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Abstract

In this paper, a new approach to energy harvesting and data transmission optimization in a heterogeneous-based
multi-class and multiple resource wireless transmission wireless sensor network system that focus on monitoring
water and its quality is presented. Currently, energy is a scarce resource in wireless sensor networks due to the
limited energy budget of batteries, which are typically employed for powering sensors. Once the available energy
of a particular sensor node battery is depleted, such sensor node becomes inactive in a network. As a consequence,
such node may not be able to participate in the transmission of the application signal in the uplink stage of the
network, resulting in a lack of ability to communicate vital signals in a timely manner. Energy scarcity has been a
long standing problem in wireless sensor network applications. To address this problem, energy harvesting from
intended radiofrequency power source is considered in this work. However, wirelessly powered wireless sensor
network systems are confronted by unfairness in resource allocation problem, as well as interference problem in
multiple energy resource transmissions. These problems adversely impact the performance of the system in the
context of the harvested energy by the sensor nodes, sensors information transmission rates, and the overall system
throughput rate. These problems are tackled in this paper by formulating a sum-throughput maximization problem
to reduce system energy consumption and enhance the system overall throughput rate. The throughput optimization
problem is formulated as a non-convex function. Through the exploitation of the problem structure, it is converted to
a convex function. The mathematical models of the optimization problem are validated through numerical simulations.
The simulation results reveal that the proposed wireless powered sensor network system outperforms an existing
wireless powered sensor network system, by comparison of the numerical simulations of this work to the numerical
simulations of the existing WPSN system, regardless of the distances of the sensor nodes to the IPS and the base
station. Also, the newly proposed method performs efficiently using parameters that include path-loss exponent
impact, performance comparison of systems, convergence based on iteration, comparison based on unequal network
distances to the BS, transmission power impact on the attainable throughput and on fraction of energy consumed on
information transmissions, and influence of different number of nodes in the network classes.
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1 Introduction
In recent times, there has been an upsurge in the need
for efficient sensing systems for monitoring the parame-
ters of water quality that include bacteria load and pH
values, in a timely fashion [1, 2]. Most times, Escherichia
coli is considered as an indicator organism for microbio-
logical analysis of water [3–5]. The main reason for the
upsurge in seeking efficient sensing systems is because
of the devastating impact of unclean water on human,
plant, and animal. The systems are intended to comple-
ment the existing traditional systems for effective moni-
toring of water and its quality, in order to combat the
problem of contamination in water [1, 2, 6]. Across the
globe, an approximate estimate of 250 million cases of
disease caused by polluted water is reported annually
[7]. These diseases are responsible for human death and
claims up to about ten million lives across the globe an-
nually [7]. This is an indication that water problems
caused by contaminants are major issues in this dispen-
sation. The alarming rate of human death on a global
scale caused by water pollution is as a result of a surge
in water and environmental contaminants. These con-
taminants are due to two major factors, namely natural
processes and man-made (anthropogenic) activities [2, 8,
9]. Examples of natural phenomena that adversely influ-
ence the quality of water through climatic factors are
run-off caused by hydrological conditions, rock weather-
ing, soil leaching, depositions caused by wind, and
evapotranspiration, while some of the key man-made ac-
tivities that negatively influences the quality of water are
mining operations, deforestation, agricultural run-off,
and industrial effluent [10].
As a result of the surge in water contaminants, water

consumed from either the water polluted by natural pro-
cesses or man-made activities is dangerous to humans
and the ecosystem, because of their high levels of heavy
metals and microbes. The microbes and heavy metals
cause havoc to human health. Examples of some of the
disruptions they cause are diarrhea, epigastric pain,
organ damage such as renal and hepatic failure, and can-
cer [11, 12]. For example, around 1,500,000 children die
due to diarrhea every year [13]. Heavy metals are highly
toxic and also create a lot of environmental concerns [2,
14–16]. To address these issues, there is an urgent need
for effective systems for frequently monitoring water
quality parameters. To achieve this, the adoption of
wireless sensor networks (WSNs) technology has been
proposed as a promising solution. Unfortunately, WSNs
are faced with several challenges that range from energy,
memory, and processing capability. As a result of these
limitations, both academia and industry are currently
making efforts toward seeking solutions to the afore-
mentioned problems. Among the issues raised in WSNs,
the energy scarcity problem is the greatest of all, as the
operation of other modules depends on energy [17, 18].
The problem of energy scarcity in WSNs has been in ex-
istence for a long time on the account of the limited en-
ergy budget of the batteries that are typically used for
powering the sensor nodes in WSN systems [2, 19]. To
meet the objective of WSN-based water quality monitor-
ing systems in the context of timely monitoring without
interruption in energy supply, harvesting energy from
energy sources, which is technically referred to as energy
harvesting (EH) technique in practice is a promising ap-
proach [2, 20]. The technique has been exploited by the
energy harvesting research community in WSNs to re-
place the utilization of battery power, which is associated
with several problems that include short life span, cost
of battery replacement, and difficulty in battery replace-
ment. Energy harvesting from sources that include solar
[2, 21], radio frequency (RF) signals [2, 22, 23], and wind
[24] have been exploited. However, the most interesting
energy source among the above-mentioned sources is
RF EH from intentionally stationed power sources [2].
The main reason for this is that EH from intended RF
power sources (IPS) is controllable, as well as suitable
for continuous monitoring of water distribution net-
works [25]. Similarly, EH from IPS is suitable for energy
transmissions over larger areas because of its far-field
characteristics of energy radiation [25]. As a conse-
quence of the benefits of EH from IPS, it is an attractive
energy solution for water monitoring applications in
enclosed environments, although the energy solution
can be employed in any location.
At the moment, there are commercial IPS solutions

[26]. This development is as a result of the advances in
wireless energy transmission technology. One of the lead-
ing energy solution providers is Powercaster®. Forms of RF
transmitters from Powercaster® are the battery-powered
IPS [27], and the TX91501 IPS [27]. They are reliable solu-
tion for transferring RF energy in a wireless manner and
they can cover a distance of about 24 m. They are compat-
ible with the unlicensed bands of the industrial, scientific,
and medical (ISM) model for communications [28]. In
addition, the Powercaster® energy solutions come with a
compatible RF harvester, which is employed at the sensor
node for energy harvesting.
Recently, an RF EH method based on wireless energy

transmission and wireless information transmission
(WIPT) has emerged as a promising solution for power-
ing sensor nodes in WSNs. The technique is suitable for
conveying the signals of the sensor nodes to a local base
station. Such a system is typically referred to as a sensor
network that is based on wireless powering (WPSN).
With this WIPT technique, abundant RF energy could
be efficiently transferred from an IPS to a large number
of sensor nodes in a network to achieve a stable supply
of energy without any interruption in communication
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that may result due to energy depletion [25, 29]. This
method employs harvesting of RF energy from an IPS,
compared to the traditional EH methods that harnesses
energy from ambient energy sources, which may include
ambient RF. This WIPT method is envisioned to provide
a lasting solution to the problem of energy scarcity in
the future WSN applications and Internet-of-Things
(IoT) sensors [29]. Also, by employing this WIPT
method, a more reliable WSN system with an unwaver-
ing quality-of-service (QoS) experience in the context of
high throughput, and stable energy supply, can be real-
ized [29–31]. Unfortunately, existing systems based on
WIPT methods are faced by an unfairness issue in EH
caused by a problem referred to as doubly-near-far. This
situation is a fundamental problem in WPSN systems
and affects the information transmission rate of the sys-
tem [32]. The doubly-near-far situation in WPSN sys-
tems initiate unfairness in the energy received by
individual sensor nodes in a WPSN system, as the sensor
nodes in a network receives varying amount of energy
based on a key factor, namely the distance from an IPS.
Similarly, the unfairness issue among network sensor
nodes is exacerbated by the distance to a base station
(BS), where sensor nodes near the BS spend less energy
to transfer their separate signals, while the farther sensor
nodes consume more energy to transfer their signals.
Consequently, some of sensor nodes that are not privi-
leged to be nearer to the BS may not have adequate en-
ergy to transfer their separate signals due to energy
inadequacy. Thus, based on the unfairness problem in
EH among the sensors in a network, the overall
throughput rate of a system is impacted negatively. This
similarly translates to the inability of some of the sensor
nodes in participating in transferring their vital signals
in their allocated time. To enhance fairness among the
sensors during EH, as well as to enhance the system
throughput, the energy obtained by the individual sensor
nodes in the network, including their information trans-
mission rate, can be optimized in a joint manner. Cor-
respondingly, these improvements will circumvent the
energy scarcity issue, since throughput QoS is improved
with less power.

2 Related literature
Currently, the recent works on WPSN solutions consid-
ered EH from a single IPS for sensor nodes powering,
while only few have exploited the utilization of multiple
IPS. In [32], for example, an investigation was carried
out on a WPSN application powered by a single IPS.
The IPS was employed to wirelessly recharge the batter-
ies of the network sensor nodes. Also, they considered
the optimization of the harvesting of energy and the
transmission of information timing schedules, to address
the effect of unfairness on information transmission
rates. Due to a single IPS solution considered in the
work, the sensor nodes in the network suffers from a
doubly-far-near problem as the sensor nodes that are
nearer to the deployed IPS receives more energy com-
pared to the sensors that are far away. Consequently, un-
fair information transmission rates are experienced by
the sensors when this problem is encountered in the
network. To improve fairness in information trans-
mission rates among the network sensor nodes, a
common-throughput technique was explored and
exploited. However, the common-throughput tech-
nique is complex and is not a reflection of a practical
scenario. The unfairness issues in the energy received
and the information transmission rate among the net-
work sensor nodes are addressed in this paper by ex-
ploring a heterogeneous multi-class and multiple
resource wireless transmission system.
Likewise, in [33], a single IPS-based WPSN system is

considered to study the trade-off in the throughput of
communication channels. To achieve this, two modes of
communication that include half-duplex and full-duplex
are employed, and consequently the network devices
may operate in any of the modes adopted. To study
trade-off in throughput in the downlink and uplink re-
gions, two receiver architectures, namely power-splitting
and time switching, were integrated to the network sen-
sor node, while new communication protocols were pro-
posed based on the combination of the communication
mode and the receiver architecture. However, the pro-
posed WPSN system suffers from the inherent interfer-
ence problem that faces full-duplex systems.
An exploration is performed in [34] of the concept of

self-recharging of sensor nodes in a network system
powered by an IPS. The study exploited a full-duplex
mode of communication in a co-located energy trans-
mitter and information receiver architecture that trans-
mits/receives over an in-band frequency such that the
energy transmitter as well as the information receiver
carries out their communications over a single-
frequency band in a simultaneous fashion. The
employed communication mode may be advantageous in
improving the spectral efficiency of the operating fre-
quency; however, it suffers from interference problems
as the energy transmitter that co-locates with the infor-
mation receiver causes a complex co-channel interfer-
ence issue. Since full-duplex communication allows
simultaneous communications, the sensor nodes in the
full-duplex system in [34] performs data transmission
and energy reception concurrently. The network sensor
nodes also perform self-recharging as they transfer their
independent information. These processes make the sys-
tem complex as the network sensor nodes are faced with
a strong self-interference that causes corruption of data
transmissions. Interference cancelation techniques are
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employed; however, it is difficult to achieve perfect can-
celation of self-interference in a wireless channel. The
interference issues in turn affect the system’s overall per-
formance in terms of energy efficiency and achievable
throughput rate. The complexity associated to the work
in [34] is circumvented in this paper by exploring a
half-duplex communication mode in both co-located
and separated energy transmitter and information re-
ceiver architectures operating in separate time-slots over
a single-frequency band. The employed technique in this
paper is cost-effective and alleviates the problem of
interference faced by the full-duplex approach operating
in in-band. The application of both co-located and sep-
arate energy transmitter and information receiver archi-
tectures employed in this paper tackles the practical
doubly-near-far issue faced by the co-located architec-
ture adopted by [34].
A WPSN system for healthcare application is investi-

gated in [35]. The healthcare application was powered
by an IPS, and new strategies are proposed for the
optimization of the sensor signal transfer rate to the net-
work access point. The study explored two cases that in-
clude abnormal and normal situations for transmissions
under two schemes, namely time switching and power
splitting. For example, the exploration of the abnormal
transmission was investigated at the network sensor
node under the time switching scheme, while a normal
transmission was studied at the network sensor node
using the power splitting scheme.
The utilization of multiple IPS is investigated in [36],

which considered the optimization of the harvesting of
energy and the transmission of information timing
schedules of a WPSN system for an on-body application
in a dynamic environment. The proportion of the time
period earmarked to harvesting for an individual IPS to
recharge a sensor node was calculated, which is a func-
tion of the movement of the object carrying the sensor
nodes. This work did not consider network heterogen-
eity, as different network specifications are key for a
practical system and optimal utilization of resources.
The limitation is catered for in this paper to develop a
more practical system.
In [37], the optimization of an EH-based WSN system

powered by an IPS is considered. The essence of the
work is to investigate the maximization of the
sum-throughput of the sensors contained in the network
with respect to their individual information communica-
tion throughput requirement. However, this work is lim-
ited by the available energy resource and consequently
undermines the potential of the network sensor nodes in
meeting their required information transfer rate due to
the inherent hardware doubly-near-far condition in
wireless-powered WSN systems. This phenomenon is
addressed in this work through the deployment of
multiple energy resources, which potentially power the
network sensor nodes, regardless of their distances, to
meet their required information transmission rates.
In [38], the optimization of a WPSN system informa-

tion transmission and energy harvesting timing sched-
ules was investigated in a joint fashion. The deployment
of the sensors in the network was predetermined to tar-
get some strategic positions, allowing the control of dis-
tances of the sensor nodes to the available IPS. This
facilitates fairness in the context of the distances among
the sensor nodes to the available energy resources. As a
result, equal optimal energy harvesting timing is ear-
marked to individual sensor nodes for energy harvesting.
This work did not consider random deployment of sen-
sors, giving scope for the consideration of network het-
erogeneity to cater for a more real-world situation in
this paper. Unlike the predetermined deployment sce-
nario in [38], in this work, sensor nodes are classified
based on their distance specifications using the hetero-
geneity concept.
In addition to the efforts made in developing opti-

mized energy-efficient WSN systems, reference [39] con-
sidered the development of a distributed approach for
the estimation and control of dynamic states for seeking
an optimal solution to node coordination problem. Be-
cause of the interference issue often experienced in a
multi-radio wireless system, which often causes data cor-
ruption during data communication and significant en-
ergy consumption compared to the case of a single-radio
wireless system, the authors in [40] explored and
exploited an efficient learning automata algorithm to the
problem of channel allocation (or assignment) in a wire-
less system that utilizes multiple radios to improve the
throughput rate, delay, and energy consumption of the
network. However, an automata algorithm may experi-
ence some possible failures as it alternates between dif-
ferent states. This gives scope for the improvement of
the automata-based solution to enhance the efficiency of
the network.
In this work, a new WPSN is proposed. For efficient

resource allocation, and to also realize a more practical
system, network heterogeneity is considered. Heteroge-
neous WSNs is a class of networks where sensor nodes
have different properties in terms of distance specifica-
tion and resources allocation. More often, WSNs are
treated as homogeneous, whereas in real scenarios, the
networks may have different properties. Consequently,
realistic WSNs may not be achieved in homogeneous
sensor networks. Heterogeneity is a key design consider-
ation for the realization of efficient and workable sys-
tems that are capable of solving several needs.
Therefore, the concept of heterogeneous networks is
employed in this work to classify sensor nodes based on
their distance specifications and deployment strategy. As
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a consequence, a multi-class network is formed, contain-
ing class A and class B networks. Class A network sen-
sor nodes are distributed in a predetermined manner to
meet some specific design goals, while the sensors in
class B are deployed in a random pattern.
Different from [36], equal optimal EH time is provided

to the sensor nodes in class A network because of their
nearness to the IPS, while a new parameter TEH is intro-
duced to allot different energy harvesting periods to
class B sensors based on their distance from the IPS.
Based on the new harvesting time period parameter, an
optimal shorter time is allotted to the class B sensors
that are near to the IPS, while an optimal larger time is
allotted to the class B sensors that are far from the IPS
in the downlink (DL). Moreover, to achieve similar signal
communication rates within the sensor nodes in the up-
link (UL), the sensors which are considered far from the
BS are allocated a longer information transmission time
to ensure that they have enough time to transfer their
separate signals. To achieve this, a new algorithm is pro-
posed to achieve efficient allocation of optimal harvest-
ing time to individual sensors based on their class of
network, in order to enhance the system overall
throughput rate.
Most often, the time-multiplexing receiver model is

employed in WPSN systems because of its installation
simplicity, portability, and suitability for efficient har-
vesting of energy from RF signals [25, 36, 37]. Unfortu-
nately, the current WPSN solutions which are
developed based on time-multiplexing are confronted
with a number of issues when there are no efficient
strategies in place [36]. Such issues range from unfair-
ness in EH time allocation, interference problems
caused by energy transmission in the context of mul-
tiple IPS, to unequal information communication rates
within the sensors in a network [41, 42]. A multi-class,
multiple-intended-source (MCMIS) WPSN system is
proposed for monitoring the quality of water in water
stations, to address the above-mentioned issues. As
well, this paper is intended to ensure that individual
sensors in the network are efficient enough to obtain
adequate energy for delivering their acquired signals
with the desired QoS. The major contributions of this
paper are fourfold as highlighted below:

1. A new communication scheme that employs time
division multiple access (TDMA) is developed to
efficiently solve the wireless energy and information
transmission scheduling problem.

2. The optimization of the downlink time and the
uplink time for energy and information
transmissions are achieved with the new TDMA
scheme in a joint fashion, to enhance the system
overall throughput rate.
3. Optimal allocation of energy resources to the
heterogeneous sensor nodes based on their class
of network.

4. A new algorithm is developed to improve fairness
in resource allocation between the sensor nodes in
different classes of a heterogeneous WSN.

There is no prior work on a MCMIS WPSN system
for monitoring water quality that studied this problem,
to the best of our knowledge. The structuring of this
study is highlighted as follows. Following from the re-
view of related works in literature in Section 2, the
structure of a sensor node devoted to monitoring water
quality is presented in Section 3. The section expounds
the proposed MCMIS WPSN system architecture and
the proposed TDMA protocol for the system. The
proposed model for the new system wireless channel
is described in Section 3. This section also contains
the optimization of the energy and information trans-
missions rate problem, as well as an efficient algo-
rithm for multiple IPS allocation and information
transmission timing. The discussion of the proposed
WPSN system sum-throughput and fairness results
are considered in Section 4, which validate the formu-
lated sum-throughput optimization problem. The con-
clusion of the paper is contained in Section 5.
The notations and terms used in this paper are con-

tained in Table 1.

3 Methodology
3.1 Sensor node hardware design for monitoring water
quality
This section gives a simple overview of the building
blocks of a sensor node for monitoring water quality pa-
rameters. The water quality sensors are portable, but
powerful tools used for monitoring the microbial and
the chemical parameters of water quality at water sta-
tions. An integral component of a water quality sensor is
the communication technology. Communication tech-
nologies can be classified into two categories, namely
local communication technology and remote communi-
cation technology. The local communication technology
is used to connect a sensor to another sensor, as well as
a BS. The remote communication technology is respon-
sible for delivering water quality information to a remote
center. The remote communication technology acts as
an internet gateway in the network. An internet gateway
simply means an internet access point via which the sys-
tem is connected to the internet.
The water quality sensors are made up of four essen-

tial modules, namely sensor, micro-controller, power
supply, and communication. The sensor module is used
for measuring the desired parameter of water quality in
the form of analog information, and converting the



Table 1 List of abbreviations

ADC Analog-to-digital converter mc, a; gc, b Class A channel power gain for UL channels;
class B channel power gain for UL channels

BS / c1 Base station nc, a; uc, b Class A channel power gain for DL channels;
class B channel power gain for DL channels

CSI Channel state information Γ SNR gap

DL Downlink σ2 Noise power

EH Energy harvesting jc; ξ0 Time-length of class A energy harvesting; time-length
of class B energy harvesting

IPS Intended RF power sources ζa; ξb Time-length of class A information transmission;
time-length of class B information transmission

IoT Internet-of-Things xc, a; xc, b Power signal received by senor a; Power signal
received by senor b

ISM Industrial, scientific and medical za; zb Background noise at sensor a; Background noise
at sensor b

MCMIS Multi-class, multiple-intended-source Ea; Eb Total energy received by sensor a; total energy
received by sensor b

OAERA Optimization algorithm for efficient
resource allocation

jc; ξ0 Time-length of class A energy harvesting; time-length
of class B energy harvesting

QoS Quality-of-service ζa; ξb Time-length of class A information transmission;
time-length of class B information transmission

RF Radio frequency za; zb Background noise at sensor a; Background noise at
sensor b

TDMA Time division multiple access Ea; Eb Total energy received by sensor a; total energy
received by sensor b

UL Uplink εa; εb RF-to-DC conversion efficiency

WIPT Wireless energy transmission and
wireless information transmission

Pa; Pb Average energy consumed by sensor a for data
transmission; average energy consumed by sensor b
for data transmission

WSNs Wireless sensor network Ψa; Ψb Fixed allowable portion of energy for sensor a data
transmission; fixed allowable portion of energy for
sensor b data transmission

WPSN Wireless powered sensor network xc1 ;a ;xc1 ;b Signal received by the BS from sensor a; signal
received by the BS from sensor b

a ∈ {a1, a2, .., A}; b ∈ {b1, b2, .., B} Set of sensor nodes in class A; set of
sensor nodes in class B

xa; xb Sensor a arbitrary random signal; sensor b arbitrary
random signal

c ∈ {c1, c2, .., C} Set of intended RF power sources εa; εb RF-to-DC conversion efficiency

~mc;a ; ~gc;b Complex variable of class A UL channels
from sensor a to the BS; complex variable
of class B UL channels from sensor b to
the BS

Pa; Pb Average energy consumed by sensor a for data
transmission; average energy consumed by sensor b
for data transmission

~nc;a ; ~uc;b Complex variable of class A DL channels
from an IPS c to sensors a; complex
variable of class B DL channels from an
IPS c to sensors b

Ψa; Ψb Fixed allowable portion of energy for sensor a data
transmission; fixed allowable portion of energy for
sensor b data transmission

xc, a; xc, b Power signal received by senor a; power
signal received by senor b

E.coli Escherichia coli

pH Potential of hydrogen (in logarithmic scale
standard)
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measured information into a digital form through an
analog-to-digital converter (ADC).
The micro-controller module is responsible for the co-

ordination of the processes that integrates the sensor
module with other modules in a way to execute instruc-
tions that relates to the measurements of the sensor
module. Other key functions carried out by the
micro-controller involves the collection of the informa-
tion measured by the sensor unit, storing of the gathered
measurements in its storage chip, and transferring of the
information collected using the communication technol-
ogy of the communication module to a BS.
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The communication module is important in the water
quality sensor node architecture as it provides a suitable
platform for water quality information transmission, and
reception of important control signals. The communication
module is usually implemented as an RF transceiver. The
RF transceiver is equipped with an antenna, and has the
capabilities for both information transmission and recep-
tion. The CC2420 ZigBee radio is an example of a commu-
nication technology for local information transmission, and
is defined in the IEEE 802.14.4 specification [43]. The Zig-
Bee radio is considered suitable to be employed in this
work because of its low-cost and low-power features. Each
of the ZigBee-based water quality sensors communicates
directly with a local BS over the license-free ISM bands
(such as 2.4 GHz and 915 MHz). Through a remote com-
munication technology employed at the BS, which acts as a
gateway to the internet (such as 2G, 3G, or LTE networks),
the water quality information received from the sensors is
delivered to the remote monitoring stations [2].
The power supply section is a crucial unit in water qual-

ity sensor node architecture as it provides energy within
the node for powering different modules. The power sup-
ply unit may be composed of key devices like an energy
harvester and a battery. In this work, an RF-based energy
harvester from Powercaster® (for example the P2110 de-
vice) [44] is considered, and incorporated in the power
supply unit for harvesting RF energy from an IPS to re-
charge the water quality sensor in-built batteries. The RF
energy harvester works by converting the RF energy
Fig. 1 A typical water quality monitoring system model
received from an IPS into electrical energy through an
RF-to-DC converter. The energy is suitable for powering
the sensor node. A typical structure of a WSN system that
employs water quality sensors devoted to the monitoring
a body of water and its quality is presented in Fig. 1.

3.2 System architecture design
In the system architecture, a WPSN system powered by
intended RF power sources (IPS) is considered. The sys-
tem contains two classes of heterogeneous networks. Let
the water quality sensors a in class A be denoted by a ∈
{a1, a2, .., A} , while the water quality sensors b in class B
is denoted by b ∈ {b1, b2, .., B}. Also, a set of IPS repre-
sented by c ∈ {c1, c2, ..,C} are distributed in the system at
specified positions. To provide sufficient energy for
powering the water quality sensor nodes, more IPS de-
vices are deployed. The sensor nodes a in class A are
distributed in a determined fashion to target some stra-
tegic locations, while the sensors in class B are deployed
in a random manner, as presented in Fig. 2. The main
essence of the two classes of network considered in this
study is to cater for several needs, for example the en-
hancement of effective monitoring of different parame-
ters of water quality such as pH and E. coli.
The multi-class approach employed in this work

helps to properly classify the sensor nodes based on
their distance specifications and deployment strategy,
as depicted in Fig. 2. The IPSes are employed to
achieve wireless transmission of energy to the sensors



Fig. 2 Proposed model for water quality monitoring in a water processing station
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contained in the two classes of network during the
DL phase, while only c1 has the capability for both
wireless energy transmission and wireless information
reception in the DL and UL phases. In addition, it is
equipped with an internet access capability for remote
delivery of water quality information to water control
centers. A controller is employed to connect the
IPSes, controlling their operation based on the newly
proposed TDMA protocol, which circumvents any oc-
currence of interference in energy transmissions. The
new TDMA protocol is given in Fig. 3. The controller
switches the available IPSes on and off at a calculated
time, in a sequential manner. To create a suitable
platform for the sensors deployment, a section for
monitoring the quality of water, which allows con-
stant water flow, is designed as in [2, 45, 46]. The
water body that is scheduled for monitoring is
pumped to the designed water section in an enclosed
location.
In the system architecture, the sensor nodes a in class A

are provided with equal optimal EH time, because of their
nearness to the IPS. Unlike the sensor nodes in class A,
there are different distances within the sensor nodes in
class B because of the random approach employed for
their deployment. Therefore, there may be some signifi-
cant variations in the energy a sensor node in class B is
able to harvest in a DL-EH block. This situation is an in-
herent issue in WPSNs that is typically referred to as the
doubly-near-far problem. When this problem is encoun-
tered in a network, the energy that a particular sensor
node which is not far from a BS is able to harvest is sig-
nificant compared to the energy that another sensor node
which is far from the BS is able to harvest. This can be at-
tributed to the condition of the wireless channels. To
tackle the doubly-near-far issue in this paper, unlike the
same optimal EH time that is allotted to class A sensors,
different optimal EH time is provided to the individual
sensors in class B. In addition, in the UL stage, an optimal
information communication period is provided to class A
sensors, as well as class B sensors, based on their distances
to the BS, to ensure completeness in the transmission of
their individual information to the BS. To achieve this, in



Fig. 3 Proposed TDMA scheme
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each information transfer block, the distances to the BS of
the sensor nodes a and b in classes A and B, respectively,
are considered, and based on this distance, an optimal
time is allotted to an individual sensor to transfer its indi-
vidual information. The new TDMA protocol described
here is summarized in Fig. 3.

3.3 Wireless channel model
The environment of the application is assumed to be a
static environment. As a result, the wireless channels be-
tween the sensor nodes and the IPS c are modeled using a
quasi-static fading model. The channels that connect the
sensor nodes a and b to the BS are denoted with complex
variables ~mc;a and ~gc;b in the UL phase, for classes A and
B, respectively. While the reversed channels that go from
an IPS to the sensor nodes a and b are denoted with ~nc;a

and ~uc;b in the DL phase, for classes A and B. Conse-

quently, the channel power gains for the two classes are

derived as mc;a ¼ j ~mc;a j2 and nc, a= j ~nc;a j2 for class A,

and gc;b ¼ j ~gc;b j2 and uc;b ¼ j ~uc;b j2 for class B.
In addition, each IPS is assumed to have knowledge of

the channel state information (CSI), and as a result em-
ploys the CSI knowledge to ensure the transmission of
optimal energy to individual sensors in the two classes
in an adaptive fashion.
The proposed MCMIS WPSN system is further de-

scribed as follows:

3.3.1 Class A
In a particular jc period, with the application of the
TDMA protocol in Fig. 3, an EH time of 0 ≤ jc ≤ 1, jc ≥ 0,
c = 1, …, C is allotted to an IPS c to send energy via the
DL channels to sensors a, while the scheduled time for
sensor nodes a for transferring their signals over channel
m1, a, to BS/c1 in the UL phase is represented with time
period ζa, a = 1, 2, …,A, with a length of 0 ≤ ζa ≤ 1.
Therefore, the time allocated to an IPS c for energy
transmission to the sensor nodes in class A, and the
scheduled time for the sensor nodes to communicate
their separate signals in the UL phase is given in (1) as
follows:XC

c¼1
jc þ

XA

a¼1
ζa≤1 ð1Þ

In (2), the amount of power that a sensor node re-
ceives from an IPS is formulated as follows:

xc;a ¼ ffiffiffiffiffiffiffi
nc;a

p
xc þ za; ∀a ¼ 1; 2;…;A ð2Þ

where xc, a means the power signal received by senor a,
and za indicates the background noise at a as a result of
the energy received from an IPS c. xcdenotes the arbi-
trary complex random signal of an IPS c that satisfies
E[|xc|

2] = Pc, where Pc means the IPS c transmission
power, and is assumed large enough that the background
noise at a is insignificant as a consequence.
In the DL phase, the energy a sensor node a harvests

from an IPS c, in a given time-slot, is formulated in (3)
as follows:

Ec;a ¼ εaPcnc;a jc; ∀c ¼ 1; 2;…;C; ∀a ¼ 1; 2; ::;A ð3Þ
Moreover, the overall energy received by sensor node

a from the IPS c is modeled in (4) as follows:

Ea ¼ εa
XC

c¼1
Pcnc;a jc;∀a ¼ 1; 2;…;A ð4Þ

where εa denotes the efficiency of the RF-to-DC con-
verter module of sensor node a and is defined as 0 ≤ εa ≤
1, for a = 1, 2, …, A. The assumption is made that ε1 =
… = εA = ε, for simplicity sake.
To optimize the energy consumption of each sensor

node a, only a fraction of the energy obtained by each of
them in (4) is allowed to be consumed for information
transmission. Consequently, an average transmission
power is defined for the sensor nodes as modeled in (5)
as follows:

Pa ¼ ΨaEa

ζa
; ∀a ¼ 1;…;A ð5Þ

In (5), Pais the average transmission power defined for
a sensor node a., while Ψa indicates the fixed value
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allowable part of the energy available to a to transfer in-
formation to the BS. Ψa is defined as Ψa =… =ΨA =Ψ,
for convenience. It is important to mention that 1 −Ψ,
which is the remaining fraction of the harvested energy,
is utilized for operating the internal modules of a sensor
node a.
The received signal at the BS c1 from individual sen-

sors a in each UL time-slot is given by:

xc1;a ¼
ffiffiffiffiffiffiffiffiffi
m1;a

p
xa þ zc1 ;∀a ¼ 1;…;A ð6Þ

where xc1;a means the signal received by the BS c1,
xadenotes an arbitrary random signal of a sensor
node a that satisfies E[|xa|

2] = Pa, and zc1 is used to
denote the background noise at c1 as a result of the
signal received from a sensor node a. For the trans-
mission of information in the UL by sensor a to c1,
the capacity of the channel is defined as (7), based on
Shannon’s law [47]:

Da ¼ ζa log2 1þ Pam1;a

Γσ2

� �
ð7Þ

In (7), the signal transfer time (related to the channel
bandwidth of the system) is denoted with ζa, the SNR
gap is represented with Γ, and the noise power is repre-
sented with σ2. The maximum throughput that sensor a
can achieve in b/s/Hz is represented with Ra and is de-
fined in (8) as follows:

Ra≤ζa log2 1þ Pam1;a

Γσ2

� �
ð8Þ

By substituting (5) and (4) into (8), the throughput
rate can be derived in the form of

Ra j; ζð Þ ¼ ζa log2 1þ αa

PC
c¼1 jc
ζa

 !
; ∀a ¼ 1; 2;…;A

ð9Þ
where j = [j1, j2, j3,…, jC], ζ = [ζ0, ζ1,…, ζa], and αa repre-
sents the SNR at c1 and is defined in (10) as follows:

αa ¼ Ψa εam1;a
PC

c¼1 Pcnc;a jc
Γσ2

;∀a ¼ 1; :;A ð10Þ

Consequently, for all the of sensors a, the
sum-throughput is defined in (11) as follows:

Rsum j; ζð Þ ¼
XA

a¼1
Ra j; ζð Þ; ∀a ¼ 1; 2; ::;A ð11Þ

3.3.2 Class B
In class B, an optimal EH time with a length of 0 ≤
t1ξ0 ≤ 1 is calculated and allotted to an IPS c to transmit
energy to each individual sensor b over the DL commu-
nication channels, while an optimal period of time ξb is
apportioned to a sensor b to communicate its signal
through the UL links to c1 over a channel g1, b. The ap-
portioned time ξb, b = 1, 2, …, B, has a length of 0 ≤ ξb ≤
1. Therefore, the time period apportioned to an IPS c for
the transmission of energy, as well as the time period ap-
portioned to sensor nodes b for communicating their
different signals to the BS, is formulated in (12) as
follows:

XC

c¼1
tcξ0 þ

XB

b¼1
ξb≤1 ð12Þ

The amount of power that a sensor node receives from
an IPS is formulated as follows:

xc;b ¼ ffiffiffiffiffiffiffi
uc;b

p
xc þ zb; ∀b ¼ 1; 2;…;B ð13Þ

In the DL phase, the energy a sensor node b harvests
from an IPS c, in a given time-slot, is formulated in (14)
as follows:

Ec;b ¼ εbPcuc;btcξ0; ∀c ¼ 1; 2;…;C; ∀b ¼ 1; 2; ::;B

ð14Þ

The total energy received by sensor node b from the
IPS c is modeled in (15) as follows:

Eb ¼ εb
XC

c¼1
Pcuc;btcξ0;∀b ¼ 1; 2;…;B ð15Þ

Once again, it is assumed for convenience that ε1 =…
= εB = ε.
From (15), a part of the energy obtained by each sen-

sor b is consumed for information communication in
the UL phase and is formulated in (16) as follows:

Pb ¼ Ψ bEb

ξb
; ∀b ¼ 1; 2;…;B ð16Þ

where Pbis the average transmission power defined
for a sensor node b, while Ψb indicates the allowable
part of the energy contained in b for information
communication to the BS, which is fixed. Ψb is de-
fined as Ψb =… =ΨB =Ψ, for convenience. The rest
of 1 −Ψ is utilized for operating the modules of a
sensor node b.
The received signal at c1 from individual sensors b in

each UL time block is:

xc1;b ¼
ffiffiffiffiffiffiffi
g1;b

p
xb þ zc1 ; b ¼ 1;…;B ð17Þ

The attainable throughput rate in b/s/Hz of sensor
node b is defined as follows:
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Rb t; ξð Þ ¼ ξb log2 1þ γb

PC
c¼1tcξ0
ξb

 !
; ∀b ¼ 1; 2; ::;B

ð18Þ
where t = [t1, t2, t3,…, tC], ξ = [ξ0, ξ1,…, ξb]. γb is the SNR
received at c1, which is caused by the transferred infor-
mation from sensor node b. It is defined in (19) as
follows:

γb ¼
Ψb εbg1;b

PC
c¼1 Pcuc;btc

Γσ2
; ∀b ¼ 1; ::;B ð19Þ

Hence, for all of the sensors b, the sum-throughput is
defined in (20) as follows:

Rsum t; ξð Þ ¼
XB

b¼1
Rb t; ξð Þ;∀b ¼ 1; 2; ::;B ð20Þ

3.4 Maximization of attainable throughput
The maximization of the WPSN system attainable
throughput is described in this segment. To achieve
this, a sum-throughput optimization strategy is
employed. Based on the optimization technique, the
timing schedules for the harvesting of energy and
transmission of information by sensor nodes a and b
were optimized in joint fashion. With this, an im-
proved fairness in the allocation of harvesting timing,
as well as fairness in the rates of the sensor nodes in-
formation transmission, is achieved. Consequently, an
enhanced system overall throughput rate is achieved
with minimal energy consumption. The general repre-
sentation of the system attainable throughput is for-
mulated as a maximization problem in (P1). From (1),
we have:
(P1):

j;ζ;t;ξ
max Rsum j; ζð Þ þ Rsum t; ξð Þ þ…þ Rsum s; υð Þ ð21Þ

subject to:XC

c¼1
jc þ

XC

c¼1
tcξ0 þ

XA

a¼1
ζa þ

XB

b¼1
ξb≤1

ð21aÞ
jc≥0;∀c ¼ 1; 2; ::;C ð21bÞ
tc≥0; ∀c ¼ 1; 2; ::;C ð21cÞ

ζa≥0; ∀a ¼ 1; 2; ::;A ð21dÞ

ξb≥0;∀b ¼ 1; 2; ::;B ð21eÞ

The objective function of the optimization problem is
given in (21), while the constraints of the optimization
problem are (21a) to (21e). Constraint (21a) is the timing
schedules for energy harvesting and information trans-
mission. The non-negative constraints (21b), (21c),
(21d), and (21e) are defined for the decision variables,
while variables j, t, ζ, ξ are unknown in (P1). The
maximization problem in (P1) is a non-convex problem
since (9) and (18) contain a log function. By exploiting
the structure of the problem, variable tcξ0 is changed to
ξ0, c, and the natural log form of the log function is ob-
tained. They are substituted in (9) and (18) respectively.
Based on this development, the optimization problem in
(P1) is transformed to a convex problem. The newly
generated problem from the original problem is defined
as (P2). The proof for the new problem is provided in
Appendix 1. Consequently, the newly transformed prob-
lem is solvable by employing any standard convex ap-
proach [2, 48].
Moreover, in order to provide a solution to unfair-

ness in energy harvesting as a result of the trans-
formation, we formulated a new problem as (P3) to
guarantee the optimality of j and t, which is indi-
cated as j* and t*. Consequently, these values (j* and
t*) are employed in (P1). The formulation of the
minimization problem for addressing the unfairness
in energy harvesting among the sensors is expressed
in (22) as follows:
(P3):

min
j�;t�

E Ea−Ea
� �2 þ Eb−Eb

� �2h i
ð22Þ

s.t:XC

c¼1
jc þ

XC

c¼1
tc ¼ 1 ð22aÞ

jc≥0;∀c ¼ 1; 2; ::;C ð22bÞ
tc≥0; ∀c ¼ 1; 2; ::;C ð22cÞ

In (22), the minimum energy received by a and b is
defined by Ea and Eb , and is calculated based on (23)
and (24).

Ea ¼ E Eað Þ ¼
PA

a¼1Ea

A
ð23Þ

Eb ¼ E Ebð Þ ¼
PB

b¼1Eb

B
ð24Þ

(P2) is contingent to variables j, t, ξ0, which are
unknown. To determine the intermediate harvested
energy for Ea, a = 1, 2…, A, as well as Eb, b = 1, 2…,
B, arbitrary values could be used for jc and ξ0. The
proof for determining optimal j* and t* is provided
in Appendix 2.
In addition, to handle multiple IPS allocation in an

efficient manner to ensure fairness in harvesting and
signal transmission rates among class A and class B
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sensors, an efficient algorithm is developed. Moreover,
to determine the rates of fairness in resource alloca-
tion and signal transmission in the system, the con-
cept of Jain’s fairness index [38, 49] is employed, as
expressed in (25).

JF ¼
Pv

k¼1Rv βð Þ� �2
v:
Pv

k¼1 Rv βð Þð Þ2 ð25Þ

In (25), v = a + b , which represents the complete
network of sensors in classes A and B. β = (j + ζ) + (ξ)
is the combined time length for classes A and B sen-
sor nodes. While, the overall aggregate of the
sum-throughput of class A and class B is defined by
Rv(β) = Ra(j, ζ) + Rb(ξ). For the sake of performance
measurement, the best case, as well as the worst case,
of the overall sensor nodes in class A and class B, is
expressed by (26) as follows:

1
V

≤ JF ≤1 ð26Þ

According to (26), 1 indicates a maximum fairness ra-
tio, while 1

V means a minimum fairness ratio.
OAERA algorithm, two key parameters used for
3.5 Efficient allocation algorithm for energy and
information transmission scheduling
In this section, an efficient resource allocation algo-
rithm is presented and is defined as Algorithm 1. The
essence of the proposed algorithm is to ensure fair-
ness in EH-DL timing schedules among the system
sensor nodes. In addition, it is aimed to achieve an
enhanced rate of information transfer among the net-
work sensor nodes in the UL. To achieve this, the
proposed algorithm optimizes the energy and infor-
mation transfer timing schedules in a joint fashion,
according to the mathematical models presented in
Section 3 such that optimal time periods are allocated
for both EH and information transmission to classes
A and B in the network. As a consequence, Algo-
rithm 1 optimally allots an IPS c to individual sensor
nodes at a calculated optimal time period. In a simi-
lar vein, to make sure that the sensors in the network
are provided with sufficient time for communications
in the UL phase, an optimal information transmission
time period is calculated and allotted. The implemen-
tation of the algorithm is done on the system control-
ler to achieve the optimal control of the switching of
the IPS and optimally allocating them to the sensors
for enhancing the attainable throughput of the WPSN
system.
To analyze the complexity or performance of the



Table 2 System parameters

Parameter Value

Carrier bandwidth 1 MHz

SNR 1.5 dB

Noise power − 114 dBm

IPS transmission power 3000 mW

Efficiency of RF energy conversion 0.5

Channel path-loss exponent, ω 2.0

Allowable portion of energy for
information transfer

0.5

MAC layer IEEE 802.15.4

Operating frequency 915 MHz

Path-loss channel model nc, a = mc, a ¼ 10−3d−ωc;a

Path-loss channel model uc, b = gc, b ¼ 10−3d−ωc;b
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characterizing the complexity of an algorithm are
employed in this study. The parameters are the time
complexity and space complexity. Note that the analysis
of the time complexity of an algorithm involves the re-
quired time to execute an algorithm of a particular size
n, while the analysis of the space complexity is con-
cerned with the required system resources (such as
memory) to execute an algorithm of a particular size n.
To achieve the characterization of the complexities of
the OAERA algorithm, Big-O (O) notation is applied.
The time complexity of the OAERA algorithm is O(A(C
+ 1) + 2B). Consequently, the computational time com-
plexity of the algorithm is linear in sensor nodes in A
and B, and directly proportional to the IPS C. The space
complexity of the OAERA algorithm is O(A + B +C),
which reveals a linear complexity. These indications
show that the OAERA algorithm has efficient complex-
ities in the context of time and space. An algorithm with
a linear complexity is better than an algorithm with an
exponential complexity as in [36] since the efficiency of
n > 2n. Also note that algorithms with exponential com-
plexities are solvable, but not tractable. As a result, they
may explode. An exponential-time complexity consumes
more time and space resources compared to algorithms
with linear complexities, and polynomial time complex-
ities defined by nq where q ≥ 2, such as quadratic com-
plexity and cubic complexity. It is important to
underline that system resources can efficiently take care
of linear-time and polynomial-time algorithms as they
are solvable and tractable.

4 Results and discussion
This section presents the performance of the proposed
optimization algorithm by investigating the effects of
number of sensors, path-loss exponent, and transmission
power on the system, through simulation experiments.
In addition, the system performance is verified in a com-
parative manner in the context of the number of IPS
available in the system, and Jain’s fairness ratio. Also, to
further substantiate the contributions of this work, two
networks at unequal distances to the BS are investigated,
to showcase the improvement in network performance.
Based on simulation experiments, the computational ef-
ficiency of the proposed optimization algorithm is
shown, while the simulation settings presented in Table 2
are employed to configure the proposed WPSN system.
This work assumes similar network parameters as in a
recent reference work [36], for comparison purposes.
The implementation of the algorithm was done on the

following proposed WPSN system. Two classes of net-
work are considered at a distance of 3 m apart. In class
A, a distance of 6 m is considered for the placement of
one or two sensor nodes by taking the data in the refer-
ence work into consideration. In class B, the water
quality sensors are distributed at a random distance of
2.5–4 m from each other—as typical in monitoring the
quality of water. In addition, it is possible to vary the
distance among the sensor nodes. Furthermore, it is
worth mentioning that during optimization, different
strategic positions are considered for the IPSes.
4.1 Algorithm convergence based on iteration number
In this experiment to investigate the convergence of the
system, both the number of sensors and IPSes in the
network are fixed, while the number of iterations is
changed during the simulation. Figure 4 depicts the con-
vergence of the proposed OAERA algorithm in the con-
text of attainable system sum-throughput per sensor
nodes against iteration number. For this experiment, a
system configured with two sensors and a system config-
ured with three sensors were investigated. The two sys-
tems are powered by five IPS, which is consistent with
the reference work [36]. From Fig. 1, it can be noticed
that it takes the proposed OAERA algorithm an average
run time of 500 iterations to realize an optimal solution,
as the iteration number is observed to enhance the sys-
tem attainable sum-throughput of the two systems. As a
result, it is reasonable to utilize 500 iterations for aver-
aging the performance of the system. Thus, results are
obtained based on an average of 500 iterations.
4.2 Path-loss exponent impact on the system attainable
throughput
In the course of this experiment, the number of network
sensor nodes is fixed and the channel path-loss exponent
is varied to investigate the impact of path-loss exponent.
The experiment is repeated for systems configured with
two, three, and four sensors. Each of the systems is pow-
ered by five IPS. From the results in Fig. 5, it is notice-
able that there is a decrease in the system average
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Fig. 4 Attainable average sum-throughput of the system versus iteration number
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attainable sum-throughput as the value of path-loss ex-
ponent increases. The reduction experienced in the sys-
tem attainable throughput due to rise in path-loss
exponent is valid in the two-sensor, three-sensor, and
four-sensor systems. Another observation is that, a
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Fig. 5 Attainable average sum-throughput versus path-loss exponent
system with four-sensor had a higher average attainable
sum-throughput compared to the systems with
two-sensor and three-sensor. Therefore, it is confirmed
that the system performs better when it is configured
with a lower path-loss exponent value.
2.6 2.8 3
s exponent

Proposed system = 2-sensor
Proposed system = 3-sensor
Proposed system = 4-sensor
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4.3 Performance comparison of systems with different
configurations
In this section, simulation investigations were carried
out on the new WPSN application, as well as on an
existing WPSN application in [36]. The network sensor
nodes are fixed, while the number of IPSes changes in
the course of the experiment to investigate the impact of
the number of IPSes on the overall attainable through-
put rates and fairness index. Based on the simulation ex-
periments, the proposed WPSN system was compared
with the existing system in the context of the attainable
average sum-throughput, and fairness. As in [36], two
different system configurations were considered. One of
the systems was configured with two-sensor, while the
other was configured with three-sensor. The two sys-
tems are powered by five IPS. For the comparison of
the proposed system and the existing system, the
same simulation software is run, while the algorithm
proposed is activated for the WPSN system of this
work, and deactivated for the existing WPSN system.
Consequently, the proposed WPSN system and the
existing WPSN system are compared based on the at-
tainable average sum-throughput and Jain’s fairness as
shown in Figs. 6 and 7.
From Fig. 6, it is noticeable that the proposed WPSN

system outperforms the existing WPSN system, as it
achieves an enhanced average sum-throughput. The im-
provement in the attainable sum-through results is as a
result of the newly proposed algorithm. The new
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Fig. 6 Attainable average sum-throughput versus number of IPS
optimization algorithm efficiently allocates optimal time
to DL-EH and UL-IT. In addition, through the results in
Fig. 6, it is easy and straightforward to infer that a
two-sensor system that is operated based on the pro-
posed algorithm performs comparably to a three-sensor
system that is operated based on the existing algorithm.
Moreover, the ratio of fairness in resource allocation be-
tween the sensor nodes in the network is investigated by
employing the Jain’s equation. As a consequence, from
Fig. 7, it is observed that the proposed WPSN system
achieved enhanced fairness rates when compared to the
existing two-sensor system and three-sensor system.
This indicates an interesting improvement in fairness in
the allocation of resources in the system, thus, address-
ing the inherent doubly-near-far issue in WPSN systems.
From the results, it can be concluded that the proposed
optimization algorithm optimizes the system sum-
throughput by 26.46% and 27.18% for two-sensor and
three-sensor, respectively, in comparison to the existing
system. Similarly, the ratio of fairness of the proposed
system configured with two-sensor and three-sensor in-
dicate improvements of 8.6% and 8.5%, respectively,
compared to the existing system.

4.4 Comparison based on unequal network distances to
the BS
The effect of unequal network distance to the BS be-
tween two classes of network is investigated in this sec-
tion to emphasize the contributions of the newly
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proposed algorithm. The network distances to the BS
are kept constant, while the number of IPSes is varied.
To achieve this, we consider the deployment of class A
to the BS at 5.5 m, while class B is 6.5 m from the BS.
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Fig. 8 Attainable average sum-throughput based on unequal network dist
The two classes of network contain three sensors, pow-
ered by a number of intended threeW IPS sources,
which is varied in different simulation runs. As illus-
trated in Fig. 8, the results obtained are compared to the
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existing system with the same configuration, and it is ap-
parent that a substantial increase of 25.68% and 26.67%
in transmission throughput rate is attainable with the
proposed system for class A and class B, particularly
when the available energy is constrained by a small
number of IPSes. Furthermore, class A in the proposed
system, which has a smaller distance to the BS, must
spend lower energy on information transmission to the
BS in the UL, and consequently, the network achieved a
significant improvement in the attainable average
sum-throughput compared to class B.

4.5 Transmission power impact on the attainable
throughput of the system
This section investigates the influence of transmission
power on the attainable throughput rate of a system
with three-sensor, powered by a variable number of
IPSes. To achieve this, the transmission power of the
IPS is varied from 100 mW, 500 mW, 1000 mW, to
3000 mW. As depicted in Fig. 9, a great surge in the per-
formance of the system is noticed as the IPS transmis-
sion power increases. Based on this observation, it can
be corroborated that the IPS plays a crucial role in the
attainable system sum-throughput rate in the context of
transmission power value.
Similarly, with a larger number of IPS, the attainable

overall throughput of the system performance gets better
as more resources are being efficiently allocated to the
Fig. 9 Attainable average sum-throughput against transmission power
network sensors in an optimal fashion. Furthermore,
when the system is operated with 100 mW transmission
power, which is quite low, the system performance is sat-
isfactory. This is an interesting observation that depicts
the proposed system’s capability to efficiently utilize en-
ergy resources, with reliable network communication.

4.6 Comparison based on equal network distances to the
BS
The effect of equal network distance to the BS between
class A and class B networks is investigated in this sec-
tion. As a result, the distances of the network classes are
fixed, while the number of IPSes is varied in the course
of the experiment. Class A and class B were considered
at an equal distance of 7.5 m to the BS. Each class con-
tains two sensors and they are powered by a variable
number of threeW IPS sources. The same investigation
was carried out for three sensors. As illustrated in Fig. 10,
it is noticeable that class A network only has a slight en-
hanced attainable sum-throughput compared to class B
network for two sensors, regardless of the unequal dis-
tances among the randomly placed class B sensors, while
the attainable throughput rate for three sensors was al-
most similar for classes A and B networks. As a conse-
quence, it is apparent that the proposed optimization
algorithm is able to efficiently handle resource allocation
among the two classes of network in a fair manner by
providing different optimal timing to class B sensors
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based on their calculated distances to the available en-
ergy resources, as well as equal optimal timing to the
sensor nodes in class A.

4.7 System performance based on fraction of energy
consumed on information transmission
This section investigates the performance of the system,
using a three-sensor example, by varying the fraction of
average power of transmission of the sensor nodes. Con-
sequently, the number of both the network sensor nodes
and the IPSes are fixed, as the average transmission
power is varied. The system model is developed such
that energy consumption for other networking process-
ing has been optimized; therefore, it is possible to in-
crease the amount of energy resources for information
transmission. This is the basis for varying the fraction of
average power of transmission.
From Fig. 11, it is noticeable that the system through-

put rate increases as the information transmission power
of the sensor nodes in the network increases, as could
be expected. The reason for this is that the sensor nodes
can now spend higher energy on information transmis-
sion during the UL period, which in turn improved the
system overall throughput. In addition, the results ob-
tained in Fig. 11 are compared to the existing system
with the same configuration and it can be inferred that
there is a significant improvement in the throughput
rate of the proposed system. This is an indication that
the proposed system is more energy-efficient in terms of
energy consumption.

4.8 Comparison of system performance under different
number of nodes in the network classes
In the section, the impact of different number of nodes
in the network classes on the system performance is
studied. To realize this, the number of nodes in class A
and class B were unequal and constant, while number
of IPSes was varied, in the course of simulation. Both
classes A and B have an equal distance of 7.5 m to the
BS. Comparison experiments were carried out on class
A containing two sensors and class B containing three
sensors; class A containing three sensors and class B
containing four sensors; and class A containing two
sensors and class B containing four sensors. Each ex-
periment was powered by a variable number of threeW
IPS sources. From Fig. 12, it is noticeable that in all
three the experiments, class B achieved a significant at-
tainable throughput rate compared to class A. The vari-
ation in the attainable throughput rates between class
A and class B in the system is due to the number of
sensor nodes contained in each network as the class
with a higher number of nodes achieves a higher
throughput rate compared to a class with a lesser num-
ber of nodes.
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5 Conclusion
This paper has proposed a new approach to energy har-
vesting and data transmission optimization in a hetero-
geneous multi-class and multiple resource wireless
transmission system that focuses on monitoring water
and its quality. To achieve this, an optimal optimization
algorithm that optimizes the energy and information
timing schedules in a joint manner is proposed, and the
proposed algorithm is validated in terms of path-loss ex-
ponent impact, performance comparison of systems,
convergence based on iteration, comparison based on
unequal network distances to the BS, transmission
power impact on the attainable throughput and on the
fraction of energy consumed on information transmis-
sions, and influence of different number of nodes in the
network classes. To reduce the system’s energy con-
sumption and to also enhance the system’s overall
throughput rate, a sum-throughput optimization tech-
nique is employed. The proposed system has revealed
advantageous results in the context of fairness and
sum-throughput by efficiently allocating resources to the
deployed sensor nodes based on a determined strategy
for one class, and a random strategy for the other. The
new WPSN system was compared with an existing sys-
tem in [36] based on transmission throughput rate and
fairness. The transmission throughput rate and fairness
results of a system with two-sensor employing the pro-
posed algorithm performs comparably to a system with
three-sensor employing an existing algorithm pro-
posed in [36], with all other network parameters the
same. In addition, the proposed optimization algo-
rithm achieved a profitable transmission throughput
rate regardless of the varying distances to the BS
among the sensor nodes in class B of the proposed
WPSN, when compared to a system with the same
configuration, but without the proposed optimization
algorithm. Moreover, for an IPS power as low as
100 mW, the proposed system reveals an acceptable
performance, which indicates it capability to effi-
ciently utilize energy resources with reliable network
communications.

6 Appendix 1
6.1 Problem P1 transformation convexity proof
The parameters of (21) such as log function, rendered
the optimization problem as a non-convex function, and
it was transformed through problem structure explor-
ation technique by changing variable tcξ0 to ξ0, c, and
obtaining the natural log of the log function in (9) and
(18) respectively, to obtain a new problem (P2). From
(9) and (18), (27) and (28) were derived as follows:

Ra j; ζð Þ ¼ ζa
In2

In 1þ αa

PC
c¼1 jc
ζa

 !
; ∀a ¼ 1; 2;…;A

ð27Þ
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Rb ξð Þ ¼ ξb
In2

In 1þ γb

PC
c¼1ξ0;c
ξb

 !
;∀a ¼ 1; 2;…;B

ð28Þ
where:

j ¼ j1; j2;…; jC ; ζ ¼ ζ1; ζ2;…; ζA

and

ξ ¼ ξ0;1; ξ0;2;…; ξ0;M; ξ1; ξ2;…; ξB

The sum-throughput of the overall sensor nodes in
class A and Class B, which is defined by Ra, b is:

Ra;b j; ζ; ξð Þ ¼
XA

a¼1
Ra j; ζð Þ þ

XB

b¼1
Rb ξð Þ ð29Þ

Consequently, the optimization problem (P1) is trans-
formed to a new problem defined as (P2).
(P2):

j;ζ;ξ Ra;b j; ζ; ξð Þ ð30Þ
s.t:XC

c¼1
jc þ

XC

c¼1
ξ0;c þ

XA

a¼1
ζa þ

XB

b¼1
ξb≤1

ð31Þ
jc≥0;∀c ¼ 1; 2; ::;C ð32Þ
ζa≥0; ∀a ¼ 1; 2; ::;A ð33Þ
ξb≥0;∀b ¼ 1; 2; ::;B ð34Þ
The concavity of problem (P2) is shown as follows

through the application of partial derivative

Ra;b j; ζ; ξð Þ ¼ ζa
In2

In 1þ αa

PC
c¼1 jc
ζa

 !
þ ξb
In2

In 1þ γb

PC
c¼1ξ0;c
ξb

 !

ð35Þ

The second derivative of Ra, b(j, ζ, ξ) and jc is:

∂2Ra;b j; ζ; ξð Þ
∂ jc

2 ¼ −α2aζa

In2 ζa þ αa
PC

c¼1 jc
� �2 ð36Þ

Since α2a, In2, and ðζa þ αa
PC

c¼1 jcÞ are positive, then,

∂2Ra;b j; ζ; ξð Þ
∂ jc

2 ¼ −α2aζa

In2 ζa þ αa
PC

c¼1 jc
� �2 ≤0 ð37Þ

if ζa ≥ 0. Hence, Ra, b(j, ζ, ξ) is concave with respect to
jc.
The second derivative of Ra, b(j, ζ, ξ) vis-à-vis ξ0, c

gives:

∂2Ra;b j; ζ; ξð Þ
∂ξ0;c

2 ¼ −γ2bξb

In2 ξb þ γb
PC

c¼1ξ0;c
� �2 ð38Þ
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Since γ2b , In2, and ðξb þ γb
PC

c¼1 ξ0;cÞ are positive,
then,

∂2Ra;b j; ζ; ξð Þ
∂ξ0;c

2 ¼ −γ2bξb

In2 ξb þ γb
PC

c¼1ξ0;c
� �2 ≤0 ð39Þ

if ξb ≥0. Hence, Ra, b(j, ζ, ξ) is concave with respect to
ξ0, c.
The second derivative of Ra, b(j, ζ, ξ) and ζa gives:

∂2Ra;b j; ζ; ξð Þ
∂ζa

2 ¼ −αa
ζ2aIn2

1þ αa

PC
c¼1 jc
ζa

 !−2

:
XC

c¼1
jc

� �2
ð40Þ

Also, the second derivative of Ra, b(j, ζ, ξ) and ξb gives:

∂2Ra;b j; ζ; ξð Þ
∂ξb

2 ¼ −γb
ξ2bIn2

1þ γb

PC
c¼1ξ0;c
ξb

 !−2

:
XC

c¼1
ξ0;c

� �2
ð41Þ

∂2Ra;b j; ζ; ξð Þ
∂ jc∂ζa

¼ α2a
ζ2aIn2

1þ αa

PC
c¼1 jc
ζa

 !−2

:
XC

c¼1
jc

ð42Þ

∂2Ra;b j; ζ; ξð Þ
∂ξ0;c∂ξb

¼ γ2b
ξ2bIn2

1þ γb

PC
c¼1ξ0;c
ξb

 !−2

:
XC

c¼1
ξ0;c

ð43Þ

∂2Ra;b j; ζ; ξð Þ
∂ jc∂ξb

¼ 0;
∂2Ra;b j; ζ; ξð Þ

∂ξ0;c∂ζa

¼ 0;
∂2Ra;b j; ζ; ξð Þ

∂ζa∂ξb
¼ 0; ð44Þ

From the second derivative test, Ra, b(j, ζ, ξ) is a con-
cave function and it can be solved through any known
standard convex method.

7 Appendix 2
7.1 Minimization of energy harvesting unfairness
Using (22a), that is:

XC

c¼1
jc þ

XC

c¼1
tc ¼ 1 ð45Þ

If

XC

c¼1
Pcna jc þ

XC

c¼1
Pcubtcξ0 ¼

XC

c¼1
Pcna jc þ ξ0

XC

c¼1
Pcubtc

ð46Þ

Then, (45) is true.
By substituting (46) in (4) and (15), (47) is derived as:
Ea;b ¼ εa
XC

c¼1
Pcna jc þ εbξ0

XC

c¼1
Pcubtc; a

¼ 1; 2;…;A; b ¼ 1; 2;…;B ð47Þ

Let E�
a;b be the optimal value for Ea and Eb due to j�c ,

t�c , and ξ�0.
Since j�c represents the optimal value for jc , while t�c

and ξ�0 represents the optimal values for tc and ξ0. There-

fore, from (47), we have:

E�
a;b ¼ εa

XC

c¼1
Pcna j

�
c þ εbξ

�
0

XC

c¼1
Pcubt

�
c ; a

¼ 1; 2;…;A; b ¼ 1; 2;…;B ð48Þ

From (48), j�c remains constant. Similarly, t�c remains
constant regardless of ξ�0.
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