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Abstract

To improve spectrum sensing performance, a cooperative spectrum sensing method based on information geometry
and fuzzy c-means clustering algorithm is proposed in this paper. In the process of signal feature extraction, a feature
extraction method combining decomposition, recombination, and information geometry is proposed. First, to
improve the spectrum sensing performance when the number of cooperative secondary users is small, the signals
collected by the secondary users are split and reorganized, thereby logically increasing the number of cooperative
secondary users. Then, in order to visually analyze the signal detection problem, the information geometry theory is
used to map the split and recombine signals onto the manifold, thereby transforming the signal detection problem
into a geometric problem. Further, use geometric tools to extract the corresponding statistical characteristics of the
signal. Finally, according to the extracted features, the appropriate classifier is trained by the fuzzy c-means clustering
algorithm and used for spectrum sensing, thus avoiding complex threshold derivation. In the simulation results and
performance analysis section, the experimental results were further analyzed, and the results show that the proposed
method can effectively improve the spectrum sensing performance.

Keywords: Cooperative spectrum sensing, Information geometry, Decomposition and recombination, Fuzzy
c-means clustering algorithm

1 Introduction
With the development of wireless communication, spec-
trum resources have become increasingly scarce, but most
of the existing spectrum resources have not been fully uti-
lized. Cognitive radio (CR) technology allows secondary
users (SUs) to access the spectrum when the authorized
primary user (PU) is idle, thus effectively alleviating the
spectrum scarcity problem [1]. In CR, spectrum sensing
is a key step that is mainly used to sense the existence
of the PU [2].

1.1 Related work
Classical spectrum sensingmethods include energy detec-
tion, matched filter detection, and cyclic eigenvalue detec-
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tion [3]. As the simplest spectrum sensing algorithm,
energy detection has low computational complexity and
does not require prior information from the PU. There-
fore, this method has been widely used. However, the
algorithm is susceptible to noise uncertainty, which will
greatly reduce detection performance [4, 5]. Matching fil-
ter detection is the optimal signal detection algorithm
when all the information of the PU is known. However,
the disadvantages of this method are also very obvious,
because it requires prior knowledge of the PU that include
the packet format and sequence, and the modulation type
[6, 7]. The calculation of cyclic eigenvalue detection is rel-
atively complicated, so it cannot be detected in real time;
therefore, rapid detection is not possible [8].
The application of random matrix theory to spectrum

sensing has attracted the interest of many researchers
[9, 10]. By acquiring the sensing data of multiple SUs and
composing the sampling signal matrix, and then calculat-
ing the covariance matrix, the corresponding eigenvalue
is finally calculated as the decision statistic. Nowadays,
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many cooperative spectrum sensing algorithms based
on random matrices have been proposed. Liu et al.
proposed a maximum to minimum eigenvalue (MME)
spectrum sensing method. The modified method uses
the extracted MME feature value as a statistical fea-
ture of the signal and compares with a preset thresh-
old to determine whether the PU exists [11]. However,
when the number of sampling points is insufficient, the
detection performance is obviously degraded. Liu et al.
proposed a spectrum sensing method for the difference
between the maximum eigenvalue and the average energy
(DMEAE) . The method uses the DMEAE feature as a sta-
tistical feature of the signal and then compares it with a
preset threshold to achieve spectrum sensing [12]. Tulino
et al. proposed a spectrum sensing method based on the
difference between themaximum eigenvalue and themin-
imum feature (DMM) [13]. Similar to the above method,
the DMM feature is also used as a statistical feature, and
spectrum sensing is implemented by comparing with a
preset threshold. However, this method has poor per-
ceived performance when the number of cooperative SUs
is small and the signal-to-noise ratio (SNR) is low. A
statistical feature extraction method based on decompo-
sition and recombination (DAR) is proposed. To logically
increase the number of cooperative users, the method
firstly splits and reorganizes the signal matrix, thereby
effectively improving the spectrum sensing performance
[14]. From the above analysis, it can be known that the tra-
ditional spectrum sensing based on random matrix needs
to derive and calculate the threshold of the decision in
advance. The whole process is complex, and there are
problems such as inaccurate thresholds.
With the rapid development of information geometry

theory, the concept of statistical manifolds is used to
transform signal detection problems into geometric prob-
lems on manifolds, and then geometric tools can be used
to visually analyze detection problems. Liu et al. used
information geometry theory to detect radar signals. At
the same time, a matrix constant false alarm rata (CFAR)
and a distance detector based on geodesic were proposed
[15]. Chen applied the information geometry method to
spectrum sensing, increased the measurement of mani-
folds, and obtained the decision threshold through simu-
lation [16]. Lu et al. used the matching method to obtain
the closed expression of the decision threshold, which has
higher computational complexity [17]. However, in spec-
trum sensing, the derivation of the threshold is not only
complicated, but there is always some deviation in using
the fixed decision threshold to determine whether the PU
exists.
In recent years, machine learning has developed rapidly,

which also provides a new idea for spectrum sensing.
Spectrum sensing can be considered as a problem of
two classifications that is whether the PU exists [18–20].

Kumar proposed a spectrum sensing method based on
K-means clustering algorithm and energy feature. The
method takes the energy value of the signal as the feature
and then uses K-means clustering algorithm to classify
these features [21]. Zhang et al. proposed a spectrum sens-
ing method based on K-means and signal features that
combines the feature extraction methods in the random
matrix and selects MME, DMM, and DMEAE as the char-
acteristics of training and classification [22]. Thilina et al.
used K-means, Gaussian mixture model (GMM) in unsu-
pervised learning, and neural network (NN) and support
vector machine (SVM) in supervised learning to study
spectrum perception [23]. Xue et al. proposed a cooper-
ative spectrum sensing algorithm based on unsupervised
learning. The dominant features and the maximum and
minimum eigenvalues are used as features. K-means clus-
tering and GMM are selected as the learning framework
[24]. Compared with the traditional spectrum sensing
method, spectrum sensing based onmachine learning can
effectively eliminate the cumbersome threshold calcula-
tion and has better adaptability. Similarly, the method
does not need to know the priori information of the PU.

1.2 Contributions
Based on the above researches, this paper proposes a
cooperative spectrum sensing method based on infor-
mation geometry and fuzzy c-means (FCM) clustering
algorithm (IGFCM). In the feature extraction process, the
order-DAR (O-DAR) and interval-DAR (I-DAR) are intro-
duced to obtain two new matrices, then two covariance
matrices of two new matrices are calculated separately,
and then two covariance matrices are mapped to the man-
ifold using information geometry theory. Then, use the
geodesic distance to calculate the distance on the man-
ifold and use it as a feature. Finally, the FCM clustering
algorithm is used to implement spectrum sensing. The
spectrum sensing method proposed in this paper does
not require any prior information about the communi-
cation system, and the unmarked training data is more
easily obtained. In the experiment, the spectrum sensing
performance of IGFCM was further analyzed. The simu-
lation results show that the method effectively improves
the spectrum sensing performance.

1.3 Methods or experimental
The main structure and arrangement of this paper are as
follows. Section 2 mainly introduces the system model
of cooperative spectrum sensing. Section 3 is to improve
the spectrum sensing performance in the case of a small
number of cooperative users and to analyze the spectrum
sensing problem more intuitively. A signal feature extrac-
tion method based on split recombination and informa-
tion geometry is proposed. Section 4 uses FCM clustering
algorithm to achieve spectrum sensing. Section 5 uses
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the amplitude modulation signal to verify the proposed
method.

2 Cooperative spectrum sensing systemmodel
According to the perception of PU by a single SU in
a cognitive radio network (CRN), the following binary
hypothesis [25] about PU can be obtained. H0 indicates
that the PU signal does not exist, andH1 indicates that the
PU signal exists.

x(n) =
{
w(n) H0
s(n) + w(n) H1

(1)

where s(n) represents the signal transmitted by the PU
and w(n) is the ambient noise. Since CR is primarily used
for relatively fixed networks, the actual channel model is
similar to additive white Gaussian noise (AWGN). The
systems false alarm probability (Pf ) and detection proba-
bility (Pd) can be defined as:

Pf = P[H1|H0] (2)

Pd = P[H1|H1] (3)

In CRN, spectrum sensing is often done in complex envi-
ronments. Therefore, the SU needs to consider peripheral
multi-path fading, shadow effects, and hidden terminals
in the process of sensing the PU [26, 27]. Cooperative
spectrum sensing reduces the impact of environmental

factors by increasing the diversity of SUs. Therefore, to
improve the performance of the spectrum sensing system,
the method of multi-SU cooperative spectrum sensing is
adopted. First, SUs collect information about the autho-
rized channel and then transmits the information to a
fusion center (FC) through the reporting channel; finally,
the unified processing by the FC and the final decision
is made. Cooperative spectrum sensing system model is
shown in Fig. 1.
Assuming that there are M SUs in a CRN, the signals

collected by the M SUs can form a signal vector matrix
xi = [xi(1), xi(2), . . . , xi(N)], where X = [x1, x2, . . . , xM]T
represents the signal sample value of the ith SU. Therefore,
X is a matrix ofM × N dimensions.

X = [x1, x2, . . . , xM]T =

⎡
⎢⎢⎢⎣

x1(1) x1(2) · · · x1(N)

x2(1) x2(2) · · · x2(N)
...

...
. . .

...
xM(1) xM(2) · · · xM(N)

⎤
⎥⎥⎥⎦(4)

For ease of reference, the symbols and notations used in
this paper are summarized in Table 1.

Fig. 1 Cooperative spectrum sensing system model
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Table 1 Summary symbols and notations

Symbols Notations
w(n) Gaussian noise
s(n) The signal transmitted by the PU
x(n) The signal received by the SU
N The number of sampling points
M The number of SUs participating in CSS
H1, H0 PU exists, PU does not exist
pf , pd False alarm probability and detection probability
xi The signal acquired by the ith SU
X Signal matrix
R Covariance matrix corresponding to X
XT The transposition of X
YO−DAR , YI−DAR A matrix after O-DAR and I-DAR
RO , RI Covariance matrix corresponding to YO−DAR

and YI−DAR

x An n-dimensional sample
θ A parameter vector, a point on the manifold
� A random variable
S The probability distribution function family
� Probability distribution space
Rw , Rs + Rw Covariance matrix corresponding to X under

H0 and H1

q The split parameter
s The length of the split signal vector after splitting
ROk , R

I
k The kth noise signal covariance matrix after

O-DAR and I-DAR
τ Iteration step size
l Iteration step
R
O
, R

I
Riemann mean of ROk and RIk

d1, d2 Distance between the perceived signal and

reference point R
O
and R

I
on the manifold

D Geodesic distance feature vector (GDFV)
D Training set
Zc The set of training feature vectors belonging

to class c
�c Center point of Zc
ucj The membership degree
D The feature extracted under the channel of the

unknown PU state
C Number of clusters
ν Smoothing index or fuzzy weighted index
m Error metric
ε Fault tolerance factor

3 Feature extraction based on decomposition
and recombination and information geometry

3.1 Feature extraction model
In the feature extraction process, the noise environment
needs to be estimated first, and two covariance matri-
ces are obtained by splitting and recombining the noise
signal matrix in sequence and interval. The model of
feature extraction based on decomposition and recombi-
nation and information geometry is shown in Fig. 2. In
order to accurately estimate the noise environment, col-
lect enough noise signal matrices and perform O-DAR
and I-DAR and covariance transformation (as shown in
the box in Fig. 2). Then, use the Riemannmean calculation
method to solve the Riemann mean of these covariance
matrices. Similarly, the signal matrix with the perception
is also subjected to two kinds of split recombination, and
the covariance matrix is transformed. Finally, the distance
from the covariance matrix obtained from the environ-
ment to be perceived to the Riemann mean is calculated.
Then, use this distance as a statistical feature of the signal.

3.2 Information geometry overview
According to the matrix X, the corresponding covariance
matrix can be calculated as shown in Eq. 5.

R = 1
N
XXT (5)

From the theory of information geometry, we assume a
set of probability density functions p(x|θ), where x is an
n-dimensional sample belonging to the random variable
�, x ∈ � ∈ Cn. θ is an m-dimensional parameter vector,
θ ∈ � ⊆ Cm. Therefore, the probability distribution space
can be described by parameter set �. The probability
distribution function family S is as shown in Eq. 6.

S = {
p(x|θ)|θ ∈ � ⊆ Cm}

(6)

Under a certain topological structure, S can form a micro-
scopic manifold, called a statistical manifold, and θ is the

Fig. 2 Feature extraction model
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coordinate of the manifold. From the perspective of infor-
mation geometry, the probability density function can be
parameterized by the corresponding covariance matrix.
Under the two hypotheses H0 and H1 of spectrum sens-
ing, the signal can be mapped to a point that is Rw or
Rs + Rw, on the manifold. Rw and Rs + Rw are respec-
tively the covariance calculated from the noise matrix and
the signal matrix. In particular, both Rw and Rs + Rw are
Toeplitz Hermitian positive definite matrices [17]. There-
fore, a symmetric positive definite (SPD) matrix space
composed of a covariancematrix can be defined as an SPD
manifold.

3.3 Decomposition and recombination
In this section, we first split and reorganize the signal
matrix for SU to logically increase the number of coop-
erative SUs. The DAR is divided into O-DAR and I-DAR.
At the same time, the O-DAR and I-DAR are used to
process the signal vector perceived by the SU. The specific
algorithm is as follows [14]:
In the process of O-DAR, xi will be sequentially split into

sub-signal vectors of q(q > 0) segment s = N/q long.
Then, the result of splitting xi is as follows:

xi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi1 = [xi(1), xi(2), . . . , xi(s)]
xi2= [xi(s + 1), xi(s + 2), . . . , xi(2s)]
...
xiq = [

xi((q − 1)s + 1), xi((q − 1)s + 2), . . . , xi(qs)
]
(7)

The signal vector in Eq. 4 is split according to Eq. 7, and
then, the split sub-signal vector is recombined to obtain a
qM × s dimensional signal matrix YO−DAR.

YO−DAR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11
...

x1q
...

xim
...

xMq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(1) x1(2) · · · x1(s)
...

x1((q − 1)s + 1) x1((q − 1)s + 2) · · · x1(qs)
...

xi((m − 1)s + 1) xi((m − 1)s + 2) · · · xi(ms)
...

xM((q − 1)s + 1) xM((q − 1)s + 2) · · · xM(qs)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

In the process of I-DAR, select sampling points in the
sampled data every q−1 units and then recombine the sig-
nal matrixX. The sampled data is separated by q−1 units,
the sample points are reselected, and the signal matrix is
recombined. According to I-DAR, the sampled data can be
split into sub-signal vectors of q(q > 0) segment s = N/q
long. Then, the result of splitting xi is as follows:

xi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi1 = [
xi(1), xi(q + 1), . . . , xi((s − 1)q + 1)

]
xi2 = [

xi(2), xi(q + 2), . . . , xi((s − 1)q + 2)
]

...
xiq = [

xi(q), xi(q + q), . . . , xi((s − 1)q + q)
]

(9)

The signal vector in Eq. 4 is split according to Eq. 9, and
then, the split sub-signal vector is recombined to obtain a
qM × s dimensional signal matrix YI−DAR.

YI−DAR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11
...
x1q
...
xim
...
xMq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(1) x1(q + 1) · · · x1((s − 1)q + 1)
...
x1(q) x1(q + q) · · · x1((s − 1)q + q)
...
xi(m) xi(q + m) · · · xi((s − 1)q + m)

...
xM(q) xM(q + q) · · · xM((s − 1)q + q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

According to YO−DAR and YI−DAR, the corresponding
covariance matrices RO and RI can be calculated.

RO = 1
s
YO−DARYO−DAR

T (11)

RI = 1
s
YI−DARYI−DAR

T (12)

3.4 Riemannmean
First, SUs collect P environmental noise matrices. These
noise matrices are then processed using O-DAR and I-
DAR, and the covariance matrix will be calculated. Thus,
we can obtain RO

k (k = 1, 2, . . . ,P) and RI
k(k = 1, 2, . . . ,P)

matrices. Their Riemann mean objective functions are
shown in Eqs. 13 and 14, respectively.

	
(
RO)

= 1
P

P∑
k=1

D
(
RO
k ,R

O)
(13)

	
(
RI) = 1

P

P∑
k=1

D
(
RI
k ,R

I) (14)

RO and RI are the matrix when 	(•) takes the minimum
value, where D(• ,•) is the geodesic distance of two points
on the manifold described below.

RO = argmin 	
(
RO)

(15)

RI = argmin 	
(
RI) (16)
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Assume that for the case where there are two points R1
and R2 on the matrix manifold, R is located at the mid-
point of the geodesic line connecting the two points R1
and R2 on the manifold. Its expression is as shown in
Eq. 17.

R = R1/2
1

(
R−1/2
1 R2R−1/2

1

)1/2
R1/2
2 (17)

If P > 2, the Riemann mean will be difficult to calculate.
Literatures [28, 29] give a method of iteratively calculating
R using the gradient descent algorithm, and finally obtain
the Riemannmean calculation formula as shown in Eq. 18.

Rl+1= R1/2
l e−

τ
P
∑P

k=1 log
(
R−1/2
l RkR

−1/2
l

)
R1/2
l , 0≤τ ≤1 (18)

where τ is the step size of iteration and l indicates the
number of iteration steps. Therefore, we use the gradient
descent algorithm to calculate the Riemann matrix, and
get RO and RI .

3.5 Geodesic distance
The study of a geometric structure is mainly to study some
properties such as distance, tangent, and curvature on
the structure. There are many ways to measure the dis-
tance between two probability distributions on a statistical
manifold. The most common is the geodesic distance.
Assuming θ is a point on the manifold, the metric on the

statistical manifold can be defined byG(θ) of the following
equation, called the Fisher information matrix.

G(θ) = E
[

∂ ln p(x|θ)

∂θi
· ∂ ln p(x|θ)

∂θj

]
(19)

Due to the nature of themanifold curvature, we determine
the distance between the two points by defining the length
of the curve connecting the two points on the manifold.
Consider an arbitrary curve θ(t)(t1 ≤ t ≤ t2) between two
points θ1 and θ2 on an arbitrary manifold, where θ(t1) =
θ1, θ(t2) = θ2. Then, the distance between θ1 and θ2 can
be obtained along the curve θ(t) [30].

D(θ1,θ2)
�=

∫ t2

t1

√(
dθ

dt

)T
G(θ)

(
dθ

dt

)
dt (20)

It can be seen that the distance between θ1 and θ2 depends
on the selection of the curve θ(t). We call the curve that
makes Eq. 20 have the smallest distance as the geodesic,
and call the corresponding distance as the geodesic dis-
tance.
For any probability distribution, the calculation of

geodesic distance is more complicated, which has some
adverse effects on its application. For a multivariate Gaus-
sian distribution family with the same mean but different

covariance matrices, consider the two members of R1
and R2 in the covariance matrix. The geodesic distance
between them is shown in the following Eq. 21 [31].

D(R1,R2)
�=

√
1
2
trlog2

(
R−1/2
1 R2R−1/2

1

)

=
√√√√1

2

n∑
i=1

log2ηi
(21)

where ηi is the i eigenvalues of the matrix R−1/2
1 R2R−1/2

1 .
According to the feature extraction process and the

above analysis, the signal matrix to be perceived is split
and recombined in sequence and interval, and the covari-
ance matrix is transformed to obtain RO and RI . Then, we
use Eq. 21 to solve the corresponding geodesic distance.

d1 = D
(
RO,RO)

�=
√
1
2
trlog2

((
RO)−1/2RO(

RO)−1/2
)

=
√√√√1

2

qM∑
i=1

log2ηi

(22)

d2 = D
(
RI ,RI) �=

√
1
2
trlog2

((
RI)−1/2RI(RI)−1/2

)

=
√√√√1

2

qM∑
i=1

log2ηi

(23)

According to the geodesic d1 and d1, a two-dimensional
feature vector D = [d1, d2] is used to represent the signal
sensed by the SU. Finally, the feature vector D is used for
spectrum sensing.

4 Cooperative spectrum sensing based on FCM
clustering algorithm

The FCMclustering algorithm is based on the partitioning
method to obtain the clustering result.The basic idea is to
divide similar samples into the same class as much as pos-
sible. The FCM clustering algorithm is an improvement of
the common K-means clustering algorithm. The common
K-means clustering algorithm is hard to divide the data,
and the FCM clustering algorithm is a flexible fuzzy parti-
tioning [32].Compared with traditional spectrum sensing
methods, cooperative spectrum sensing based on FCM
clustering algorithm not only eliminates complex thresh-
old derivation but also has adaptability. The overall flow
of the IGFCMmethod described in this paper is shown in
Fig. 3.
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Fig. 3 The overall flow of the IGFCMmethod

The method of IGFCM is divided into two parts. In the
first part, the red box indicates the training process. In the
second part, the spectrum sensing process is represented
in the green box.

4.1 Training process based on FCM
Before training, we need to prepare a training set D:

D = [
D1,D2, . . . ,DJ

]
(24)

Among them,Dj is the feature vector extracted in the third
section and J represents the number of training feature
vectors. The clustering algorithm divides the unlabeled
training feature vectors into C non-overlapping clusters.
Let Zc denote the set of training feature vectors belonging
to class c, where c = 1, 2, . . . ,C, then

Zc = {
Dj|Dj ∈ Cluster c ∀ j

}
(25)

The class Zc has a corresponding center�c, and each sam-
ple Dj belongs to �c with a membership degree of ucj and
0 < ucj < 1. The objective function 
 of the FCM clus-
tering algorithm is shown in Eq. 26, and the constraint
condition is shown in Eq. 27.


 =
∑C

c=1

∑J

j=1
umcj

∥∥Dj − �c
∥∥2 (26)

∑C

c=1
ucj = 1, ∀ j = 1, 2, . . . , J (27)

where
∥∥Dj − �c

∥∥2 is an error metric and m is a weighted
power exponent of the membership degree ucj, which
may also be referred to as a smoothness index or a fuzzy
weighted index, andm > 1.
Using Lagrange to collate the objective function 
 and

constraints, the objective function shown in Eq. 28 is
obtained.


=∑C
c=1

∑J
j=1 u

m
cj
∥∥Dj − �c

∥∥2+λ1
(∑C

c=1 uc1 − 1
)

+ . . .+λj
(∑C

c=1 ucj − 1
)
+. . .+λJ

(∑C
c=1 ucJ−1

)(28)

Then, the membership degree ucj and the cluster center
�c are respectively derived, and the constraint condition
is substituted [33, 34], thereby obtaining the calculation
formulas of ucj and �c, as shown in the Eqs. 29 and 30.

ucj = 1
∑C

k=1

( ‖Dj−�c‖
‖Dj−�k‖

) 2
m−1

(29)

�c =
∑J

j=1

(
Djumcj

)
∑J

j=1 u
m
cj

(30)

The training process based on the FCM clustering algo-
rithm is as follows:
Step 1 Input training data set D, number of clusters

C, smoothing index m, initialization membership ucj, and
fault tolerance factor ε

Step 2 Calculate the class center �c by Eq. 30
Step 3 Calculate ν = ∥∥Dj − �c

∥∥2 , if ν < ε, the
algorithm stops; otherwise, continue to step 4
Step 4 Recalculate the membership degree ucj according

to Eq. 29, return to step 2
Step 5 Output class center point �c

4.2 Spectrum sensing process based on FCM
After the training is successful, we can get a classifier for
spectrum sensing, as shown in Eq. 31.

∥∥∥D − �1

∥∥∥
min

c=2,3,...,C

∥∥∥D − �c

∥∥∥ > ξ (31)

In Eq. 31, D denotes an unknown perceptual signal fea-
ture vector. If Eq. 31 is satisfied, it indicates that the PU
signal exists and the channel is not available; otherwise,
the PU signal does not exist and the channel can be used.
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Fig. 4 Unclassified feature vectors

The parameter ξ is used to control the probability of
missed detection and false alarm probability in the sensing
process [21].

5 Simulation results and performance analysis
The cooperative spectrum sensing algorithm based on
fuzzy c-means clustering algorithm is simulated and

analyzed in this section. The simulation PU signal is the
amplitude modulation (AM) signal, and the noise is Gaus-
sian white noise. In order to ensure the accuracy of the
experiment, according to the feature extraction method
described in Section 4, 2000 signal feature vectors were
extracted, of which 1000 are training samples and 1000 are
used as test samples.

Fig. 5 Classified feature vectors
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Fig. 6 ROC curves for different algorithms at SNR = − 13 dB andM = 2

Firstly, we analyze the clustering effect of FCM clus-
tering algorithm under this feature. Set the simulation
parameters: cooperative SU M = 2, sampling points
N = 1000, SNR = −11 dB. Figure 4 shows the signal
and noise feature training samples obtained by the fea-
ture extraction method of split recombination combined

with information geometry as the training input of the
classifier.
Figure 5 shows the clustering data after using the fuzzy

c-means clustering algorithm. The blue dot in Fig. 5 rep-
resents the noise feature vector, and the red dot represents
the signal feature vector. Black dots and black triangles

Fig. 7 ROC curves for different algorithms at SNR = − 11 dB andM = 2
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Fig. 8 ROC curve at different number of SU with SNR = − 15 dB

represent the center of the noise class and the PU signal
class, respectively.
Further, we compare and analyze the performance of

IGFCM and other methods, which are respectively char-
acterized by energy (ED), and the IQMME, IQDMM,
IQDMEAEmethods are proposed in literature [22]. Given
the simulation parameters, the cooperative SU number

M = 2, the number of sampling points N = 1000, and
the simulation diagrams when the SNR = − 13 dB and
SNR = − 11 dB respectively are shown in Figs. 6 and 7.
Compared with other methods, the IGFCM has better
spectrum sensing performance.
Given the number of sampling points N = 1000, the

SNR = − 15 dB. The simulation results obtained when

Fig. 9 ROC curve at different sampling points with SNR = − 13 dB
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the number of SUs is 2, 4, 6, 8, and 10 respectively are
as shown in Fig. 8. As can be seen from Fig. 8, the num-
ber of cooperative SUsM has a great relationship with the
detection probability of the algorithm. AsM increases, the
detection probabilities of several algorithms increase to
varying degrees.
As the number of sampling points increases, the per-

ceived signal information is more comprehensive, so the
extracted features are more representative. In order to
observe the spectral sensing performance of the IGFCM
method under different sampling points, keep the simula-
tion parameters M = 2 and SNR = − 13 dB unchanged.
The IGFCM algorithm simulation diagram obtained when
the number of sampling points is 1000, 1400, 1800, 2200,
or 2600 respectively. As can be seen from Fig. 9, the spec-
trum sensing performance increases as the number of
sampling points increases.

6 Conclusion
In this paper, a spectrum sensing method based on infor-
mation geometry and FCM clustering is proposed. In the
feature extraction process, a feature extraction method
combining split recombination and information geometry
is proposed to transform complex signal detection prob-
lems into manifolds. Geometric problems on the indirect
analysis of signal detection problems using geometric
tools. Finally, the FCM clustering algorithm is used to
train the extracted features to obtain a classifier for spec-
trum sensing to realize spectrum sensing. The perceptual
performance of the method described in this paper is fur-
ther analyzed in the experimental part. The experimental
results show that the method improves the spectrum
sensing performance to some extent. In the future work,
we will continue to study the application of clustering
algorithms in spectrum sensing, such as kernel fuzzy c-
means clustering (KFCM) and the scope of possibilistic
fuzzy c-means (PFCM). It is hoped that the spectrum
sensing performance can be further effectively improved.
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