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Abstract

Hyperspectral image (HSI) classification has been long envisioned in the remote sensing community. Many
methods have been proposed for HSI classification. Among them, the method of fusing spatial features has been
widely used and achieved good performance. Aiming at the problem of spatial feature extraction in spectral-spatial
HSI classification, we proposed a guided filter-based method. We attempted two fusion methods for spectral and
spatial features. In order to optimize the classification results, we also adopted a guided filter to obtain better
results. We apply the support vector machine (SVM) to classify the HSI. Experiments show that our proposed
methods can obtain very competitive results than compared methods on all the three popular datasets. More
importantly, our methods are fast and easy to implement.
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1 Introduction

Hyperspectral imaging sensors have been widely used in
remote sensing, biology, chemometrics, and so on [1].
Hyperspectral imaging sensors can obtain spatial and
spectral information of materials, which is called the
hyperspectral image (HSI), for the same time. Due to
abundant spectral information, HSI is widely applied to
material recognition and classification, such as land cover
[2], environmental protection [3], and agriculture [4].
Hence, HSI classification has attracted increasing atten-
tion and became a hot topic in the remote sensing
community.

The task of classification is to assign a unique label to
each pixel vector of HSI For this problem, many
pixel-wise (spectral-based) methods were employed, in-
cluding k-nearest neighbors (KNN) [5], support vector
machine (SVM) [6], and sparse representation [7] in the
last two decades. SVM has shown good performance for
classifying high-dimensional data when a limited
number of training samples are available [8]. It can
effectively overcome the Hughes phenomenon [9] and
the problem of limited training samples in HSI classi-
fication. Therefore, SVM and its improved algorithms

* Correspondence: xijiesd@126.com; ybai@fullerton.edu
'Shandong Women'’s University, Ji'nan 250300, Shandong, China
3California State University, Fullerton, CA 90831, USA

Full list of author information is available at the end of the article

@ Springer Open

get better performance than other methods. However,
they still have a wide gap for expectations. After all,
it is a universal phenomenon that different materials
have the same spectrum and the same material has
different spectrum.

To overcome the above problem and improve the per-
formance of classification, recent studies have suggested
incorporating spatial information into a spectral-based
classifier [10], which is called the spectral-spatial HSI
classification. Because of the continuous improvement in
spatial resolution, the spatial features of materials be-
come more representative. Many papers show that spec-
tral method is a very effective way for HSI classification.
Various types of classification approaches have been pro-
posed, including morphology feature extraction [11],
kernel combination [3, 12], and joint representation [13].
By using geodesic opening and closing operations with
fixed shape structuring elements of different sizes, mor-
phological profiles significantly improve the classification
accuracy. The main idea of a joint representation model
is to exploit both spectral and spatial features by treating
the test sample as a collection of its neighboring pixels
(including the test pixel itself).

For SVM methods, the mainstream approaches of fusing
spectral and spatial features are used by kernel combin-
ation [14]. The paper [15] proposed a series of composite
kernels to fuse spectral and spatial features directly in the
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SVM kernels. And Li et al. [16] presented a generalized
composite kernel framework to classify HSI. The afore-
mentioned methods fused spectral and spatial features be-
fore classification. There is also a small number of ways to
fuse feature after the SVM classification. Tarabalka [17] in-
tegrated into the SVM classification probabilities into a
Markov random field for classifying the HSI. Moreover,
Kang [18] proposed a spectral-spatial HSI classification
method with edge-preserving filtering, which extracted
the spatial features after the SVM classification and got
competitive results.

Motivated by the paper [18], we adopt the guided filter
to extract spatial features. Compared to the reference
[18], our contribution can be concluded as extracting
spatial features before classification. In more detail, the
main contributions are listed as follows.

1) We adopt the guided filter to smooth HSI, which is
similar to de-noising in image processing. By this
method, a fusion which consists of a pixel and its
neighboring pixel information is generated. It is
proved to be simple and effective.

2) We attempt different spectral and spatial fusion
methods, which makes sense for future work.

3) The proposed methods are applied to three widely
used hyperspectral datasets. We compare with two
methods by three evaluation metrics.

2 Related methodology and work

2.1 SVM and HSI classification

SVM is a supervised machine learning method, proposed
by Vapnik [19], which is based on the statistical learning
theory. Essentially, SVM attempts to find a hyperplane in
the multidimensional feature space to separate the two
classes. And this hyperplane is the best decision surface
which maximizes the distance between the hyperplane
and two classes, called the margin. Generally, the larger
the margin, the better the classifier is. From a given set of
the training set, obtaining an SVM model is equivalent to
an optimization problem for finding a hyperplane. For this
optimization, SVM introduces a structural minimum
principle that prevents over-fitting problems.

SVM is suitable for high-dimensional data with the
limited training set. And a lot of researches have ad-
dressed that SVM classifier presents superior per-
formance on HSI classification [6, 20], compared with
other popular classifiers such as decision tree
classifier, k-nearest neighbor classifier, and neural net-
works. The power of SVM is mainly due to its kernel
function, especially radial basis function. However, the
single kernel is not enough for all cases. Some re-
searchers proposed a composite kernel [21], which in-
tegrates both spectral and spatial features, to improve
classification performance.
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2.2 Guided filter and HSI classification
The guided filter," proposed by He [22] for the first time,
has been widely used in the fields of noise reduction,
image dehazing, and so on. We can get a new image that
obtains the feature of the guided filter. Given image p as
an input, and a guided filter image g, we can obtain an
output image g. Generally, ¢ is a linear transform of g in
a window wy centered at the pixel k. If the radius of & is
1, the size of local window wy is (2r + 1) x (2r + 1).
q; = axg; + b, Viewy (1)
where a, and by are a linear coefficient and bias, re-
spectively. From the model, we can see that Vg=a V g,
which means that the output g will have a similar gradi-
ent with guidance image g The coefficient and bias,
which need to be known, are solved by a minimum cost
function as follows:

E(ax be) = 3 (g, + bip))’ + ea?) @

€Wy

Here, € is a regularization parameter. According to the
paper [22], a solution can be derived from Eq. (2) as
follows.
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b = Pr—axpy (4)

where i and o7 are the mean and variance of g in wy,
|w| is the number of pixels in wy, and p; is the mean of
p in wg. After obtaining the coefficient a; and by, we can
compute the filtering output ¢, Through the above
process, we can get a linear transform image g.

The guided filter was first used for HSI classifica-
tion by Kang [18]. They considered the HSI classifica-
tion as a probability optimization process. They firstly
obtained the initial probability by SVM. Then, they
applied a guided filter to optimize the initial probabil-
ity maps. They got a state-of-the-art result. Subse-
quently, Wang [23] adopted a guided filter to extract
the spatial features from HSI. Then, a stacked autoen-
coder was used to classify each pixel. Guo [24] pro-
posed a method, which combines a guided filter, joint
representation, and k-nearest neighbor to improve
HSI classification. Inspired by the methods mentioned
above, we propose a novel method for fusing spectral
and spatial information. The experimental results
clearly show that our approach can be executed more
rapidly than conventional methods.
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Fig. 1 Framework of HSI classification by the proposed method. Original HSI was used to get the guidance image (filter) and decomposed HSI by
PCA firstly. Then, decomposed HSI was filtered by a guidance filter. Subsequently, a SYM classifier was adopted to get the classification map.
Finally, edge preserving filter was applied to optimize the classification map

.

3 HSI classification with SVM and guided filter

3.1 The proposed Guided Filter SVM Edge Preserving
Filter (GF-SVM-EPF)

We propose a novel method for HSI classification
with SVM and guided filter. First, we extract the
spatial features of HSI by the guided filter, which is
obtained from the original HSI by a principal compo-
nent analysis (PCA) method. Then, we classify the
spatial features by SVM. Finally, we employ a guided
filter again to optimize the classification. The process
is shown in Fig. 1.

3.1.1 Extracting spatial features by guided filter
First, we obtain a guidance image by PCA. We take the
first three principal components as a color guidance
image. Given a dataset D = {dy, d>, ---, ds}, we adopt PCA
to obtain the following result. Here d; is the information
of the ith band, and S denotes the number of bands.
g1, 8>, “'7g5] = PCA(D) (5)
So, the guidance image is G = [g1, g, g3]. Then, based on
formula (1), using input image d; and guidance image G,

Co-SVM Co-SVM-EPF

GF-SVM

GF-SVM-EPF

Fig. 2 Qualitative results on the Indian Pines dataset. a Image. b Ground truth. ¢ SVM. d SYM-EPF. @ Co-SVM. f Co-SVM-EPF. g GF-SVM. h GF-SVM-EPF
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we can get the output u; by filtering. In the same way, we
can yield all the u; which constructs a new hyperspectral
image U = {uy, uy, -+, ug).

3.1.2 Classifying HSI by SVM
After obtaining the image U= {uy,u,, ---,us} by the
guided filter, we can rewrite it as V={v,vo, -+, val,
where v, ={v,, 1,V 2 "V, s is the spectral feature
vector.

Then we adopt an SVM classifier to classify all the fea-
ture vector v,. We can get a classification map C as the
original result.

(2019) 2019:56 Page 4 of 9

3.1.3 Optimizing the classification map

First, we convert the classification map C into a
probability map P={py, ps, -:*, p.}, where p; , is the
initial probability with a value of 0 or 1. And # de-
notes the number of categories to classify. If a pixel i
belongs to the nth class, p; , is set to 1. Other else,
Di, » is set to 0.

Then, we employ the guided filter in section 3.1.1 to fil-
ter each p;. So we get a new P as a final probability map.
For each pixel, we get n probability values and choose
the class label with the biggest probability value as the
final label.

Image

Co-SVM Co-SVM-EPF

h GF-SVM-EPF

Fig. 3 Qualitative results on the University of Pavia dataset. a Image. b Ground truth. ¢ SYM. d SVM-EPF. e Co-SVM. f Co-SVM-EPF. g GF-SVM.

SVM-EPF

GF-SVM GF-SVM-EPF
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3.2 Other methods

In order to verify the effectiveness of our method, we
also proposed another three methods with SVM and
guided filter. We want to research the efficacy of spatial
feature extraction and propose a GF-SVM method,
which firstly extracts spatial features and then classifies
them by SVM. The implementation is the same as the
steps 1 and 2 in Section 3.1.

If spatial features and spectral features are fused to-
gether, can the increasement of information improve
classification accuracy of the HSI? We proposed another
method called Co-SVM (Connected SVM). We choose
the top half of [g), g, -+, gs] as the original feature. And
we choose the top half of U as the spatial features. Then
we join the original and the spatial features together as a
fusion feature to classify. After being classified by SVM,
we get the final classification. By optimizing the result of
Co-SVM as step 3 in Section 3.1, we got another method
called Co-SVM-EPF.

4 Results and discussion

4.1 Experimental setup

4.1.1 Datasets

Three hyperspectral data,? including Indian Pines, Uni-
versity of Pavia, and Salinas, are employed to draw a
convincing conclusion. The Indian Pines dataset was
gathered by an AVIRIS sensor. The image scene, with a
spatial coverage of 145 x 145 pixels, is covering the
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woods, grass-pasture, and so on. We choose 200 spectral
channels from 220 bands in the 0.4- to 2.45-pum region
of the visible and infrared spectrum.

The University of Pavia dataset was captured by the
ROSIS (Reflective Optics System Imaging Spectrometer)
sensor. The dataset contains 610 x 340 pixels with 115
spectral bands. After removing water absorption and low
SNR bands, 103 bands were used for the analysis. And
there are nine categories to be classified.

The third dataset was collected by the AVIRIS sensor,
capturing an area over Salinas Valley, California, with a
high spatial resolution of 3.7 m. Salinas comprises 512 x
217 pixels in all and contains vegetables, bare soils, and
vineyard fields. We also selected 200 bands for experi-
ments by discarding 20 water absorption.

4.1.2 Evaluation metrics

Three widely used indexes for HSI classification were
adopted to evaluate the performance of experimental
methods, including the overall accuracy (OA), the aver-
age accuracy (AA), and the kappa coefficient (KA).

4.1.3 Parameter settings

In this experiment, we use libSVM designed by Lin [25].
The 1ibSVM has two main parameters C and g to be set.
The C and g are determined by cross validation. And C
changes from 107> to 10% and g ranges from 27* to 2*.

Table 1 Classification accuracy on the Indian Pines dataset (10% samples for training)

SVM SVM-EPF Co-SVM Co-SVM-EPF GF-SYM GF-SVM-EPF
Alfalfa 83.33 100.0 100.0 100.0 91.30 100.0
Corn-N 76.35 94.22 96.21 95.74 98.03 99.16
Corn-M 71.74 96.66 95.93 95.80 98.42 99.82
Corn 48.68 7897 92.22 91.26 89.34 94.83
Grass-M 87.38 9753 99.25 99.49 96.68 99.26
Grass-T 95.06 99.24 100.0 100.0 97.94 99.17
Grass-P-M 86.67 100.0 100.0 100.0 92.31 100.0
Hay-W 99.02 100.0 100.0 100.0 100.0 100.0
Oats 5263 100.0 100.0 100.0 7692 100.0
Soybean-N 75.38 85.07 93.27 95.58 95.86 98.73
Soybean-M 83.98 95.84 9445 96.04 99.20 9941
Soybean-C 7112 94.45 98.63 97.89 96.24 9945
Wheat 93.75 100.0 100.0 100.0 98.90 100.0
Woods 94.27 98.62 100.0 99.24 100.0 99.58
Build-G-T-D 59.78 8531 96.02 96.96 97.77 97.25
Stone-S-T 86.79 92.16 100.0 97.62 95.35 9545
OA 81.02 94.57 96.63 97.07 98.12 99.22
AA 79.12 94.88 97.87 97.85 95.27 98.88
KA 78.29 9375 96.11 96.62 97.80 99.08
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For guided filter, there are two key parameters to be set.
One is the radius r of the filter which represents the size of
spatial feature scale. The other parameter of guided filter is
the regularization parameter & which controls the degree of
smoothness. In our experiments, we set r = 3 and &= 0.001.

4.2 Experimental results and discussion

In this section, the proposed methods are compared
with two widely used classification methods, SVM [18]
and EPF [18], which are typical examples of pixel-wise
methods and spectral-spatial methods respectively.

4.2.1 Experimental results and discussion on Indian Pines
The Indian Pines dataset is the most commonly used
and the most difficult to classify. In this experiment, the
classification accuracy for each class, OA, AA, and KA
is adopted to evaluate the classification performance.
Figure 2 shows the classification maps obtained by dif-
ferent methods associated with the corresponding OA
scores. From this figure, we can see that the classifica-
tion accuracy obtained by SVM is the worst since lots of
noisy estimations are visible. The best one is the classifi-
cation accuracy obtained by GF-SVM-EPF, which is al-
most the same as the ground truth.

Classification performance of each class is shown in
Table 1. All our proposed methods outperform the SVM
and EPF significantly on all the indexes. They are higher
than EPF by 2%, 2.5%, 3.5%, and 4.6%, respectively. Espe-
cially, the proposed method GF-SVM-EPF achieves
99.22%, which is the best result we have seen so far. In
16 categories, there are 11 classes to reach the highest
results. Unlike our expectations, the result obtained by
Co-SVM which employs the fusion of guided informa-
tion and spectral information is worse than that ob-
tained by GF-SVM which only employs the guided
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information. This shows that the superposition of infor-
mation cannot bring better classification results. Because
each pixel in the filtered image is a linear transformation
of its own and neighbor pixels, the filtered feature is
enough for HSI classification. We can draw a conclusion
that the spectral-spatial fusion method (Co-SVM) can
improve classification accuracy (compared with SVM
and EPF). Using the guided filter twice can improve clas-
sification accuracy, such as GF-SVM-EPF.

4.2.2 Experimental results and discussion on the University
of Pavia dataset

The University of Pavia only has nine categories. It is
easier to classify. Classification maps of different
methods are illustrated in Fig. 3. It can be seen from this
figure that the proposed methods (Co-SVM, GF-SVM,
and GF-SVM-EPF) achieve better classification perform-
ance than other compared approaches. Especially, in the
map of GF-SVM-EPE, we can hardly see the difference
between it and the ground truth.

And the results of different methods are shown in
Table 2. It can be seen from Table 2 that our proposed
methods (Co-SVM, Co-SVM-EPF, GF-SVM) are similar,
and they are slightly higher than SVM-EPF (98.51%).
GF-SVM-EPF obtains the result of 99.7%, which outper-
forms state-of-the-art methods. There are six categories
to reach the highest results in nine categories. In this ex-
periment, there is a strange phenomenon that Co-SVM
is better than Co-SVM-EPF. That is because some pixels
of the thin edges are divided into the background, as
seen from Fig. 3. As in the previous experiment, the
method of extracting spatial features by the guided filter
twice (GF-SVM-EPF) is the most effective classification
method.

Table 2 Classification accuracy on the University of Pavia dataset (10% samples for training)

SYM SVM-EPF Co-SVM Co-SVM-EPF GF-SYM GF-SVM-EPF
Asphalt 98.05 99.37 99.46 98.68 99.06 99.61
Meadows 98.26 99.69 99.96 99.80 99.91 99.87
Gravel 7934 9521 98.03 99.94 96.74 100.0
Trees 92.93 99.68 99.15 99.67 97.93 98.60
P-M-sheets 94.44 98.75 100.0 99.54 100.0 100.0
Bare Soil 84.18 96.75 99.74 99.67 9941 99.76
Bitumen 7248 99.65 99.65 100.0 99.88 100.0
S-B-Bricks 87.38 93.22 95.83 95.70 97.56 99.31
Shadows 99.79 99.79 100.0 99.57 99.79 99.79
OA 93.36 9851 99.36 99.24 99.25 99.70
AA 89.65 98.01 99.09 99.17 98.92 99.66
KA 90.92 97.94 99.11 98.95 98.97 99.58
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4.2.3 Experimental results and discussion of the Salinas
dataset

The last experiment is performed on the Salinas dataset,
which is the biggest one we have chosen. The qualitative
results are shown in Fig. 4. It is apparent from this figure
that the map of GF-SVM-EPF has the fewest noise
points and obtains the best results.
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The detailed results are illustrated in Table 3. All the
methods perform well on this dataset. The worst is
about 92.21% by SVM. The proposed methods (Co-SV-
M-EPF, GF-SVM, and GF-SVM-EPF) are all over 99%,
especially GF-SVM-EPF which reaches 99.8%, outper-
forming other methods greatly. There are 12 categories
to achieve the best result in 16 categories. The

Ground Truth

Co-SVM

Co-SVM-EPF

SVM SVM-EPF

GF-SVM
Fig. 4 Qualitative results on the Salinas dataset. a Image. b Ground truth. ¢ SVM. d SVM-EPF. e Co-SVM. f Co-SVM-EPF. g GF-SVM. h GF-SVM-EPF

GF-SVM-EPF
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Table 3 Classification accuracy on the Salinas dataset (10% samples for training)
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SVM SVM-EPF Co-SVM Co-SVM-EPF GF-SVM GF-SVM-EPF
Brocoli_G_W_1 99.82 100.0 100.0 100.0 100.0 100.0
Brocoli_G_W_2 99.94 100.0 100.0 100.0 100.0 100.0
Fallow 99.88 100.0 100.0 100.0 100.0 100.0
Fallow_R_P 99.15 98.87 99.15 98.97 99.15 98.97
Fallow_smooth 99.11 99.79 99.61 99.96 99.70 99.91
Stubble 100.0 100.0 100.0 100.0 99.97 100.0
Celery 98.81 99.97 100.0 100.0 99.94 99.97
Grapes_untrained 85.83 94.37 95.35 99.04 99.09 99.88
Soil_V_D 99.57 99.66 99.52 99.56 99.98 99.98
Corn_S_G_W 97.68 98.02 99.28 99.79 98.65 99.83
Lettuce_R_4wk 98.64 100.0 100.0 100.0 99.86 100.0
Lettuce_R_5wk 99.44 100.0 100.0 100.0 100.0 100.0
Lettuce_R_6wk 98.80 100.0 100.0 100.0 100.0 100.0
Lettuce_R_7wk 95.51 99.59 99.31 99.73 94.94 98.92
Vinyard_untrained 7248 89.06 90.87 95.55 97.00 9941
Vinyard_V_T 9747 99.86 97.67 99.93 99.45 99.86
OA 92.21 96.96 9743 99.04 99.14 99.83
AA 96.36 98.70 98.80 99.53 99.23 99.80
KA 91.25 96.58 97.11 98.92 99.04 99.81

conclusion of this experiment is consistent with that of
Indian Pines. Spectral features with spatial features can
improve classification accuracy. The result of extracting
spatial features twice is better than that of extracting
spatial features once.

From the above three experiments, we can draw a
conclusion that SVM with guided filter can be well used
for HSI classification. The guided filter is an effective
way to fuse spatial information and spectral information.
Especially for datasets with a regular shape, a guided fil-
ter is more effective to extract spatial features. Because
the filtered pixels contain not only neighbor information
but also their own information, they can be directly used
for classification without adding other information.

5 Conclusion
In this paper, we propose several spectral-spatial HSI
classification methods which combined SVM with
guided filter. Two spectral and spatial fusion methods
are adopted for the SVM. Moreover, the guided filter
was used for extracting spatial information and optimiz-
ing the classification results, respectively. Our proposed
methods can improve the classification accuracy signifi-
cantly in a short time. Consequently, the proposed
methods can be effective to real applications.

From this work, we can draw the following conclusions:
(a) The guided filter is an effective way to extract spatial in-
formation in HSIL (b) The extracted feature by the guided

filter is good enough for HSI classification, without original
information. (c) The method of SVM with twice filtrations
is a simple and effective way to classify HSI.

6 Endnotes
Thttp://kaiminghe.com/eccv10/index.html
2http://www.ehu.eus/ccwintco/
index.php?title=Hyperspectral_Remote_Sensing_Scenes
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