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Abstract

Accurate localization of nodes is one of the key issues of wireless sensor network (WSN). A localization algorithm
using expected hop progress (LAEP) has been successfully applied in isotropic wireless sensor networks. However,
range-free LAEP cannot be directly used for anisotropic WSNs because anisotropic problems limit the applicability
of multi-hop localization. In order to solve the problem, an improved localization algorithm is proposed to reduce
the localization error. In this paper, we adapt the expected hop progress to anisotropic WSNs by considering both
hop count computation and anchor selection. Then, particle swarm optimization algorithm is introduced to
improve the positioning accuracy. The experimental results demonstrate that our algorithm has better higher
precision than do state-of-the-art algorithms. Even for isotropic WSNs, our algorithm always outperforms its
counterparts.

Keywords: Anisotropic wireless sensor networks, Range-free, Multi-hop, Expected hop progress, Particle swarm
optimization

1 Introduction
Wireless sensor networks (WSNs) are an emerging tech-
nology that has potential applications in various fields,
such as healthcare, surveillance, astronomy, military and
agriculture [1–4]. Most of these applications require
knowledge of the exact locations of the sensor nodes
used to sense the data. In the absence of such informa-
tion, data may not be useful for users. Therefore, the
precise localization of sensors is a critical requirement in
WSNs [5].
The localization issue in WSNs can be resolved by using

the global positioning system (GPS) with each sensor
node, but this is not favourable due to energy, cost and
size issues. An efficient and better alternative is required
to localize the sensor nodes. Various non-GPS-based
localization algorithms have been used, which are catego-
rized into range-based [6, 7] and range-free [8, 9] algo-
rithms. Although the range-based algorithms are more
accurate than the range-free localization algorithms, they

require a very high cost. Unlike range-based algorithms,
range-free algorithms, which rely on the network connect-
ivity to estimate the positions of regular nodes without
any extra hardware supporting, are more power-efficient
and do not require additional hardware. At present, most
researchers focus on isotropic WSNs. Wireless sensor net-
works are mostly applied to complex environments where
there are obstacles and holes, in which case they are called
anisotropic wireless sensor networks (AWSNs). In this
case, when the line connecting two nodes passes these ob-
stacles, the shortest paths between anchor nodes and
regular nodes are likely to be curved and its length may be
estimated much larger than corresponding Euclidean dis-
tance. Therefore, position estimation is inaccurate.
DV-Hop [10], Amorphous [11], MDS-MAP [12] and

APIT [13] are examples of early range-free localization
schemes that are well suited for isotropic wireless net-
works (i.e. where obstacles do not exist). However, the
distance estimation accuracy of these methods is se-
verely degraded in anisotropic networks, resulting in un-
acceptable overall localization errors. To solve this
problem, a few new range-free algorithms are proposed
for tolerating erroneous distance estimates in AWSNs.
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The proximity distance mapping (PDM) [14] algorithm
replaces the average hop distance with a
proximity-distance mapping matrix in estimating the
distances between nodes and anchors. Substantial topo-
logical information can be preserved by the mapping
matrix. The pattern-driven scheme (PDS) [15] algorithm
applies various distance estimation algorithms for an-
chors based on their exhibited patterns. Next, the an-
chor supervised [16] algorithm is presented. In this
approach, every anchor selects a set of reliable anchors
for which distance estimates can be accurately obtained.
Later, a location algorithm that uses the expected hop
progress (EHP) was proposed in [17, 18]. A modified
EHP approach is obtained by redefining a new cumula-
tive distribution function (CDF) and achieves satisfactory
localization results [19]. The algorithm depends not only
on the communication radius of the anchors, but also
on the communication radius of the inter-nodes, which
is closer to the real Euclidean distance between any two
nodes. Recently, Farrukh Shahzad proposed a scheme,
called DV-maxHop [20], that can achieve similar or bet-
ter performance by just introducing a control parameter
MaxHop in the first phase of the DV-Hop algorithm.
However, most of these methods do not achieve better
positioning accuracy or achieve better accuracy at the
expense of high computational or communication over-
heads. Therefore, a low-cost and high-precision algo-
rithm for anisotropic WSNs is necessary.
In this paper, we propose a novel range-free

localization algorithm based on the modified EHP and a
particle swarm optimization algorithm (PSO) [21] that is
tailored for anisotropic WSNs. First, we assume that the
degree of irregularity (DOI) of the communication ra-
dius is equal to zero. Then, the distance from regular
nodes to reliable anchors can be estimated precisely by
introducing a control parameter, MaxHop. The reliable
anchors are properly chosen following a new reliable an-
chor selection strategy. Next, we use the mathematical
expectation of CDF to estimate the distances between
the regular nodes and the reliable anchors. Finally, the
PSO algorithm is used for localization optimization.
The organization of this paper is as follows. Section 2

presents the localization model of multi-hop AWSN.
Then, the proposed range-free localization algorithm and
PSO algorithm are proposed in this section. The simula-
tion results and performance evaluations are analysed in
Section 3. Finally, Section 4 concludes the paper.

2 Methodology
2.1 Network model and overview
For our study, wireless nodes are deployed in a
two-dimensional (2-D) square area. In the anisotropic net-
work case, there are one or two rectangular structures or
holes where nodes cannot be deployed. As shown in Fig. 1,

under such anisotropic terrain conditions, N sensor nodes
are uniformly deployed in a square area S that contains a
rectangular obstacle, which form a C-shaped network top-
ology. The signal does not pass through these obstacles.
All nodes are assumed to have the same transmission
capability, except when we consider the effect of DOI
during simulation. Each node can directly communi-
cate with any other node in the disc, with that node
as the centre and radius. Each anchor node is
equipped with a GPS receiver, and they are aware of
their positions. The other nodes, called regular nodes,
do not know their own positions [22, 23].
The major symbols used in this paper are listed as

follows:

N = the total number of all nodes;
Na = the number of anchor nodes (ANs);
Nu = the number of unknown nodes (UNs);
R = the communication range or radius of each
node (m);
λ = the node density in the monitoring area;
area(k, R) = the k-th node’s coverage area with the k-th
sensor as the centre and radius R.

In multi-hop AWSN localization, the goal is to esti-
mate the locations of all UNs by using ANs and partial
information of the distances between various pairs of
ANs and UNs. We suppose that the i-th anchor node
broadcasts data packet containing its position and the
j-th regular node receives the data packet through
multi-hop communication. Then, we employ the short-
est path method to obtain a possible path between a
source sensor and a destination sensor with the

Fig. 1 Network model
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minimum number of hops. Let nij be the number of
hops between the i-th anchor and the j-th regular node.

The distance d̂i− j from the j-th regular node to the i-th
anchor is estimated as follows [24]:

d̂i− j ¼ nijhs ð1Þ

where hs is a predefined average hop distance. To a large
extent, this distance estimation approach relies on the
high density of WSNs.
Although heuristic and analytical algorithms are

proven to be sufficiently accurate in isotropic WSNs,
their accuracies are not optimal in anisotropic WSNs. It
is very likely that the shortest path between an anchor
node and a regular node is curved in an AWSN, thereby
resulting in an overestimation of the hop count between
these two nodes. According to Fig. 1, the hop size be-
tween nodes A1 and U1 is six hops; however, the number
of hops between them is far smaller due to obstacles.
The larger the hop size estimation errors are, the greater
the distance estimation errors are, and consequently, the
less accurate the localization is. To solve this problem,
we propose a novel localization algorithm that is based
on new reliable anchor selection strategy. We introduce
a parameter MaxHop in the first phase of our algorithm.
The algorithm ignores the information if the hop count
is greater than MaxHop. In the anisotropic network,
when two nodes locate at two ends of an obstacle group,
we ignore the farther anchor which will cause a detoured
path, and consequently, the shortest path between two
nodes will not be curved. Then, the EHP method is
adopted to calculate the average hop distance. In Fig. 1,
regular node U1 will select A4 and A3 as reliable an-
chors. We can use the average hop distance to make the
distance calculation among regular node U1 and reliable
anchors more precise in AWSNs. In the next section, we
derive the expression for hs that is exploited later in our
algorithm.

2.2 The proposed algorithm and its analysis
2.2.1 Hop distance derivation using the EHP approach
The EHP algorithm is based on an accurate analysis of
hop progress in WSNs. We can derive the distance be-
tween any two nodes through expected hop progress. In
the network model with uniform sensor transmission
range and arbitrary node density, the expected hop pro-
gress of each hop in this network is the same. Therefore,
the expected hop progress can be used to replace the
average hop distance. In this section, for the sake of clar-
ity, we discuss only two-hop communication in which
the i-th node communicates with the j-th node through
an intermediate node k. For clarity, let the random vari-
ables X and Z represent the distances di-j and di-k,

respectively. Then, we use the expectation of Z to
represent the average hop distance, as shown in for-
mula (2) [25].

hs ¼ E Zf g ð2Þ

To obtain a more accurate value for hs , we use the
conditional cumulative distribution function (CDF) FZ ∣

X(z) = P(Z ≤ z| x) of Z to represent the average hop dis-
tance. In Fig. 2, if Z ≤ z is guaranteed, then there are no
nodes in the dashed area A. We define the conditional
CDF in formula (3).

FZjX zð Þ ¼ P Z≤zjxð Þ ¼ P A0jQ1ð Þ ð3Þ
where Q1 is the potential forwarding area wherein the k-
th node communicates directly with the j-th and i-th
nodes and P(A0|Q1) is the probability that event A0 oc-
curs given event Q1. A0 indicates that there are no nodes
in the dashed area A, and Q1 indicates that there is at
least one node in the potential forwarding area Q, which
depends on communication radius R. The potential for-
warding area Q is given by formula (4).

Q ¼ area i;Rð Þ∩area j;Rð Þ ¼ A∪B ð4Þ

The probability of there being K nodes in area A fol-
lows the binomial distribution X~B(N, p), where p = A/
S. For relatively large N and small p, B(N, p) can be ac-
curately approximated by a Poisson distribution, as
shown in formula (5).

FZjX Zð Þ ¼ e−λA ð5Þ
where λ = N/S is the average node density of the net-
work. We can easily calculate the area of A using geo-
metrical properties and trigonometric transformations. It
is straightforward to show that:

A ¼ R2 θ þ θ
0 þ θ

0
z−

sin 2θð Þ þ sin 2θ
0� �

þ sin 2θ
0
z

� �
2

0
@

1
A

−z2 θz−
sin 2θzð Þ

2

� �

ð6Þ
where

θ ¼ arccos x2= 2Rxð Þ� �
θ0 ¼ arccos x2= 2Rxð Þ� �

θz ¼ arccos z2−R2 þ x2
� �

= 2zxð Þ� �
θ0z ¼ arccos R2−z2 þ x2

� �
= 2Rxð Þ� �

8>><
>>:

ð7Þ

Combined with the above analysis, the average hop
distance of the whole network can be derived as fol-
lows [26]:

Wen et al. EURASIP Journal on Wireless Communications and Networking        (2018) 2018:299 Page 3 of 13



�hs ¼ Exðα 1−FZjX αð Þ� �þ Ex

Z R

α
1−FZjX zð Þ� �

dz

� �
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Z 2R

R
α 1−FZjX αð Þ� �

f X xð Þdxþ
Z 2R

R
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α
1−FZjX zð Þ� �

dz

� �

f X xð Þdx
ð8Þ

where α = x−R and fX(x) is the pdf of X, which can be
substituted by 1/R, because fX(x) is a uniform random
variable over [R,2R]. If R is fixed, it is very likely that the
per-hop distance increases if the number of nodes lo-
cated inside Q increases. According to formula (8), �hs
can be derived if the node density and the transmission
range are given. In this way, a more accurate average
hop distance can be easily obtained in AWSNs through
finite integrals.
When �hs is determined, each unknown node collects

the gradients of all its neighbouring nodes relative to an
anchor node and uses the local mean to replace the hop
counts. As shown in formula (9), the Amorphous method
is adopted to calculate the minimum hops from node j to
anchor nodes and the minimum hops is reduced by 0.5
through previous experimental statistics [7].

S j ¼

X
j0∈neighbours jð Þ

hj þ hj0

neighbours jð Þj j þ 1
−0:5 ð9Þ

where hj and hj' are the smallest hop counts of the un-
known node j and the neighbouring node of node j, re-
spectively, to the anchor node; neighbours(j) is the set of
all neighbouring nodes of node j.

2.2.2 Anchor selection strategy
In general, the greater the hop count between two
nodes, the higher the distance estimation error in the
AWSN. To solve this problem, we propose a new reli-
able anchor selection strategy in which a hop size
threshold is set; we call this parameter MaxHop [20].
When a node receives the position of any anchor with
its hop count, the algorithm ignores the information if
the hop count is greater than MaxHop; consequently,
the information is not propagated further. This algo-
rithm reduces the superposition of this cumulative error,
improves the positioning accuracy, and reduces the net-
work traffic. To obtain better positioning accuracy and
low overheads, the threshold MaxHop should be set as
close as possible to the smallest integer value on the
basis of the successful positioning of all nodes.
The size of the hop threshold MaxHop is mainly

determined by the connectivity and anchor node
density of the network. Its expression can be derived
as follows [27]:

MaxHop >
1
R

ffiffiffiffiffiffiffiffiffi
ST
Naπ

r
ð10Þ

where R is the communication radius of the node, Na

is the total number of anchor nodes in the network,
S is the acreage of the network area, and T is the
minimum number of anchor nodes that are required
for locating unknown nodes. In practical engineering,
it is difficult to achieve a highly uniform distribution
of nodes. To improve the positioning rate and posi-
tioning accuracy of the nodes, the value of N should
be increased appropriately to ensure the overall cover-
age of the network. In the next section, we conduct

Fig. 2 Distance analysis
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an experiment to further explore the appropriate
value of the threshold MaxHop. Then, we use the
corrected hop counts and formula (1) to estimate the
distances between the unknown nodes and the anchor
nodes.

2.2.3 Particle swarm optimization
PSO is an optimization algorithm that was proposed
by American researchers in 1995 for mimicking the
collective behavior of intelligent animals. The PSO
searches the space of a fitness function by adjusting
the trajectory of individual particles. In other words,
the purpose of this algorithm is to find the global
optimum until the fitness function no longer im-
proves. We use the position of the best particle after
a fixed number of iterations as the estimated location
of the target. The advantages of this algorithm are as
follows: provides fast convergence and high accuracy,
is easy to implement and requires few parameters [28,
29]. In most applications, PSO is used as an evolu-
tionary computation technology. The main steps of
the PSO algorithm are as follows:

1. Initialize M particles. The particle iteration number
is expressed as t. In the search space, the position
and velocity are expressed as formula (11).

Xt
a ¼ xta1; x

t
a2

� �
V t

a ¼ vta1; v
t
a2

� � ; a ¼ 1; 2;…;M ð11Þ

where Xt
a is the current position of particle (a), V t

a is the
velocity vector of particle a, and M is the total number
of particles.

2. Select a suitable fitness function. It is used to judge
the individuals in the population.

3. Update the velocity and position of the particle. At
each iteration number (t + 1), the velocity and
position of particle (a) are updated according to the
following two equations:

V tþ1
a ¼ V t

a þ c1 � pbesta−X
t
a

� �þ c2 � gbesta−X
t
a

� �
Xtþ1

a ¼ Xt
a þ V tþ1

a

ð12Þ
where pbest is the individual extremum, gbest is the glo-
bal extremum, and c1 and c2 are cognition coefficients,
which are random values in the range (0, 2).

4. Judge whether the termination conditions are
satisfied. If the conditions are satisfied, the cycle is

terminated; otherwise, step 2 and step 3 are
repeated.

5. Select the global extremum. When the maximum
number of iterations is reached, the value of
gbest that is selected by the fitness function is
used as the estimated coordinates of the
unknown nodes.

PSO is widely used in various fields, but less research
has been conducted on the particle swarm optimization
algorithm in AWSNs. The localization problem can be
regarded as an optimization problem, and we can use
PSO to correct the estimated positions. Therefore, we
mainly study the optimization effect of PSO on the posi-
tioning accuracy under the AWSN environment. In this
process, it is very important to determine the fitness
function. PSO begins with a group of random particles
and finds the optimal solution through an iterative
process. In the iterative process, the particle updates it-
self by tracking “two optimal solutions”: one is the opti-
mal solution obtained by the particle, namely, the local
best position, and the other is the optimal solution ob-
tained by the entire particle group, namely, the global
best position. The position of the optimal particle is the
coordinate position of the unknown node. Thus, the se-
lection of the fitness function will directly affect the po-
sitioning accuracy. The distance error between the
anchor nodes is usually used as a fitness function, as
shown by formula (13).

fitness x; yð Þ ¼
XNa

i¼1

η f 2i

f i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xið Þ2 þ y−yið Þ2

q
−d̂i− j

				
				

ð13Þ

where x and y are the coordinates of the particle, xi and
yi are the coordinates of node i, fi is the absolute value
of the distance error between beacon node i to particle a
and unknown node j, η = 1/hopi represents weight values
for each anchor node, and fitness (x, y) is the particle fit-
ness function. The detailed pseudo-code of the proposed
algorithm, which is based on EHP and PSO, is described
in Table 1.

3 Experimental results and discussions
In this section, the performances of the proposed im-
proved EHP algorithm (proposed) and the PSO position-
ing algorithm (proposed-PSO) are evaluated by building
a simulator in Matlab 2016(a). The performance baseline
is given by Amorphous [11], DV-Hop [10], improved
EHP [24] and the corresponding DV-maxHop [20] algo-
rithm for comparison under the same network settings.
In all simulations, nodes are uniformly deployed in a
2-D area S = 100 × 100m2. We consider an anisotropic
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topology that is commonly used in the context of WSNs,
namely, the C-shaped topology, as shown in Fig. 1. In
addition, we examine the performance of the algorithm
in the isotropic network. We always assume that the
number of anchors Na is set to 20 and that the total
number of nodes N is set to 100, 200, ..., 500, and 600.
The transmission capability of R = 20 m is the same
across the network. All simulation parameters are sum-
marized in Table 2, and the simulation results are ob-
tained by averaging over 100 trials.

To evaluate the performance of the proposed algo-
rithm, three metrics are utilized, which are defined as
follows:

� Localization error

The localization error is the sum of the distances be-
tween the nodes’ actual positions (xj, yj) and estimated
positions ðx̂ j; ŷ jÞ , divided by the product of the number

of location nodes N and the communication radius R. It
represents the position estimation deviation with respect
to the transmission range, and we use the normalized
root-mean-square error (NRMSE), which is defined as
follows:

NRMSE ¼

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j−x̂ j
� �2 þ y j−ŷ j

� �2
r

N � R
ð14Þ

� Distance error

Table 1 Pseudo code of localization algorithm

Table 2 Simulation parameters

Parameter Value

S 100 × 100m2

Na 20 or 15:5:45

λ 0.01:0.01:0.06

ri 20m

M 50

tmax 100
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The size of the distance error directly affects the
localization error. The distance error is the difference
between the actual distance and the estimated distance
between the two nodes, which can be represented by the
mean distance error (MDE) and the distance estimation
error (DER), as defined in formula (15) and formula
(16), respectively.

MDE ¼

XNa

i¼1

XNL

j¼1

di− j−d̂i− j

			 			
Na � NL

ð15Þ

DER ¼
di− j−d̂i− j

			 			
di− j

ð16Þ

where Na is the total number of anchor nodes; d̂i− j and
di − j are the estimated distance and actual distance, re-
spectively, between anchor node i and unknown node j.
MDE refers to the average distance error from node i to
j, and DER indicates the relative error between the esti-
mated distance and the true distance.

� Localization percentage

Due to the hop threshold limit, the percentage of
unknown nodes for successful positioning cannot be
100% because this would result in the absence of
anchor nodes. However, the percentage of positioning
nodes is an important index for evaluating the

localization algorithm. The localization percentage can
be expressed as follows:

localizable percentage ¼ NL

Nu
� 100% ð17Þ

3.1 Select the appropriate value of MaxHop
For the successful positioning of all nodes, the thresh-
old MaxHop should be as close as possible to the
smallest integer value. This will not only improve the
positioning accuracy but also reduce the computa-
tional and communication overheads. However, ac-
cording to formula (10), the calculated values of
MaxHop are often too small. Figure 3 illustrates that
the localization nodes’ percentage increases with an
increasing hop threshold MaxHop. This is because
the larger the hop threshold MaxHop is, the more re-
liable the selected anchor nodes are. When enough
anchor nodes are used to locate an unknown node,
the probability of the unknown node being success-
fully positioned increases. According to this figure,
when MaxHop is equal to 3, the localization node
percentage is close to 100%, regardless of whether the
number of anchor nodes in the network is set to 20
or 30. Therefore, we should appropriately increase
MaxHop to meet the positioning requirements. In our
experiments, we always choose the value of MaxHop
to be 3.

Fig. 3 The influence of MaxHop on localization percentage
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3.2 Comparison of MDE and NRMSE with various node
densities
Figure 4 shows the localization MDEs achieved by
Amorphous, DV-Hop, improved EHP, DV-maxHop, pro-
posed and proposed-PSO for various node densities.
The MDE decreases as the node connectivity increases.
According to this figure, the results demonstrate that
the MDE of the proposed algorithm is less than those of
its counterparts under the same network settings. How-
ever, when the node density is low, the DV-maxHop al-
gorithm outperforms our algorithm. The MDE of the
proposed and proposed-PSO algorithms are approxi-
mately the same because the two algorithms use the
same method to calculate the distance between nodes.
In determining the location of a node, the proposed al-
gorithm uses maximum likelihood estimation, and the
proposed-PSO algorithm uses the PSO algorithm.
Next, we discuss the localization errors of the pro-

posed algorithm and other algorithms under different
node densities. According to Fig. 5, the proposed algo-
rithm, with or without the PSO algorithm, always out-
performs its counterparts. Our proposed algorithm is
approximately two, four, and five times more accurate
than DV-maxHop, improved EHP, DV-Hop, and
Amorphous, respectively. Furthermore, from this fig-
ure, the NRMSE that is achieved by the proposed al-
gorithm slightly decreases and then quickly saturates
when the node density λ increases compared to other
algorithms. This is expected since the approximation
in formula (1) is more realistic when λ is large.

Hence, more accurate localization is achieved. At
smaller node densities, the algorithm can also obtain
satisfactory results. This indicates that this algorithm
can achieve accurate positioning at smaller anchor
node density, thereby reducing the localization cost of
wireless sensor nodes. This further demonstrates the
efficiency and suitability of the proposed localization
algorithm in AWSNs.

3.3 Influence of the number of anchor nodes and
iteration times
In anisotropic networks, the node density is set to 0.06,
and the communication radius is set to 20. Figure 6
shows the NRMSE achieved by Amorphous, DV-Hop,
improved EHP, DV-maxHop, proposed and proposed-
PSO when the number of anchor nodes is varied from
15 to 45. When the number of anchor nodes is less than
15 (the density of the anchors is less than 0.0015), the
percentage of regular nodes for successful positioning
cannot be 100% due to the absence of anchor nodes.
The NRMSE achieved by the proposed algorithms sig-
nificantly decreases initially and then decreases slightly
when the number of anchor nodes increases. From the
figure, the proposed-PSO algorithm outperforms the
traditional algorithms in terms of accuracy.
Figure 7 illustrates the energy consumption and

localization NRMSE with different iteration numbers.
We can see that with iterations increasing, the PSO al-
gorithm can converge quickly to achieve higher accuracy
in multi-hop AWSN localization. On the other hand, as

Fig. 4 The influence of node density on MDE
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the number of iterations increases, so does the runtime,
which means that the algorithm consumes more energy.
Therefore, the faster convergence can enable us to save
the searching overhead.

3.4 Comparison of localization NRMSE CDFs of various
localization methods
In Fig. 8, we first evaluated the localization results of the
proposed algorithms by comparing them to those of

DV-maxHop, improved EHP, DV-Hop and Amorphous
by utilizing cumulative distribution function plots. Using
the proposed algorithm, 87% (90% with proposed-PSO)
of the regular nodes could estimate their positions
within almost a fifth of their transmission capabilities. In
contrast, 67% of the nodes achieved the same accuracy
as DV-maxHop, approximately 55% as improved EHP,
approximately 40% as DV-Hop, and only 28% as
Amorphous. This further demonstrates the efficiency of

Fig. 6 NRMSE vs. number of anchor nodes in AWSN

Fig. 5 NRMSE vs. node density in AWSN
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the proposed localization algorithm and indicates that
the proposed algorithm is more suitable for AWSNs.

3.5 Precision analysis of the algorithms in an isotropic
WSN
The algorithm we proposed above is also the most ac-
curate in isotropic WSNs in which the nodes are uni-
formly deployed in a 2-D square area S = 100 × 100m2.

Under the same network settings but a different network
topology, we have also carried out a series of experimen-
tal studies. Figure 9 plots the localization NRMSEs
achieved by Amorphous, DV-Hop, improved EHP,
DV-maxHop and our proposed algorithms. According to
this data, the localization error of the proposed-PSO
algorithm is small in isotropic WSNs and the positioning
accuracy is greatly increased in the middle square area S

Fig. 7 The energy consumption and convergence analysis of PSO when λ = 0.01

Fig. 8 Localization NRMSE’s CDF for different localization methods in AWSN
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= 90 × 90m2. This is because the approximation in for-
mula (1) of the nodes in the middle of the region be-
comes more realistic, which makes position estimation
more accurate. In Fig. 10, the NRMSEs of the two maps
are 0.2013 and 0.1081. The localization accuracy in
Fig. 10b is higher than that in Fig. 10a.
Figure 11 shows the localization NRMSE CDF under a

node density of 0.06 for square area S = 100 × 100m2

and square area S = 90 × 90m2. According to this figure,
the localization NRMSE CDF of Fig. 11b is far greater
than that of Fig. 11a overall. Figure 11b shows that the
NRMSE CDF of the proposed-PSO algorithm in the
interval of length 0.3 is 99.49. This result indicates that
the localization NRMSE of all nodes is less than 0.3.

This further demonstrates that our algorithm is the most
accurate in isotropic WSNs, especially in the middle area
S = 90 × 90m2.

4 Conclusion
In this paper, a novel range-free localization algorithm
for multi-hop anisotropic wireless sensor networks is
presented. The simulation result demonstrates that our
modified algorithm has higher localization precision
compared with state-of-the-art algorithms. In addition,
our algorithm has achieved good results in isotropic
WSNs, especially in the middle of the location area. In
general, whether applied with or without the PSO algo-
rithm, our proposed algorithm always outperforms the

Fig. 9 The influence of node density on NRMSE: a S = 100 × 100m2; b S = 90 × 90 m2

Fig. 10 Node position deviation in isotropic WSN: a S = 100 × 100m2; b S = 90 × 90 m2
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most representative WSN localization algorithms.
However, if the optimization algorithm is added, the en-
ergy consumption will increase while increasing the
localization accuracy. As a future work, we plan to study
the heterogeneous wireless sensor networks where all
nodes’ communication ranges are different and we are
also planning to study the influence of the irregular
communication range in AWSN.
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