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Abstract

Image deblurring is a foundational problem with numerous application, and the face deblurring subject is one of the
most interesting branches. We propose a convolutional neural network (CNN)-based architecture that embraces
multi-scale deep features. In this paper, we address the deblurring problems with transfer learning via a multi-task
embedding network; the proposed method is effective at restoring more implicit and explicit structures from the blur
images. In addition, by introducing perceptual features in the deblurring process and adopting a generative
adversarial network, we develop a new method to deblur the face images with reservation of more facial features and
details. Extensive experiments compared with state-of-the-art deblurring algorithms demonstrate the effectiveness of
the proposed approach.
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1 Introduction
The highly challenging task of estimating a clear image
from its degraded blur image is referred to recover the
sharp contents and textures. The formation process of
image blur is usually formulated as

B = I ∗ K + n (1)

Where B and I indicate the blurred image and latent sharp
image, K is the blur kernel, and n is the addictive noise. ∗
denotes the convolution operator.
Image deblurring is an ill-posed problem in com-

puter vision. There has been a remarkable process in
the direction with solving the blur kernel and the latent
image alternately. The success of state-of-the-art deblur-
ring methods generally rely on empirical statistics of the
natural image [1–3] and additional information, such as
using the latent prior [4, 5] to constrain this non-convex
optimization problem. Furthermore, with the help of pre-
dicting the latent edge, these operations usually apply
the strong boundaries on blur kernel estimation [6–8].
These implicit or explicit intermediate image properties
are computationally expensive and increase the complex-
ity of the estimation process. Recently, the deep neural
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network has been applied to image restoration. The CNN-
based methods [9–16] are developed to solve the deblur-
ring problem to restore the intermediate properties or the
blur kernels. In addition, the framework which utilizes the
end-to-end model for direct latent image prediction has
also been proposed.
Face deblurring problem has attracted considerable

attention due to its wide range of application. While due
to the characteristic of faces with less details or explicit
edge (i.e., smooth skin with less facial features), some clear
image prior-basedmethods on account of empirical statis-
tics of natural images may not be applied to some specific
problems (i.e., face or text deblurring).
To summarize, in this work, we first propose an end-to-

end convolutional neural network model to learn effective
features from the blurred face images, and then estimate
a latent one. To constrain the network, we introduce to
utilize a transfer learning framework to learn the multiple
features. In addition, we adopt well-established deep net-
works to obtain extremely expressive features and achieve
high quality results. Specifically, we also utilize the gen-
erative adversarial network (GAN) to optimize image
realistic.

2 Related works
For image deblurring, there are many algorithms pro-
posed to solve this problem. In this section, we summarize
the existing methods and put this work in proper context.
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2.1 Image prior and edge prediction
Image deblurring problem is often formulated as an
ill-posed problem, which is solved via constraining by
assuming of latent prior. A relevant method is based on
statistical prior (i.e., heavy-tail distribution). Fergus et al.
[1] adopt a mixture of Gaussian to model the statistical
prior of the image. Furthermore, Shan et al. [2] and Levin
et al. [7] propose to describe the gradient distribution as
Hyper Laplacian prior and a piecewise function for image
deblurring respectively. To solve the problem, here the
maximum a posteriori (MAP) method utilizes the sparse
statistical priors to constrain the model.
Except for statistical latent prior, numerous different

priors also have been proposed for describing the latent
properties. Krishnan et al. [17] introduce a sparsity prior
of the clear images. Xu et al. [18] propose to describe
the gradient prior via a L0 constraint. In [19], Michaeli
and Irani utilize the patch recurrence to model the image
prior. These methods often estimate the blur kernel and
clear image alternately via the MAP-based method. These
methods often via MAP to estimate the blur kernel and
clear image alternately. In addition to the image priors,
some methods estimate the blur kernel and clear images
via explicitly obtaining salient edge [6, 18, 20]. Summa-
rizing the above discussion, these methods depend on
generic priors, statistic of natural images. While the uti-
lized coarse-to-fine model is computationally expensive,
and it may not perform well that images do not contain
such substantially information in some subjects.

2.2 Convolutional neural networks
Recently, convolutional neural networks have been widely
used in image processing. Compared with the aforemen-
tioned methods, CNN-based image deblurring methods
could be summarized as follows. First, learn effective
priors for image deconvolution. Schuler et al. [9] adopt
a multi-layer perception (MLP) to process the images
with defocus blur. Xu et al. [10] propose a singular
value decomposition (SVD)-based network to achieve
deconvolution with outlier, but it needs to fine-tune the
sub-network for each case. Zhang et al. [11] use the con-
volutional neural network to learn the effective prior of
images and deblur the image in a half-quadratic optimiza-
tion. Second, in contrast to the non-blind deblurring prob-
lem, estimating the blur kernel via a CNN-based model
also be proposed in some methods. Yan et al. [21] learn
a classifier to distinguish the type of the blur kernels and
then estimate the parameter of the kernels for each type
in two sub-network. Sun et al. [12] propose to use classifi-
cation network to describe the linearly non-uniform blur
kernel and combine Markov random field (MRF) to opti-
mize these patch-wised blur kernels in an approximatively
traversed way. Third, in terms of an end-to-end model,
CNN-based methods achieve speed gained which is time-

consuming in some existing algorithms. Chakrabarti
et al. [13] and Schuler et al. [14] propose to estimate
the blur kernel and achieve deblur images in a two-stage
framework in space and frequency domain respectively.
Furthermore, in view of text and face deblurring, such
end-to-end models [15] also are introduced to solve these
specific tasks. Due to less texture, such state-of-the-art
methods do not perform well on face deblurring.

2.3 Multi-task learning
Transfer learning bridging tasks in such domains to tar-
get domain is utilized in machine learning and computer
vision. This algorithm where a model trained on the
source domain or data is purposed to refine the target
model. It is exploited to assist the generalization in source
task to improve a significant performance in target task.
The transfer learning is classified to inductive transfer
learning, transductive transfer learning, and unsupervised
transfer learning based on the kind of source and target
tasks (domains). Multi-task learning is an inductive trans-
fer learning method to solve multiple tasks at the same
time. It can result in improving the learning efficiency and
prediction accuracy of multiple tasks in the model. Multi-
task learning has been widely used in many examples in
computer vision (i.e., semantic segmentation [22], clas-
sification [23], detection [24, 25], and depth regression).
Inspired by these works, we exploit multi-task frame-
work for multiple features learning. We demonstrate that
the proposed multi-task learning method would present
better constraint compared to the single-task learning.

3 Methods
3.1 Multi-task learning
To describe the following multi-task learning model, We
first summarize the single-task learning method. Most
machine learning task is a single task. As shown in Fig. 1,
each task has its own training model, with training on the
specific data, the trained model which is appropriate to a
task is independent of others. In a multi-task model, it can
optimize more than one task in paralleled learning. For
an inductive transfer learning model, the inductive bias is
introduced to optimize the model. In the case of multiple
tasks model, not only the target task but also the source
tasks will impact upon the inductive bias. With the help
of domain-specific information that related tasks achieved
from the training set, the main (target) tasks utilize this
inductive bias to improve the generalization performance
of this main task.
Single-task learning which constrained by a L1 or a L2

norm for the image content will converge to the homolo-
gous solution of the image. In our CNN-based deblurring
method, we propose a multi-task framework to propagate
the image and structure into the network simultaneously.
In contrast to the one task model, we learn a network via
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Fig. 1 The framework of Single-Task model and Multi-Task model. The Single-Task model: Each task has its independent goal of the model. Its own
trained model may be impacted by insufficient or limited training data. The Multi-Task model: Integrating tasks in different domains to one
framework, the paralleled model learns a reliable feature via solve tasks with a similar logic simultaneously

sharing weights between multiple tasks, it facilitates to
enforce the sparsity across tasks through norm regulariza-
tion.
As shown in Fig. 2, the main network (orange and

blue layers) shares the weights in image domain and its
structure domain. For a single-task model, it focuses on
learning features only for one specific task. To achieve
the goal of multiple feature learning, the multi-task model
learns the feature representation via constraining each
task simultaneously. In this way, the latent feature will be
estimated with rich structure prior.

3.2 Multi-scale face deblurring network
The aim of face deblurring is to restore clear images
with more explicit structure and facial details. Most state-
of-the-art methods are employed to estimate the blur

kernel and latent images alternately. Here, a coarse-to-
fine framework is applied to solve the iterative prob-
lem. As the multi-scale model has been embedded in
such framework and it succeeds in gaining implicit or
explicit prior from each scale. To address this problem, we
employ the multi-scale model to the convolutional neu-
ral network framework. For the multi-scale model, the
degraded image will be downsampled to a coarse size,
and the introduced blur will meanwhile be rescaled to
alleviative. It shows in Fig. 2 that we first deblur the
image on a coarse scale; it learns to present the features
on a lower level. For the upper scale, when combin-
ing the coarse reconstruct result, the upper level will
accept the lower feature and formulate the coarse-to-fine
architecture.

Fig. 2 Architecture of multi-task deblurring network. The network is designed as a multi-task framework; it contains a main branch and two
sub-branches. The blur image and its corresponding structure first go through the main branch which shares parameters (with the same color in
two branches) in image domain and structure domain. The feature of the image and the structure will be fed into different sub-network to achieve
the reconstruction in different domain. In this multi-scale network, the coarse deblurring result will be merged with the original blur one and fed in
to the following scale. The output of the network will be a finer deblurred image
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3.3 Synthesis loss function
3.3.1 Content loss
To learn an end-to-end deblurring network, we need to
estimate the deblurred images and corresponding struc-
ture. Basically, we use a pixel-wise loss to facilitate the
convergence of the multi-scale deblurring network. The
utilized L1 criterion describes the difference between
latent image I and restored image G1(B) for each scale.
Especially, in this multi-task deblurring network, the error
between structure∇ of clear images and deblurred images
is also considered. The loss is defined as

⎧
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Where n indicates the scale of this coarse-to-fine deblur-
ring network. W and H indicate the spatial dimension of
the image. Although this loss will assist a global constraint
to the content consistency. For the face images deblurring,
the goal of this specific problem is to restore the faces
with more facial features (e.g., mouths, eyes). Only use L1
loss in image domain will lead to an overly smooth result.
But it is a basic constraint for image reconstruction. The
proposed multi-task model with multiple content loss will
introduce more structures and details via constraint in
structure domain.

3.3.2 Perceptual loss
To restore more details of faces, we introduce to use the
perceptual loss on our network. The perceptual loss has
been utilized in style transfer and super resolution prob-
lems [26–28]. Gatys et al. [29] give an analysis of the tex-
ture synthesis based on the feature spaces of convolutional
neural networks. The perceptual loss utilizes the obtained
high-dimensional features from a high-performing con-
volutional neural network can assist to restore the image
with more natural textures. In the method, we are aiming
at achieving more facial features; here, we use the pre-
trained VGG19 network [30] for this specific problem.
The perceptual loss define as

Lp =
∑

l
‖φl(G1(B)) − φl(I)‖22 . (3)

Where the φl denotes the activation at the lth layer of
the pre-trained feature extracting network. In the paper,
we choose the Conv1-2, Conv2-2, Conv3-2, Conv4-2, and
Conv5-2 layers to acquire the features and compute the
perceptual loss.

3.3.3 Adversarial loss
The adversarial loss [31] has been adopted in super-reso-
lution [27], image deblurring [15], and related problems
[32]. Ledig et al. have demonstrated that the generative

adversarial networks (GAN) can improve the gene-
rative model with a more realistic result. To train
the generative adversarial model, it is formulated to solve
a min-max problem as

min
G1

max
D

[
logD(I)

] + [
log(1 − D(G1(B)))

]
,

Ladv = − logD(G1(B)).
(4)

Where the D denotes a discriminator. We utilize the
discriminator of DC-GAN as D net. We train the dis-
criminator network, it is utilized to distinguish the recon-
structed image and the real image. On the other hand, to
fool the discriminator, the deblurring network is applied
to generate a deblurred image which is more realistic.
The adversarial loss Ladv represents that deblurred image
allows maximum flexibility for fooling the discriminator.

3.3.4 Overall loss
The overall synthesis loss function is formulated as

L = Lc + L∇c + Lp + Ladv (5)

In this work, we utilize the Lc, L∇c, and Lp in each level
of the multi-scale deblurring network and add the Ladv on
the final level which the deblurred image with the original
size.

4 Experimental
4.1 Implementation detail
We use a multi-scale network for the deblurring problem
as shown in Fig. 2. This network has two scales which
share weight between each level. The basic model for each
scale begins with three convolutional layers; we add six
ResBlocks and three convolutional layers after the begin-
ning unit. Especially, except the first convolutional layer
sets the kernel size to 11 × 11 to increase the receptive
field, all the convolutional layers have the kernel size of
5×5 with 64 channels. The input of each scale contains six
channels, that is to say, we combine the blurred image and
deblurred result of lower scale as the input of the upper
scale. Here, note that we copy the blurred image (i.e., six
channels) as the input of the first scale. In this multi-
scale model, we utilize a deconvolutional layer to achieve
upsampling. For this multi-task framework, except the
last three convolutional layers which utilized to perform
reconstruction, the basic deblurring network shares the
weight between two tasks (i.e., structure deblurring sub-
network and image deblurring sub-network).
We implement the multi-task deblurring network on

the Pytorch platform and train the network on NVIDIA
Titan X GPU.We set the batch size of 16 and learning rate
to 1e−4. To guarantee the convergence of the multi-task
framework, we firstly train the multi-task deblurring net-
work with a content loss for about 5 days. we then add the
perceptual loss and adversarial loss individually for joint
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training. Specifically, first, we train this multi-task deblur-
ring network using the loss (2) for 100,000 iterations.
Second, we embed the perceptual loss (3) for 50,000 iter-
ations. Finally, we add the adversarial loss (4) and jointly
train this network for 50,000 iterations.

4.2 Datasets
We use images with the size of 128 × 128 × 3 in all
our training and testing experiments. For the multi-scale
framework, the image will be downsampled to 64×64×3
for the first level of the network. Here, we collect 6464 face
images from the Helen dataset [33] (2000 images), CMU
PIE dataset [34] (2164 images), and CelebA [35] dataset
(2300 images) for training. To generate images for train-
ing and testing this deblurring network, we synthesize
20000 motion blur kernels based on random 3D camera
trajectories generative model [36]. We set the blur kernel
size from 13 × 13 to 27 × 27, and convolute them with

images to generate blur images. That is to say, we utilize
130 million face images to train this network. For testing
this deblurring network, we choose other 200 images from
CelebA and Helen datasets respectively, synthesize other
80 blur kernels, and generate 16,000 blur images to test
this model.

4.3 Ablation study
4.3.1 Multi-scale learning
In our work, we use a multi-scale network to formulate
this coarse-to-fine deblurring model. To validate the per-
formance of the proposed model, we evaluate the effect
of the multi-scale framework. Here, we first train a base-
line model which only with a single-scale network for face
deblurring. We then build another multi-scale model with
two level and compare these two networks. These mod-
els are optimized only by content loss. Figure 3 shows the
deblurring results for the proposed model with different

(a) (b) (c) (d)
Fig. 3 Ablative study for multi-scale framework. a Ground truth images b Blurred images c Deblurred results via a single-scale network. d Deblurred
results via a multi-scale network
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Table 1 Quantitative evaluation for multi-task framework

Model Loss Helen CelebA

PSNR SSIM PSNR SSIM

Multi-scale (1 scale) Content loss 22.70 0824 22.19 0.844

Multi-scale (2 scales) Content loss 23.30 0.847 22.57 0.856

Multi-task (2 scales) Content loss 23.69 0.852 23.04 0.859

scales. As shown in Fig. 3c, the deblurring result which
obtained via a single-scale model produces fewer detail
results. The proposed multi-scale architecture is designed
as a coarse-to-fine model. Especially, the first level is
utilized as a coarse deblurring model; it can achieve a
slight reconstruction for the degraded images. In addi-
tion, with the help of recovered implicit or explicit feature
acquired from the lower level, we feed the original blur
images and the upsampled deblurring result into the sec-
ond level of the model and optimized it with the same

constraint. Therefore, the model is sufficient to achieve a
great convergence. Figure 3d shows that the coarse-to-fine
model optimized by the content loss and coarse deblurred
image lead to an accurate convergence with facial features.
Table 1 also demonstrates that the multi-scale framework
performs well than the single-task model.

4.3.2 Transfer learning
To further demonstrate the potential of the proposed
multi-task learning model, we conduct an analysis on
ablation study. Here, we set the multi-scale model con-
strained by the content loss as the baseline model and
train another multi-task model which guides original
images and corresponding latent structure simultane-
ously. Figure 4c illustrates an inevitably produced smooth
and ambiguous deblurring result considering the obtained
implicit or explicit feature from the blurred images. The
goal of image deblurring is to restore a sharp image with
more details (facial features, accurate structures, etc.). If

(a) (b) (c) (d)
Fig. 4 Ablative study for transfer learning model. a Ground truth images. b Blurred images. c Deblurred results via a single-task model. d Deblurred
result via a multi-task model
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(a) (b) (c) (d) (e)
Fig. 5 Effects of additional losses. a Ground truth images. b Blurred images. c Deblurred results (content loss). d Deblurred results (content
loss + perceptual loss). e Deblurred results (content loss + perceptual loss + adversarial loss)

more accurate structures could be obtained, it will con-
strain the network to a better convergence. We train the
network with two goals which include images and struc-
tures. The main network learns the capacity of recovering
the content and structures simultaneously. The follow-
ing deblurring sub-network will utilize these features
to reconstruct an accurate deblurring image with more
details. As shown in Fig. 4d and Table 1, the proposed
method performs well for face deblurring. For example,
Fig. 4 shows that deblurring face images via the multi-task
model can reconstruct more accurate shape of the facial
feature; furthermore, more texture can also be restored.

4.3.3 Additional synthesis analysis
In addition to the proposed multi-scale and multi-task
model, by constraining the network with perceptual loss
and adversarial loss, it will achieve a more realistic result.
The visual examples are provided in Fig. 5, and a quanti-
tative evaluation is also shown in Table 2. If the network
is just optimized via content loss (L1) , it will achieve a
solution with high PSNR or SSIM. However, it will fall to
recover more texture and high frequency content from the
degraded images. Here, we utilize the pre-trained VGG19
[30] network which can express the sufficient and efficient
features of images to constrain the network in feature

domain. To extract the semantic features from such spe-
cific layers of the VGG19 [30] network, the perceptual
loss can assist to preserve more details and texture from
the blur images. In addition to the perceptual loss, we
also improve to learn the reconstruction by employing
the feedback of adversarial loss. As shown in Fig. 5 and
Table 2, the perceptual loss and adversarial loss encour-
age the deblurring process to a better optimized solution.
Figure 5e also demonstrates that it will increase more
details (e.g., the tooth and eyes).

5 Result and discussion
We have investigated the effect of the proposed model
for image reconstruction via an ablative study. We also
compare the performance of the deblurring network with
state-of-the-art methods. Here, we give a quantitative and

Table 2 Quantitative evaluation for constraints

Approach Helen CelebA

PSNR SSIM PSNR SSIM

Content loss 23.69 0.852 23.04 0.859

+ Perceptual loss 24.21 0.857 23.48 0.864

+ Adversarial loss 24.25 0.864 23.56 0.871
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Fig. 6 Quantitative evaluation on Helen dataset. Here, we choose 100 clear images from Helen dataset and convolute these images with 80 blur
kernels to generate 8000 blurred images for testing

qualitative evaluation in this section. For this specific
reconstruction problem, we also demonstrate our face
deblurring method on identity recognition ability.

5.1 Comparisons with state-of-the-arts
We first evaluate the image quality on PSNR and SSIM.
We provide seven deblurring algorithms to compare with
the proposed method. As shown in Figs. 6 and 7, we
compare with the state-of-the-art methods on different
size of blur kernels. We evaluate the result on Helen
and CelebA dataset, the proposed algorithm performs
favorably against the state-of-the-art methods. Here, we
also provide a qualitative comparison which is present in
Fig. 8. As the MAP-based methods [2, 6, 17, 18, 37, 38]
synthesize the deblurred results based on the latent
prior. That is to say, an unsatisfactory implicit or explicit
prior will directly introduce a failure deblurring result.
For example, as shown in Fig. 8d, the face deblurring
method [37] depends on the structure to constrain the

iterative solution. The inaccurate prior will lead to an
ambiguous result. Furthermore, due to the deconvolu-
tion process, the deblurring result will lead to heavy
ringing artifacts. We also compare our algorithm with
other CNNs-based method (e.g., Fig 8i). Our method per-
forms well on the latent structure and details, as the
robust features which are obtained via the multi-task
model.

5.2 Face recognition
To further demonstrate the potential of the proposed face
deblurring method, we conduct an analysis of the facial
feature. We first exploit the identity distance [39] to eval-
uate the consistency between deblurred face images and
their corresponding ground truth images. It is defined as
the Euclidean distance of identity feature acquired via a
deep convolution model. Except for PSNR and SSIM, it
can also evaluate the consistency (i.e., similarity) of the
deblurred result. The curve in Fig. 9 depicts the identity

Fig. 7 Quantitative evaluation on CelebA dataset. Here, we choose 100 clear images from CelabA dataset and convolute these images with 80 blur
kernels to generate 8000 blurred images for testing
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Fig. 8 Comparison with state of the art methods. a Ground truth images. b Blurred images. c Krishnan et al. [17], d Pan et al. [37], e Shan et al. [2],
f Xu et al. [18], g Cho and Lee [6], h Zhong et al. [38], i Nah et al. [15], j Ours

distance of the state-of-the-art algorithms and the pro-
posed method. The lower distance (error) demonstrates
that ourmethod can better match the original images with
more accurate facial features. In addition, we also test our
method for face recognition. For probe data, we choose
100 face images (8000 deblurred results) with different
identities from the CelebA dataset. For each identity, we
randomly choose other 9 images (i.e., 900 face images)
to generate a gallery data. As the deblurred images do
not perform well or reconstruct with such artifacts, it will
impact on the recognition. For example, Fig. 8e, h shows
that deblurring the image via the state-of-the-art methods

will lead to such ringing or extremely smooth artifacts; the
limited facial feature will be faded. During the recognition,
the face detection process and similarity evaluation based
on identity distance and the ungraded features will result
in the poor performance. As shown in Fig. 8j and
Table 3, our deblurring result with less artifacts and pre-
serving more details is effective for face detection and
recognition.

5.3 Execution time
We also give an evaluation on execution time; it shows
in Table 4 that the running time of CNNs-based methods

Fig. 9 Evaluation on face identity distance. There are 100 identities chosen from CelebA dataset and we randomly choose other 9 images for each
identity. That is to say, the probe data and gallery data are composed of 8000 deblurred face images and 900 images respectively. The curve
demonstrates that the proposed method performs favorably against state-of-the-art methods
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Table 3 Quantitative evaluation for face detection and
recognition on the CelebA dataset

Method Detection (%) Top 1 (%) Top 3 (%) Top 5 (%)

Clear images 100 71 84 89

Blurred images 77.4 29.1 43.4 51.3

Krishnan et al. [17] 80.0 33.8 48.9 56.6

Pan et al. [37] 78.9 42.0 55.7 62.2

Shan et al. [2] 76.0 32.4 46.9 54.0

Xu et al. [18] 82.5 41.1 55.4 62.1

Cho and Lee [6] 52.2 17.2 27.3 32.5

Zhong et al. [38] 69.5 27.6 41.6 48.5

Nah et al. [15] 86.0 40.1 55.3 62.4

Ours 92 55 69 75

could be significantly improved. For MAP-based meth-
ods, the execution time is limited by the alternately iter-
ative solution. In addition, as the proposed framework
learns the robust feature via a multi-task network, it
makes a trade-off between the task and the redundant
parameters. It reports that the proposed framework offers
a significant advantage over the state-of-the-art methods
in terms of speed.

6 Conclusions
In this work, we propose a deep convolutional neural
network to solve the face deblurring problems. The pro-
posed method learns the implicit and explicit features
via a multi-task model. It extends the network to learn
the robust features in the image domain and structure
domain simultaneously via sharing the weight. Due to the
exploitation of multi-task framework and multi-scale net-
work, the learned network can achieve fast convergence. It
performs favorably against the state-of-the-art methods.
In addition, the extensive evaluation also shows that the
proposed method is effective for deblurred face detection
and recognition.

Table 4 Comparison of execution time. We report the average
execution time on 10 images with the size of 128 × 128

Method Implementation CPU / GPU S

Krishnan et al. [17] MATLAB CPU 2.52

Pan et al. [37] MATLAB CPU 8.11

Shan et al. [2] C++ CPU 16.32

Xu et al. [18] C++ CPU 0.31

Cho and Lee [6] C++ CPU 0.41

Zhong et al. [38] MATLAB CPU 8.07

Nah et al. [15] MATLAB GPU 0.09

Ours PYTHON GPU 0.02
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