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Abstract

Massive multiple-input multiple-output (MIMO) is a powerful supporting technology to meet the energy/spectral
efficiency and reliability requirement of Internet of Things (IoT) network. However, the gain of massive MIMO relies on
the availability of channel state information (CSI). In this paper, we investigate the channel estimation problem for
frequency division duplex (FDD) massive MIMO system. By analyzing the sparse property of the downlink massive
MIMO channel in the angular domain, a structured prior-based sparse Bayesian learning (SP-SBL) approach is
proposed to estimate the downlink channels between base station (BS) and users reliably. The scheme can be
implemented without the knowledge of channel statistics and angular information of users. The simulation results
show that the proposed scheme outperforms the reference schemes significantly in terms of normalized mean
square error (NMSE) for a variety of scenarios with different lengths of pilot sequence, transmit signal-to-noise ratios
(SNRs), and angular spreads.

Keywords: FDD massive MIMO, Channel estimation, Structured prior, Sparse Bayesian learning, Normalized mean
square error

1 Introduction
As an emerging technology that aims to allow everything
to connect, interact, and exchange data, the Internet of
Things (IoT) has attracted extensive attention in vari-
ous areas such as governments, industry, and academia
[1]. The massive connectivity, strict energy limitation,
and requirement of ultra-reliable transmission are often
termed as the most distinct features of IoT [2, 3]. These
features make massive multiple-input multiple-output
(MIMO) [4] a natural supporting technology for IoT
since through coherent processing over the signals of
large-scale antenna array, massive MIMO can produce
tremendous spectral/energy efficiency gain and improve
the reliability of IoT transmission significantly.
However, the coherent processing depends on the

reliable estimation of channel state information (CSI)
between base station (BS) and users [5–7]. In time division
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duplex (TDD) massive MIMO system, by exploiting the
channel reciprocity, both the uplink and downlink chan-
nels can be obtained using the simple least square (LS)
approach [8]. The consumption of pilot resource scales
with the number of users. However, there is no channel
reciprocity in frequency division duplex (FDD) massive
MIMO system. In this case, the downlink channel estima-
tion becomes particularly challenging since the downlink
training and corresponding CSI feedback yield an unac-
ceptably high overhead. For example, with the traditional
LS channel estimation scheme, it is well-known that the
length of the required pilot sequence must be larger than
the number of antennas at BS [8], which will degrade the
system performance greatly.
In the practical system, the BS is usually elevated at

a relatively high altitude with few surrounding scatters.
Therefore, the scattering process often occurs in vicinity
of user, which results in very narrow signal angle of depar-
ture (AoD) at BS [8, 9] for far-field transmission. Based
on a physical channel model, several works have shown
that the signals from different antennas of BS exhibit high
correlation, and hence, the channel between BS and user
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can be represented by a sparse vector in some alternate
domain (usually called angular domain) [10, 11]. This
property can be utilized to design cost-efficient chan-
nel estimation schemes [12–14]. The main idea behind
is to transform the channel to the angular domain by
exploiting the correlations between the channel elements
and then estimate the effective low-dimension angular-
domain channel with the LS or minimum mean square
error (MMSE) method. In this way, the training con-
sumption can be reduced greatly. However, these schemes
require the knowledge of channel covariance matrix or
angular-domain information, such as the AoDs of the sig-
nals, which is not always available. Another path to reduce
the training overhead is to formulate the channel esti-
mation as a sparse recovery problem and estimate the
angular-domain channel using the algorithms in compres-
sive sensing, such as orthogonal matching pursuit (OMP)
[15, 16] and sparse Bayesian learning (SBL) [17]. These
schemes do not need the channel covariance matrix and
angular information; however, suffer from performance
loss when the length of pilot sequence is small. To improve
the quality of channel estimation, novel channel esti-
mation schemes based on block l1/l2 optimization [18]
and variational SBL [19] were proposed recently. These
schemes exploit the structures in the channel sparsity to
give a robust channel estimation.
In this paper, we investigate the downlink channel esti-

mation problem for FDD massive MIMO system consid-
ering the above challenges. The main contributions are as
follows:

1 The sparse property of downlink massive MIMO
channel in angular domain is analyzed theoretically.
The results show that the angular-domain channel
exhibits two kinds of sparse structures, namely the
joint sparsity and burst sparsity.

2 By exploiting the two kinds of sparsity, a structured
prior-based SBL (SP-SBL) approach is proposed to
estimate the downlink channel between the BS and
user reliably. The scheme does not require the
channel statistics and AoD information.

3 Extensive numerical simulations are presented to
validate the effectiveness of the proposed scheme.
The results show that the proposed scheme
outperforms the reference schemes significantly in
terms of normalized mean square error (NMSE) for a
variety of scenarios with different lengths of pilot
sequence, transmit signal-to-noise ratios (SNRs), and
angular spreads.

Notations: We use B∗, BT , BH , |B|, and ‖B‖ to denote
conjugate, transpose, conjugate transpose, determinant,
and Frobenius norm of matrix B, respectively. B ∈ C

N×M

meansB is anN×M complex-valuedmatrix. CN (b |m,C )

means that b is a complex Gaussian variable with mean
m and covariance matrix C. [B]i,j denotes the

{
i, j
}
th ele-

ment of matrix B. E(·) denotes the expectation. ∇b
(
f (b)

)

denotes the gradient of function f (b) w.r.t. the vector b.

2 Methods
The rest of the paper is organized as follows: Section 3
describes the system model of the FDD massive MIMO
system. Section 4 analyzes the sparse property of the
angular-domain channel and presents the SP-SBL-based
channel estimation scheme. Section 5 presents the simu-
lation results to validate the effectiveness of the proposed
scheme. Section 6 draws the conclusions.

3 Systemmodel
Consider the massive MIMO system with a BS and K
users. It is assumed that both the BS and users are
equipped with uniform linear arrays (ULAs) with half
wavelength antenna spacing. The numbers of antennas at
BS and user are N andM, respectively, which satisfyM �
N . According to the ray-tracing model [8], the downlink
channel between BS and user k can be expressed as:

Hk =
θk+�d∫

θk−�d

ϕk+�a∫

ϕk−�a

rk (θ ,ϕ) aBS (θ) aHU (ϕ) dθdϕ (1)

where θk denotes AoD w.r.t. the array of BS, and ϕk
denotes the angle of arrival (AoA) w.r.t. the array of user
k. �d and �a denote the corresponding angular spreads.
rk(θ ,ϕ) denotes the complex channel gain for angle {θ ,ϕ}.
aBS (θ) and aU (ϕ) denote the array steering vectors, which
are given by:

aBS (θ) =
[
1, ejπ sin θ , · · · , ejπ(N−1) sin θ

]T

aU (ϕ) =
[
1, ejπ sinϕ , · · · , ejπ(M−1) sinϕ

]T (2)

In practice, the BS is often deployed at a high place such
as the top of high building. As discussed in the introduc-
tion, the limited number of scatterers around BSwill result
in very narrow angular spread �d in far-field propagation.
Conversely, the waves arriving at the user are usually uni-
formly distributed in AoA. Therefore, it is reasonable to
assume �a is close to π [9]. Note that the proposed chan-
nel estimation scheme in the next section is very general,
which is valid for arbitrary �a.
Let S denote the N × T pilot matrix of BS which is

broadcasted in T successive symbol times. The power of
each pilot symbol is |[ S]i,j |2 = P. For a practical training
scheme, T should be much smaller than N. The received
training signal at user k can be expressed as:

Zk = HH
k S + Nk ∈ C

M×T (3)
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where N ∈ C
M×T denotes the additive white Gaussian

noise (AWGN) matrix whose elements have zero mean
and variance σ 2.
Note that for the full-duplex massive MIMO system

with separate antenna configuration [11], the channel
reciprocity is also not available which makes the downlink
channel estimation very challenging. Since the downlink
transmission model of full-duplex massive MIMO is sim-
ilar with the FDD counterpart in the above, the proposed
scheme can be utilized to estimate the downlink channel
directly to reduce the pilot consumption.

4 Channel estimation by exploiting the sparse
structures

In this section, we first analyze the property of channel
sparsity in the angular domain. Based on the theoretical
results, we propose a novel SP-SBL approach to estimate
the downlink channel between BS and user.

4.1 Joint and burst sparsity in the angular domain
According to [11], the angular-domain channel matrix
between BS and user k can be expressed as:

Xk = AH
NHk ∈ C

N×M (4)

where AN is a shifted discrete Fourier transform (DFT)
matrix of dimension N, that is:

AN =
[
aN

(
−1
2

)
, aN

(
−1
2

+ 1
N

)
, · · · , aN

(
1
2

− 1
N

)]
,

aN (ρ)= 1√
N

[
1, exp (j2πρ) , · · · , exp (j2π (N−1) ρ)

]T .

(5)

Note that the mth column of Xk (denoted by xk,m) is
the angular-domain channel vector between the BS and
the mth antenna of user k. The angular-domain channel
is the projection of channel onto the space spanned by
the DFT bases. Since a DFT basis is in fact equivalent to
an array steering vector with specific AoD, the angular-
domain channel can be viewed as the channel response in
the angular domain, and the amplitude of each angular-
domain channel element indicates the channel strength
for the path with specific AoD. Moreover, due to the lim-
ited number of scatterers around the BS, the spread of
AoD will be very narrow in far-field propagation scenario.
As a result, only a small fraction of elements in angular-
domain channel matrix has significant amplitude. This
results in the sparsity in angular-domain channel.
Mathematically, following a similar analytic approach

as that in [10, 11], it can be shown that the angular-
domain channel matrix has the following two kinds of
sparse structures.

• Joint sparsity among the columns of Xk : The nth
element of xk,m has a significant amplitude only when

n ∈ 	k , where 	k is given by 	k ={
n
∣∣− 1

2 + n−1
N ∈ [ 1

2 sin (θk − �d) , 12 sin (θk + �d)
]
,

n ∈ N
+}. Since 	k is independent of the column

index m, the indexes of the significant elements in
each column of Xk are the same.

• Burst sparsity in each column of Xk : The indexes of
significant elements in xk,m appear in block.

As discussed in the above, �d is commonly small. Thus,
only a small number of elements in xk,m has a signifi-
cant value. Physically, the joint sparsity of angular-domain
channel is due to the fact that the size of the user’s array
can be neglected in far-field propagation, and thus, the
channels between the BS and all antennas of user can
be considered to have similar property in the angular
domain. Moreover, it is noted that the AoD of downink
signal varies in a continuous interval [θk − �d, θk + �d].
This causes the burst sparsity nature in the angular-
domain channel. The two kinds of sparse structures are
shown in Fig. 1 for an example with N = 64 andM = 4.
Here, we shall point out that, for the practical system

with finite N, the nth element of xk,m with n /∈ 	k is
small but not zero as shown in Fig. 1. Therefore, xk,m is
in fact approximately sparse. Note that [16, 18] assumed
that the angular-domain channel element is exactly zero if
n /∈ 	k , which we call as exactly sparse channel. Although
this assumption simplifies the model, it may change the
real system performance in the high SNR region greatly as
will be shown in the simulation of Section 5.

4.2 Structured prior-based Bayesian channel estimation
By substituting (4) in (3), the received training signal at
user k can be rewritten as:

Yk = ZH
k = 
Xk + NT

k ∈ C
T×M (6)

where 
 = SHAN ∈ C
T×N . Note that as long as Xk is

known, the channel matrix Hk can be recovered directly
based on (4), that is, Hk = AXk (which is called basis
expansion model).
By treating
 as the sensing matrix,Xk can be estimated

using the conventional SBL [17] or OMP [15] approach
from (6). However, the performance will be poor if the
number of pilot symbols (i.e., T) is small as will be seen
in the simulations. In this paper, we propose a SP-SBL
approach to estimate the channel reliably by exploiting
the two kinds of sparse structures discussed in the last
subsection.
Different fromtheconventionalSBLwherea i.i.d. Gaussian

prior is utilized, we propose a structured prior for Xk as
follows:

p (Xk| αk , γk) =
M∏

m=1
CN

(
xk,m

∣∣ 0, γ −1
k,mD

−1
k

)
(7)
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Fig. 1 Normalized amplitudes for the elements of angular-domain channel matrix Xk , where N = 64,M = 4, and θk = 15.5◦ . The angular spread for
AoD is δd = 5◦ . It is assumed that the waves arriving at the user are usually uniformly distributed in AoA [12]. Therefore, �a is equal to π

where γk = [
γk,1, · · · , γk,M

]T and αk = [
αk,1, · · · ,αk,N

]T .
Dk anN ×N diagonal matrix whose nth diagonal element
is modeled as:

[Dk]n,n =

⎧
⎪⎨

⎪⎩

αk,N + αk,1 + αk,2, n = 1
αk,n−1 + αk,n + αk,n+1, 2 ≤ n ≤ N − 1
αk,N−1 + αk,N + αk,1, n = N

.

(8)

For the prior model in (7) and (8), the mth column of
angular-domain channel matrix Xk has precision matrix
γk,mDk . Thus, precision matrices for different columns of
Xk differ only with a scaling factor γk,m. This property
captures the joint sparsity among the columns of Xk . The
parameter γk,m is utilized to model the relative difference
between the amplitudes of

{
xk,m

}M
m=1. By exploiting the

joint sparsity, the recovery errors which predict zero for
one element of xk,m and predict non-zero for the element
of xk,m′ (m �= m′) in the same position can be mitigated
effectively.
Additionally, the precision of the nth element of xk,m

can be expressed as γk,m
(
αk,n−1+αk,n + αk,n+1

)
. Thus, the

precisions of adjacent elements in xk,m aremutually coupled.
When αk,n → ∞, the estimations of nth, (n − 1)th,
and (n + 1)th elements of xk,m will be driven to zero
simultaneously. Therefore, the zero elements (and hence
non-zero elements) in the estimation of xk,m will appear
in block, which just captures the block sparsity structure.

By exploiting burst sparsity, the situation that a signifi-
cant element of xk,m is predicted as zero (or near zero),
isolated in xk,m, can be reduced greatly. Note that the
precisions of the first and the last elements of xk,m are
also coupled. This structure captures a basic property of
angular-domain channel, i.e., the elements at the begin-
ning and that at the end of xk,m tend to be close to zero or
have large amplitude simultaneously.
According to (6), the likelihood function of the received

training signal Yk can be expressed as:

p (Yk |Xk ) =
M∏

m=1
CN

(
yk,m

∣∣
xk,m, σ 2IT
)

(9)

Using (7), (9), and the property of complex Gaussian
distribution, the posterior distribution of xk,m can be
derived as:

p (Xk |Yk ) ∝ p (Yk |Xk ) p (Xk| αk , γk)

=
M∏

m=1
CN

(
xk,m

∣∣μk,m,�k,m
) (10)

where the posterior mean and covariance matrix of xk,m
are given by:

μk,m = 1
σ2

�k,m
Hyk,m

�k,m =
(
D−1

k + 1
σ 2
H


)−1 (11)
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To give a fully Bayesian treatment, similar to conven-
tional SBL, we introduce a gamma hyperprior for αk :

p (αk) =
N∏

n=1
Gam

(
αk,n |a, b )

=
N∏

n=1

1
� (a)

baαa
k,n exp

(−bαk,n
)
,

(12)

where a and b are fixed parameters. Commonly, a and b
are set as small values to impose a non-informative prior.
In this paper, a and b are chosen as a = b = 10−4.
Moreover, we introduce a Dirichlet hyperprior for γk :

p (γk)=C (u)

M∏

m=1
γ
um
k,m (13)

where u = [u0, · · · ,uM] is a fixed parameter with u0 =∑M
m=1 um. C (u) = �(u0)

�(u1)···�(uM)
is the normalization con-

stant. Since the expectation of γk,m with respect to the
distribution (13) is given by E

[
γk,m

] = um
u0 , we can inter-

pret u as the parameter which gives an initial guess on the
relative difference between the amplitudes of

{
xk,m

}M
m=1.

As in the convention of sparse Bayesian learning frame-
work, the hyperpriors are utilized to imbed the prior
knowledge of the parameters into the estimation algo-
rithm. Moreover, as shown in [17], the utilization of
gamma hyperprior is helpful to produce a sparse solution
which is desired in our problem.
As long as αk and γk are obtained, the maximum poste-

rior (MAP) estimation of Xk can be given by its posterior
mean in (11). Therefore, in the following, we focus on
finding the optimal αk and γk by solving the MAP prob-
lem:

{
α̂k , γ̂k

} = argmax
αk ,γk

p (αk , γk|Yk)

= argmin
αk ,γk

− log p (αk , γk ,Yk) .
(14)

Different from the conventional SBL, solving the above
problem directly is quite challenging due to the utilization
of the structured prior. To address this problem, we resort
to the expectation maximization (EM) [20] algorithm to
find a computationally efficient solution.

4.3 Solving the SP-SBL using expectation maximization
Instead of solving the MAP problem in (14) directly,
the EM algorithm tries to find the optimal αk and γk
by maximizing the expected complete-data log-likelihood
function, that is:

{
α̂k , γ̂k

} = argmax
αk ,γk

Q (αk , γk)

Q (αk , γk) = EXk

∣∣∣Yk ,α̂old
k ,γ̂ old

k

[
ln p (αk , γk ,Xk ,Yk)

] (15)

where the expectation is w.r.t. the posterior distribution
of Xk given by (10). α̂old

k and γ̂ old
k denote the latest esti-

mations of αk and γk , respectively. Each iteration of the
algorithm consists of an expectation step (E-step) and a
maximization step (M-step).
In the E-step of the ith iteration, the posterior dis-

tribution of Xk is computed approximately using the
estimations of αk and γk in the (i − 1)th iteration(
denoted by α̂

(i−1)
k and γ̂

(i−1)
k

)
based on (10), which is

then used to evaluate the expected complete-data log-
likelihood function.
In the M-step of the ith iteration, the estimation of αk

and γk is updated to maximize the expected complete-
data log-likelihood function obtained in E-step.

4.3.1 Update of γk
By substituting (10) and (13) into (15) and discarding the
terms irrelevant to γk , it can be shown that the expected
complete-data log-likelihood function reduces to"

Q
(
α̂

(i−1)
k , γk

)
=

M∑

m=1
um lnγk,m +

M∑

m=1
ln
∣∣∣γk,mD̂k

∣∣∣

−
M∑

m=1
tr
(
γk,mD̂k

(
�̂k,m + μ̂k,mμ̂H

k,m

))
+ const.

(16)

Note that αk has been fixed at its estimation after
the last iteration, i.e., αk = α̂

(i−1)
k . D̂k can be

computed using (8) by replacing αk with α̂
(i−1)
k . �̂k,m

and μ̂k,m can be computed using (11) by replacing
{αk , γk} with

{
α̂

(i−1)
k , γ̂ (i−1)

k

}
. The first-order derivative of

Q
(
α̂

(i−1)
k , γk

)
w.r.t γk,m can be expressed as:

dQ
(
α̂

(i−1)
k , γk

)

dγk,m
= N + um

γk,m
− tr

(
D̂k

(
�̂k + μ̂kμ̂

H
k

))

(17)

By setting (17) to zero, we can obtain the estimation for
γk,m in the ith iteration:

γ̂
(i−1)
k,m = N + um

tr
(
D̂k

(
�̂k + μ̂kμ̂

H
k

)) (18)

4.3.2 Update of αk

By substituting (10) and (12) into (15) and discarding the
terms irrelevant to αk , it can be shown that the expected
complete-data log-likelihood function reduces to:
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Q
(
αk , γ̂ (i−1)

k

)
=

N∑

n=1

(
a logαk,n − bαk,n

)

− tr
(
γ̂

(i−1)
k,m Dk

(
�̂k,m + μ̂k,mμ̂H

k,m

))

+
M∑

m=1
ln
∣∣∣γ̂ (i−1)

k,m Dk

∣∣∣ + const.

(19)

where γk has been fixed at its estimation after the last
iteration, i.e., γk = γ̂

(i−1)
k . The first-order derivative of

Q
(
αk , γ̂ (i−1)

k

)
w.r.t αk,n can be expressed as:

dQ
(
αk , γ̂ (i−1)

k

)

dαk,n
= a

αk,n
− b −

M∑

m=1
γ̂

(i−1)
k,m qk,m,n

+ M
(
ωk,n−1 + ωk,n + ωk,n+1

)
(20)

with

ωk,n = 1
αk,n−1 + αk,n + αk,n+1

qk,m,n =
1∑

j=−1

([
�̂k,m

]

n+j,n+j
+ ∣∣μ̂k,n+j

∣∣2
) (21)

In (21), the derivative w.r.t. αk,n is correlated with αk,n−2,
αk,n−1, αk,n+1, and αk,n+2. This makes the closed-form
solution for αk,n unavailable. Nevertheless, we can obtain
a valid solution using the gradient-based algorithm as
follows:

α̂k ← α̂k − δ∇αkQ
(
αk , γ̂ (i−1)

k

)
(22)

where δ is the stepsize, and the gradient can be directly
computed using (20).
By virtue of the EM’s properties, the above algorithm

will always converge since each iteration is guaranteed to
reduce the target function. However, the update formula
of αk in (22) is still complex due to the lack of analytic
expressions. Moreover, (22) gives little insight into the
basic mechanism of SP-SBL. In the following, we derive
a closed-form solution for αk by adding some heuristic
assumptions.
When updating αk,n, we temporarily assume that the

nth element of xk,m has the same variance with its neigh-
bors, i.e., the (n − 1)th and (n + 1)th elements of xk,m.
In this case, we will have αk,n−2 = αk,n−1 = αk,n =
αk,n+1 = αk,n+2. This assumption is reasonable if we do
not have much prior knowledge about αk . Note that this
does not mean we will obtain an estimation of αk with
α̂

(i)
k,n−2 = α̂

(i)
k,n−1 = α̂

(i)
k,n = α̂

(i)
k,n+1 = α̂

(i)
k,n+2 because, with

the incoming training signal, the estimation of αk,n is rec-
tified and is expected to get close to the true value. Under
this assumption, (20) becomes:

dQ
(
αk , γ̂ (i−1)

k

)

dαk,n
= a

αk,n
− b + M

αk,n
−

M∑

m=1
γ̂

(i−1)
k,m qk,m,n

(23)

By setting (23) to zero, we can obtain:

α̂
(i)
k,n ≈ (a + M)

( M∑

m=1
γ̂

(i−1)
k,m qk,m,n + b

)−1

(24)

The numerical results show that the update formula in
(24) gives rise to the similar performance with that using
gradient-based update in (22). Moreover, the solution in
(24) provides a clear insight into the difference between
SP-SBL and conventional SBL. With conventional SBL,
the update of the precision for the nth element of xk,m is
only related to the posterior mean and variance of itself.
In contrast, in SP-SBL, the update of αk,n is effected by
the posterior means and variances of (n − 1)th, nth, and
(n + 1)th elements of xk,m for all m = 1, · · · ,M due to
the utilization of joint and burst sparsity. Therefore, the
SP-SBL is expected to achieve better performance.
After the downlink channel estimation, the estimated

CSI should be sent back to the BS in order to perform the
downlink beamforming. In this process, additional error
can be introduced by quantization, noise, and feedback
delay. However, the results in [21] showed that the error
due to the imperfect feedback can be made much smaller
than that due to the estimation error in downlink training
phase. Therefore, as in [11], we optimistically neglect the
additional error due to the feedback in this paper.

4.4 Computation complexity analysis
The main computation load in each iteration is due to
the N × N matrix inversion when updating the poste-
rior mean and covariance matrix of xk,m in E-step. By
using the matrix inversion lemma, the calculation of each
matrix inversion has complexity O

(
T3). Therefore, the

overall computational complexity of the algorithm scales
with O

(
GKMT3), where G is the number of EM iter-

ations. Since we consider the situation that T is much
smaller than N, the computation complexity will not pose
a significant problem.

4.5 Extension to FDDmassive MIMO systemwith hybrid
analog-digital processing

In the practical system, the hybrid analog-digital process-
ingmay be utilized at the BS to reduce the implementation
complexity. In the following, we will show that the pro-
posed scheme can still be applied in this case. With hybrid
analog-digital processing at the BS, the received training
signal at user k can be expressed as:

Zk = HH
k WS + Nk (25)
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where W ∈ C
N×F is the arbitrary analog beamforming

matrix utilized by BS, and F ≤ N denotes the number of
radio frequency chain at the BS. The pilot signal S is an
F × T matrix in this case. Note that we have reuse some
notations to avoid introducing too many new definitions.
Using the definition of angular-domain channel in (4), we
can rewrite (25) as:

Yk = ZH
k = (WS)HANXk + NT

k (26)

Note that, by treating (WS)HAN as the sensing matrix,
(26) is in the same form with (6). Therefore, the proposed
scheme can be utilized directly to estimation the channel
matrix from (26).

5 Simulation results and discussion
This section presents the simulation results to validate
the proposed scheme. Without loss of the generality,
the large-scale fading and noise variance are normal-
ized to 1. For illustration, the number of users is set
to K = 8. The central frequency is set to 2.4 GHz,
and the antenna spacing is equal to the half of wave-
length. Similar to [22], the rows of sensing matrix 


are designed as the length-N Zadoff-Chu sequence [23]
with shifting step 7. In particular, the first row of 


is given by 1√
N

[
1, ej

νπ12
N , ej

νπ22
N , · · · , ej νπ(N−1)2

N

]
. The sec-

ond row of 
 is obtained by cyclically right shift-
ing the first row with a step of 7, which is given

by 1√
N

[
ej

νπ(N−7)2
N , ej

νπ(N−6)2
N , · · · , ej νπ(N−1)2

N , 1, ej
νπ12
N , ej

νπ22
N ,

· · · , ej νπ(N−8)2
N

]
. Moreover, ν = 7 is used in the simula-

tions. The rest rows of 
 are generated in a similar way.
The AoD θk and AoA ϕk for different users are generated
randomly from the interval [−90◦, 90◦]. It is assumed that
the waves arriving at the user are uniformly distributed in
AoA [12]. Therefore, �a is equal to π , and the complex
channel gain reduces to rk (θ ,ϕ) = rk (θ). It is assumed
that the rk (θ) for different θ are uncorrelated. For each
sample of θ , rk (θ) is the complex Gaussian distributed
with zero mean and variance Uk (θ), where Uk (θ) is the
power angle spectrum. We model Uk (θ) as the truncated
Laplacian distribution centered at θk [12]. The simplified
update rule for αk in (24) is utilized to reduce the com-
plexity. The parameters in the hyperprior models (12) and
(13) are set as a = b = 10−4, u1 = · · · = uM, and u0 = M.
We consider four reference schemes in the simulations,

i.e., the conventional SBL based on the original algorithm
in [17], OMP [15], block l1/l2 minimization [18], and
variational SBL [19]. Note that the block l1/l2 minimiza-
tion and variational SBL can also exploit the joint sparsity
among the angular-domain channel vectors between BS
and different antennas of user.

We consider the NMSE performance which is defined
as follows:

NMSE = E

⎡

⎢
⎣
1
K

K∑

k=1

∥∥∥Hk − Ĥk

∥∥∥
2

‖Hk‖2

⎤

⎥
⎦ , (27)

All figures are obtained by averaging the results for 103
independent channel realizations.
Figure 2 shows the NMSE performance for different

lengths of pilot sequence T, where the transmit SNR of
BS is NP

σ 2 = 15 dB and the angular spread is �d = 5◦.
It is seen that the performances of conventional SBL and
OMP are poor when the length of pilot sequence is small.
By exploiting the joint sparsity among the angular-domain
channel vectors between BS and different antennas of
user, the block l1/l2 minimization and variational SBL
can provide better performance. Moreover, the proposed
scheme based on SP-SBL achieves the best NMSE perfor-
mance since it exploits the joint sparsity and burst sparsity
simultaneously.
Figure 3 shows the NMSE performance for different

transmit SNRs of BS, where the length of pilot sequence
is T = 16 and the angular spread is �d = 5◦. It is seen
that the performances of all schemes converge to NMSE
floors for large SNR. The reason is that the angular-
domain channel is approximately sparse as discussed in
Section 4.1. That is, the nth element of xk,m with n /∈ 	k
is small but not zero. With small T, recovering all these
small elements of xk,m with high accuracy is difficult. As
a result, with the increasing of the SNR, the effect of the
mismatch between the true values of these small elements
and their estimates becomes significant when compared
with AWGN, which incurs NMSE floor in the high SNR
region1. Note that the NMSE floor does not occur in

Fig. 2 NMSE performance for different lengths of pilot sequence T,
where N = 64 andM = 4. The transmit SNR of BS is NP

σ 2 = 15 dB and
the angular spread is �d = 5◦
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Fig. 3 NMSE performance for different transmit SNRs of BS, where N = 64 andM = 4. The length of pilot sequence is T = 16 and the angular
spread is �d = 5◦

Fig. 4 NMSE performance for different transmit SNRs of BS, where N = 64 andM = 4. The length of pilot sequence is T = 16 and the angular
spread is �d = 5◦ . The angular-domain channel is assumed exactly sparse
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Fig. 5 Number of significant elements in xk,m , where N = 64 andM = 4

Fig. 6 NMSE performance for different angular spreads �d , where N = 64 andM = 4. The length of pilot sequence is T = 16 and the transmit SNR
of BS is NP

σ 2 = 15 dB
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Fig. 7 NMSE performance for different numbers of antennas at users, i.e.,M, where N = 64. The length of pilot sequence is T = 16. Transmit SNR of
BS is NP

σ 2 = 15 dB. The angular spread is �d = 5◦

Fig. 8 NMSE performance for different numbers of iterations, where N = 64. The length of pilot sequence is T = 16. Transmit SNR of BS is
NP
σ 2 = 15 dB. The angular spread is �d = 5◦
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the simulations of [16, 18]. This is because these works
assume that there is no channel power leakage outside	k .
Although this assumption simplifies the model, the resul-
tant simulations cannot reflect the real performance in the
high SNR region very well. For illustration, we also present
the NMSE performance for all schemes in Fig. 4 under
exactly sparse angular-domain channel model considered
in [16, 18], where the nth element of xk,m is set to zero
as long as n /∈ 	k when generating the channel matrix.
From the figure, we can see that the performance floors
disappear as expected.
Then, we consider the performance for different angu-

lar spreads �d ranged from 3 to 18◦. This corresponds
to the scenarios with scattering ring of 30 m and the dis-
tance between BS and user varying from about 100 to
500 m. Figure 5 shows the number of significant elements
in the angular-domain channel xk,m, i.e., the number of
elements that contain 90% of the channel power, varies
from 3 to 17 when the angular spread increases from 3 to
18◦. Figure 6 shows the NMSE performance for different
angular spreads, where the transmit SNR of BS is NP

σ 2 =
15 dB and the length of pilot sequence is T = 16. Again,
the proposed scheme based on SP-SBL achieves the best
performance. Moreover, we note that the NMSEs of all
schemes degrade when the angular spread increases. This
is because the number of significant elements in angular-
domain channel becomes larger as shown in Fig. 5. In this
case, to maintain the estimation performance, the capac-
ity of all schemes must be enhanced by increasing the
training samples.
Figure 7 shows the NMSE performance for different

numbers of antennas at user, i.e., M. The length of pilot
sequence is T = 16. The transmit SNR of BS is NP

σ 2 =
15 dB. The angular spread is �d = 5◦. It is seen that the
NMSEs of conventional SBL and OMP-based schemes are
independent ofM. In contrast, the performances of block
l1/l2 minimization, variational SBL, and SP-SBL-based
schemes are improved gradually with the increasing ofM,
which is just the benefit of exploiting the joint sparsity.
Figure 8 shows the NMSE performance for different

numbers of iterations. The length of pilot sequence is
T = 16. The transmit SNR of BS is NP

σ 2 = 15 dB. The
angular spread is �d = 5◦. It is seen that the NMSE
performance converges after 40 EM iterations. More-
over, the number of iterations required for SP-SBL is
smaller than that of block l1/l2 minimization and greater
than that of conventional SBL and variational SBL. The
computation complexities in each iteration for SP-SBL,
block l1/l2 minimization, conventional SBL, and varia-
tional SBL are O

(
KMT3), O (KMNT) [18], O

(
KMT3)

[17], andO
(
KMT3) [19], respectively. Note that the OMP

needs no iteration and its total computation complexity is
O (ηKMNT) [15], where η denotes the number of signifi-
cant elements in xk,m. Therefore, from the analysis above,

the SP-SBL has the highest computation complexity but
converges to best NMSE.

6 Conclusions
This paper proposes a SP-SBL approach for downlink
channel estimation in FDD massive MIMO system. By
exploiting the two kinds of sparse structures, the scheme
can substantially reduce the pilot resource assumption
while maintaining the estimation performance. Through
numerical simulations, it is shown that the proposed
scheme outperforms the reference schemes significantly
in terms of NMSE for a variety of scenarios with differ-
ent lengths of pilot sequence, transmit SNRs, and angular
spreads.

Endnote
1 To address this problem, a possible solution is to

exploit other inherent structures of angular-domain chan-
nel in the prior model, for example, the additional correla-
tion between the phases and amplitudes of the elements in
angular-domain matrix if they exist. In general, the prob-
lem is quite challenging and will be considered as future
study.
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