain matrix recovery in data compression,
gathering, and recovery through the study on environ-
mental IoT sensing datasets. It is obvious that the pro-
posed method could be further extended to a large variety
of other IoT application scenarios. In particular, we have

demonstrated the capacity of the proposedMRCSmethod
dealing with both data fidelity and magnitude problems
simultaneously in data gathering of IoT networks, via both
theoretical analysis and experimental study. The results
show that the proposed MRCS method outperforms the
original CSmethod in terms of recovery quality. Our work
provides a new approach in both compressive sampling
applications and IoT networks with diverse time/space-
scale events and suggests a general design given the
relaxation from low-rank-based optimization to nuclear
norm-based optimization.

Endnote
1 Indeed, the matrix could be recovered by solving the

nuclear-norm based MR optimization problem rather
than the low rank based MR optimization problem, the
details would be elaborated in Section 4.
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