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Abstract

The web technology has become the cornerstone of a wide range of platforms, such as mobile services and smart
Internet-of-things (IoT) systems. In such platforms, users’ data are aggregated to a cloud-based platform, where web
applications are used as a key interface to access and configure user data. Securing the web interface requires solutions
to deal with threats from both technical vulnerabilities and social factors. Phishing attacks are one of the most
commonly exploited vectors in social engineering attacks. The attackers use web pages visually mimicking legitimate
web sites, such as banking and government services, to collect users’ sensitive information. Existing phishing defense
mechanisms based on URLs or page contents are often evaded by attackers. Recent research has demonstrated that
visual layout similarity can be used as a robust basis to detect phishing attacks. In particular, features extracted from
CSS layout files can be used to measure page similarity. However, it needs human expertise in specifying how to
measure page similarity based on such features. In this paper, we aim to enable automated page-layout-based
phishing detection techniques using machine learning techniques. We propose a learning-based aggregation
analysis mechanism to decide page layout similarity, which is used to detect phishing pages. We prototype our
solution and evaluate four popular machine learning classifiers on their accuracy and the factors affecting their results.
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1 Introduction
The web technology has become the cornerstone of a wide
range of platforms, such as mobile services and smart
Internet-of-things (IoT) systems. In such platforms, users’
data are aggregated to a cloud-based platform, where web
applications are used as a key interface to access and
configure user data. Securing the web interface requires
solutions to deal with threats from both technical vulner-
abilities and social factors.
Phishing attacks are one of the most common form of

social engineering attacks. In a web-based phishing attack,
attackers use web pages visually mimicking legitimate web
sites, such as banking and government services, to deceive
the victims to input their sensitive information (e.g., bank
accounts and social security number). Though phishing
attacks do not require advanced technical knowledge and
these attack techniques are becoming familiar to users,
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they are still causing major financial damages. Accord-
ing to the report from the Anti-Phishing Working Group
(APWG), there are 1,220,523 phishing attacks reported in
2016, which is a 65% increase over 2015 [1].
Several types of anti-phishing solutions have been

developed for web-based phishing solutions. The tradi-
tional URL-based anti-phishing solutions [2–5] try to
decide whether a page is a phishing page based on its
URL. They are limited by the timeliness of malicious URL
database update. The solutions based on page contents
[6, 7] rely on the context or image processing techniques
to detect phishing attacks, which can cause high perfor-
mance overhead. As the phishing pages usually maintain
similar page layouts to their target websites, the similar-
ity of page layouts has been demonstrated as an impor-
tant metric to detect phishing pages [8, 9]. In particular,
features extracted from CSS layout files are used to mea-
sure page similarity. However, these measurements heav-
ily rely on human experiences and thus may not be
comprehensive to detect new attacks. How to compre-
hensively evaluate the pages’ similarity remains a great
challenge.
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Machine learning has been widely used in many areas
to create automated solutions. Researchers also use
machine learning to detect phishing attacks based on var-
ious features [10–14]. The solutions show the potential
of machine learning techniques to detect phishing
attacks. In this paper, we aim to explore learning
techniques to develop efficient phishing page detec-
tion techniques that are difficult to bypass. Our solu-
tion is based on the aggregation analysis mechanism
to automatically generate rules to determine layout
similarity of web pages and then detect phishing
pages. Our approach consists of two phases. It first
trains a similarity classifier using page layout fea-
tures, then uses the classifier to detect phishing
pages.

1.1 Experimental method
We prototyped our approach and evaluated it based
on four learning classifiers, namely, Support Vector
Machine (SVM), Decision Tree, AdaBoost, and Random
Forest. Our evaluation used more than 490 phishing
web pages from phishtank.com that mimic 46 target
pages, from which we extracted over 20,000 testing sam-
ples. Using experiment results, we show the strength
and weakness of the classifiers in detecting similar pages
and analyzed the effective influences caused by the
size of dataset and the sample distributions. It also
shows that our approach is effective in creating clas-
sifiers and detecting phishing pages via page layout
similarity.
In summary, wemade the following contributions in this

paper:

• We propose a learning-based mechanism to evaluate
the similarity of web page layouts and identify
phishing pages.

• We define the rules to extract and create effective
page layout features and develop a phishing page
classifier based on four typical learning algorithms,
Supporting Vector Machine, Decision Tree,
AdaBoost, and Random Forest.

• We prototyped our approach and evaluated it with
real-world web page samples from phishtank.com.
The experiment results illustrate the efficiency of our
approach.

1.2 Paper organization
The rest of this paper is organized as follows. We discuss
closely related work in Section 2. Section 3 introduces
the background of our work and gives an overview of
our approach. Section 4 presents our main algorithm.
Section 5 presents the evaluation results. We conclude the
paper in Section 6.

2 Related work
In this section, we discuss past research work that is
closely related to our approach. We focus on phishing
detection techniques that are based on page features
intrinsic to page visual appearance, instead of external
page features, such as URLs.

2.1 Page-feature-based phishing detection
Eric et al. [15] proposed a scheme that selects text pieces,
images, and overall visual appearance as the basic prop-
erties to compare the similarity of two pages. Chen et al.
[16] presented another algorithm to detect visually similar
pages according to Getstalt theory, in which they process
the webpage as an indivisible entity. CANTINA [6] detects
phishing pages based on “term frequency-inverse docu-
ment frequency (TF-IDF).” SpoofGuard [17] uses domain
name,URL, link, and image as the critical features to check
suspicious pages. GoldPhish [18] uses optical character
recognition from a rendered page to extract page infor-
mation. It then uses search engines to decide whether
the page content is consistent with its domain and thus
identifies phishing sites. Zhang et al. [19] used spatial lay-
out characteristics from web pages and used as a basis
to decide page similarity. Moghimi et al. [20] discovered
a rule-based scheme that used two novel feature sets to
detect phishing in internet banking. One feature set is
used to evaluate the identity of page resources, and the
other is utilized to identify the access protocol. Wardman
et al. [21] used file-level similarity between two web pages
and to detect phishing web sites. Phishing-Alarm uses CSS
layout features that are efficient and robust in detecting
phishing web sites [8]. In contrast, to identify new fea-
tures as a basis for phishing detection, this paper focuses
on how to automatically learn classifiers of similar pages
from CSS features.

2.2 Learning-based phishing detection
Machine learning has been applied to web page classi-
fication in detecting phishing. Pan et al. [10] presented
an SVM-based page classifier for detection of phishing
sites. Xiang et al. [11] proposedCANTINA+ that takes the
15 features from URL, HTML Document Object Model
(DOM), third party services, and search engines. It trains
these features using Support Vector Machine (SVM) to
detect phishing attacks. Abu-Nimeh et al. [22] compared
six machine learning algorithms for phishing detection,
including Bayesian Additive Regression Trees, Logical
Regression, Support Vector Machine, Random Forest,
Neural Network, and Regression Tree. Lee et al. [12] lever-
aged a linear chain CRF model to understand web brows-
ing behaviors of users on phishing web sites and predicted
behavior under the context to detect phishing attacks.
Abdelhamid et al. [13] proposed an associative classi-
fication method for web site phishing detection based
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on multi-label classifiers. Bottazzi et al. [23] proposed a
framework in Android mobile devices for phishing detec-
tion, which includes a machine learning detection engine
for protecting from new phishing activities. Abdelhamid
et al. [14] investigated several machine-learning-based
phishing detection techniques on their pros and cons,
including evaluation with real-world dataset on their per-
formance. In our preliminary work [24], we used two
classifiers to detect phishing attacks from page layout
features.
We summarize the properties of typical learning-based

phishing detection approaches and make a comparison
with our scheme in Table 1.

3 Background and overview
In this section, we introduce the background for our solu-
tion, define the problem, and describe the overall solution.

3.1 Page layout features
Cascading Style Sheets (CSS) is the commonly used visual
layout definition of web pages. Widely supported by
browsers, CSS rules specify how different classes of web
page components should appear, for example, the font
type and the color of the body of a page.
In our previous work [8, 9], we have demonstrated that

CSS-based page layout features can be used as the basis to
detect phishing pages, where we convert CSS into a nor-
malized representation called influence vector. It consists
of two parts: a property, and one or more declarations.
Each declaration consists of a value and one or more selec-
tors. In addition, the selectors can be classified into four
categories tag, ID, class, and others.
For example, given the CSS rule set of a web page,

{. . . , [ Selectori{. . . ; [Propertyj : Valuek ; . . . ] , . . .}] , . . .},
its influence vector will be defined as
{
. . . ,Propertyj :

[
. . . ;

{
Valuejk :

[
. . . , Selectorj,ki ; . . .

]}
, . . .

]
, . . . ,

}
.

where j means the jth property of one page, k means the
kth property value in the jth property of the page, and i
means the ith selector that has Propertyj and Valuejk .

Table 1 Comparison of learning-based phishing detection

Detection Input features Input samples Classifiers Precision

Pan et al. [10] 7 features About 380 1 ***

Xiang et al. [11] 15 features About 8120 6 ****

Abdelhamid et al. [22] 16 features About 1350 6 **

Mao et al. [24] 1 feature About 2930 2 **

Our work 1 feature About 26580 4 **

The precision in the table means the degree of correct detection
*The precision is below 90%
**The precision is in 90–95%
***The precision is in 95–97%
****The precision is in 97–100%

More concretely, from the following CSS rules,

div {padding : 2px; },
p {padding : 3px; color : #ff 0000},
.class1 {padding : 2px; color : #ff 0000},
.class2 {padding : 3px},
#id1 {padding : 2px; color : #ff 0000},
#id2 {padding : 3px; color : #00ff 00}.

the corresponding influence vector will be

padding :
[ {′′2px′′ :

[′′div′′,′′ .class1′′,′′ #id1′′]},
{′′3px′′ :[′′ p′′,′′ .class2′′,′′ #id2′′] }.

]
,

color :
[ {′′#ff 0000′′ :[′′ p′′,′′ .class1′′,′′ #id1′′] },

{′′#00ff 00′′ :[′′ .class2′′,′′ #id2′′,′′ #id3′′] }
]
.

Note that this is a basic form to represent the page
features from CSS layouts. Considering the influence
impacts, our approach includes additional influence fac-
tors of a page layout. For example, if the element size does
matter to the detection effect, we will include it into the
feature representation.

3.2 Learning-based layout similarity detection
The metric we used in our previous work is mainly based
on human experiences and may not comprehensively rep-
resent all the statistical similarity properties between page
layouts of phishing pages and legitimate pages. Especially,
the threshold, a critical parameter of that approach, is
selected based on the similarity score distribution of the
collected samples. As a result, its accuracy heavily relies
on the completeness of the sample collection and attackers
may craft new phishing pages to bypass the detection.
Our goal is to develop methods that can detect the

similarity among two page layouts by comprehensively
“considering” layout features. Machine learning mecha-
nisms are typically used in such situations, where they are
used to infer similarity models according to the statistical
properties retrieved from the training samples.
The problem addressed by our paper can be formulated

as follows: Taking a set of labeled benign and malicious
pages as inputs, we extract CSS features and identify
learning algorithms to detect visually similar pages based
on these CSS features. The page similarity will help to
detect phishing pages.

3.3 Approach overview
As shown in Fig. 1, our approach includes two phases: sim-
ilarity classifier training and phishing web page detection
based on layout similarity.

3.3.1 Similarity classifier training
We first obtain a classifier to decide page similarity from
layout features. This phase consists of the pre-processing
stage and the training stage. The pre-processing stage
takes as inputs two categories of pre-prepared web page
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a

b

Fig. 1 Overview of our approach. a Train layout similarity classifier. b Detect suspicious web page

pairs, visually similar web page pairs and visually different
web page pairs. Our approach obtains features from web
page layouts and creates the comparison vectors, which
summarize the key similarity features, of every web page
pairs accordingly. We label the comparison vector as “c1”
to represent a pair of similar web pages. Correspondingly,
the visually different web page pair is labelled as “c0.” The
classifier training stage takes as inputs the labelled com-
parison vectors from the training set. The similar page
classifier obtained in this stage can be used to determine
whether two web pages are similar according to their
comparison vectors.

3.3.2 Phishingweb page detection based on layout
similarity

The trained classifier can then be used to detect phishing
pages. When a user opens a new web page, “WPage_S”
(illustrated in a yellow block in Fig. 1b), our detector pre-
processes the web page by extracting the layout features
of the new page and creating comparison vectors between
the “WPage_S” and the pages, “WPage_1, ..., WPage_n”
in web page database Web Page Feature DB, respectively.

The classifier obtained in phase I takes the comparison
vectors as inputs and determines the labels of each vec-
tor. If the comparison vector of web page pair “(WPage_S,
WPage_i)” is classified as “c0,” it means “WPage_S” is
visually different from “WPage_i” and the system will go
to test the next vector. Otherwise, it means “WPage_S”
is visually similar as “WPage_i.” Once the classifier out-
puts a “c1” labelled vector, the system will send a warning
message to alert users.

4 Learning-based similar page layout
classification

In this section, we describe the key part of our approach,
a learning-based classification module based on CSS fea-
tures to identify similar web pages. It includes two steps,
property vector extraction and classifier building. We first
extract the features of the web pages and combine two
pages’ effective CSS features into a comparison prop-
erty vector. The learning-based classifier training module
takes the labelled comparison vectors as inputs, where 1
denotes that two pages are similar and 0 denotes that two
pages are visually different. The output of the training
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module is a similar page classifier that takes web pages’
features as inputs and outputs 1 or 0 to represent similar
pages or different pages respectively.

4.1 Property vector extraction
One of the challenges faced by our approach is to
extract features from page layouts and represent them
into formats that are easily processed by learning tech-
niques. In this step, we present the rules that quantify
the CSS elements’ impact of a web page and combine
CSS features of two pages into one comparison property
vector.

4.1.1 Property vector generation
As in our previous work [8, 9], we use the area of elements
in a page to demonstrate their impacts on page layout. The
larger the area is, the more impact it has on the page lay-
out. As our main goal is to learn classifiers without human
expertises, instead of manually decide how to use the area
information, we extract area properties as a part of the
influence vectors extracted from CSS layouts, which we
call property vector in this paper.
To avoid the inaccuracy of detection in different page

window sizes, in this paper, we use the relative area,
i.e., the proportion of an element’s area to the whole
page window size. Because page visual appearance is
affected by CSS selectors’ properties and values, which
are not CSS names of selectors, we associate the area
information with properties in the representation. We
extract and express CSS features to the pattern shown as
follows:

[
. . . ,Propertyj

{
. . . ;Valuekj : AreaInf okj , . . .

}
, . . . ,

]
.

where j denotes the jth property in a page and k denotes
the kth value in Propertyj.
Different from the representation used in our past work,

we incorporate the relative area size of page elements into
the features. We rank the CSS objects in the decreasing
order by area proportion in a Propertyj, i.e., AreaInf o1j >

AreaInf o2j > ... > AreaInf onj .
Forexample, assumingpageshavecommonthreeproperties:

Property1=“height,” Property2=“width,” Property3=“color.”
There are target Page1 and suspicious Page2. Here is an
illustrative example of the vector representation.

Page1 :[ “height"{16px : 0.26, 20px : 0.2},
“width"{344px : 0.2}, “color"{#fffff 0 : 0.1}]
Page2 :[ “height"{14px : 0.28},
“width"{320px : 0.2}, “color"{#ffffff : 0.15}]

One practical challenge is that different pages have dif-
ferent numbers of CSS selectors and declarations. If we
want to merge two pages, we should unify the dimen-
sion of properties of different pages and then they can
be combined. To understand the effective CSS prop-
erties used in web page CSS files, we collect all the
properties from all the web pages for training and test-
ing and made a statistics, shown in Fig. 2. We make a
union set of the properties, denoted by �, where � =
{Property1,Property2, ...,Propertyk}. We make the length
of the union set |�| = k as the dimension of the property
vector. So, we can unify effective CSS features of one page
into the following pattern:

Pagei[Property1{. . .},Property2{. . .}, . . . ,Propertyk{. . .}]

0
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Fig. 2 Distribution of CSS properties. Properties from all the web pages collected for training and testing
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Different pages have the same k property expressed as
above. For simplicity, we can represent the pattern as
follows:

Page1
[
P1

{
V 1
1 : A1

1, ...,V
m1
1 : Am1

1
}
,

P2
{
V 1
2 : A1

2, ...,V
m2
2 : Am2

2
}
, ...,

Pk
{
V 1
k : A1

k , ...,V
mk
k : Amk

k
}]

where P denotes the property, V denotes the value, A
denotes the area proportion. Different propertiesmay have
different numbers of values.
In order to quantify CSS features, we should transfer

their property values into computable type. So we do some
simplified encoding in property values. For examples, we
transfer color:#ffffff to color:(255,255,255) and take away
units of width:16px to get width:16.

4.1.2 Comparison vector generation
Given the two pages, we quantify their common CSS
features into a comparison vector. The procedure is as
follows:

• Wefirst unify the property values of the same property
into the same dimension. For the same property P k , if
Page1 hasm1 values

{
V 1
k : A1

k , . . . ,V
m1
k : Am1

k
}
and

Page2 hasm2 values
{
V 1
k : A1

k , . . . ,V
m2
k : Am2

k
}
. We

choose the larger value ofm1 andm2, denoted by m,
and extend the page property of the smaller one to
the length of m by adding zeros. The outputs in this
step are Page1

{
V 1
k : A1

k , . . . ,V
m
k : Am

k
}
and Page2{

V 1
k : A1

k , ...,V
m
k : Am

k
}
with the same dimension.

• We compute the difference between Page1 : Vi
k and

Page2 : Vi
k where i ∈ m and use the maximum value of

Page1 : Ai
k and Page2 : Ai

k to multiply the difference
value. The result is denoted by εik . ε

i
k = |Page1 :

V 1
k − Page2 : V 1

k | × max
(
Page1 : Ai

k ,Page2 : Ai
k
)
.

Then, we get a value in i th {Vk : Ak} as the i th
dimension of their comparison property vector.

• We calculate all the εik of Pk and obtain
εk = sum

(
εik ,wherei= 1, 2, ...,m

)
.

• After repeating the previous steps k times, we finally
get the comparison property vector of Page1 and
Page2 denoted as [ε1, ε2,... ,εk].

For the above example, after apply simplified encoding,
the features become:
Page1 :[ 16 : 0.26, 20 : 0.2, 344 : 0.2, (255, 255, 240) : 0.1]
Page2 :[ 14 : 0.28, 0 : 0, 320 : 0.2, (255, 255, 255) : 0.15]
ε1 = |16 − 14| × 0.28 + |20 − 0| × 0.2 = 4.56
ε2 = |344 − 320| × 0.2 = 4.8
ε3=(|255−255|+|255−255|+|240−255|)×0.15=2.25

So, the common property vector is: [4.56, 4.8, 2.25]. After
representing all page features into comparison vectors,
they are ready to be processed by the learning algorithms.

Table 2 Comparison of the four classification algorithms

Classifier Robustness Efficiency Dataset scale

SVM ◦ ◦ ◦ ◦◦ *

DT ◦ ◦ ◦ ◦ *

AB ◦◦ ◦ **

RF ◦ ◦ ◦ ◦◦ **

“◦” represents the performance level
“*” represents the scale of affordable dataset

4.2 Classifier building
We consider our approach as a two-category classification
problem. We set the output of the classifier as a binary
output, 1 or 0, and make the comparison property vec-
tors in the dataset as inputs. We divide the dataset into
two parts. One is used to train the classifier, and the other
is the testing set used to evaluate the performance. Let
�1 = {xi}mi=1 be a set of M training vectors, where xi is a
k-dimension vector labelled by yi ∈ {±1}, with yi = 1 and
yi = -1 indicating xi to the class 1 and class 2 respectively.
And �2 = {xi}ni=1 be a set of N testing vectors.
We use the following four classifiers in our approach,

including Support Vector Machine (SVM) [25, 26], Deci-
sion Tree (DT) [27, 28], AdaBoost (AB) [29, 30], and Ran-
dom Forest (RF) [31, 32]. The property comparison of the
four classification algorithms is summarized in Table 2,
with detailed explanation as follows.

• Support Vector Machine (SVM). SVM aims to
maximize the margin between classes closest points
to find an optimal separating hyperplane between
them. The minority of support vectors (SV) produced
after training determines the result of classifiers,
which avoids dimension disaster and offers a good
performance in robustness.

• Decision tree (DT). DT classifies items by making
decisions at each branch to obtain as much as
entropy gain as possible. A decision tree consists of a
root node, several internal nodes, and leaf nodes. Leaf
nodes denote the result of the classifier, and other
nodes denote each attribute. Every route from the
root node to a leaf node corresponds a determining
test sequence. It follows the rule of
divide-and-conquer.

• AdaBoost (AB). Boosting is a kind of ensemble
learning algorithms that promote weak learner to

Table 3 Dataset for classifier

Source PhishTank

Dataset Positive samples Negative samples

Training set 3719 17926

Testing set 414 1992
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Fig. 3 Result of SVM with regard to gamma. According to the experiment results shown in this figure, the accuracy is around 96%, while the rest of
the three metrics are mostly above 80%. With the rising of gamma, the value of accuracy and F1 almost remain constant, while recall falls down a
little and precision goes up a little. When gamma is about 0.0002, the four metrics get close to the best performances

strong learner. AB is a representative of this kind of
boosting. Its training starts with a base learner and
adjusts the distribution of samples based on the
performance of the base learner. Then, it trains the
next base learner based on the adjusted distribution
of samples iteratively. Their outputs are given
different weights that contribute to the final output of
the boosted classifier. It is a kind of serial ensemble
algorithm.

• Random Forest (RF). Different from boosting,
Bagging is a parallel ensemble learning algorithm. It

samples different sets form the training set, trains
base learners based on these different sample sets,
and combines the base learners to produce a good
result. RF is an expansion of Bagging technique that
builds lots of decision trees for training and outputs
the most-voting class. It introduces the random
attribute selective to make stronger generalization.

In our approach, we use �1 to train a classifier model
and use �2 to test its performance. When the input of
a comparison property vector gets output 1, it means

Fig. 4 Result of Decision Tree with regard to depth of tree. According to the experiment results, the four metrics remain constant whenmax_depth
is above 20, and their values may fluctuate a little. The accuracy is about 93%, while the precision is the lowest, which is around 80%. When
max_depth is about 25, the four metrics achieve the best
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Fig. 5 Result of AdaBoost with regard to n_estimators. The four metrics displayed in this figure are above 82.5%, and their values increase slightly
when the value of n_estimators increases. The accuracy is close to 94%. When n_estimators is about 250, the system obtains a relatively optimal
performance

the two pages are similar. The suspicious page will
be determined to be malicious. When the input of a
comparison property vector gets output 0, it means the
two pages are not similar. The suspicious page will be
determined to be benign. We evaluate four classifiers in
the next section.

5 Evaluation
In this section, we evaluate our approach. In order to eval-
uate the effectiveness of our solution, we deploy several
machine learning classifiers to evaluate the performance.

We use four metrics accuracy, precision, recall, and F1
score, to analyze the results of our approach. Accuracy
equals to the proportion of the number of web pages
that are correctly detected as phishing pages or normal
pages to the number of total sample web pages. Precision
equals to the proportion of the number of web pages that
are correctly detected as phishing pages to the number
of total detected web pages. Recall equals to the pro-
portion of the number of web pages that are correctly
detected as phishing pages to the number of total phishing
samples.

Fig. 6 Result of Random Forest with regard to n_estimators. The accuracy is above 96%, and the rest of the three metrics are above 90% and their
values keep nearly stable over different values of n_estimators. The system gets a better performance, when n_estimators is about 100
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Fig. 7 Result of SVM with different ratios of positive/negative samples. We tested the Support-vector-machine classifiers using the following
positive/negative ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

The accuracy, precision, and recall (as shown in Eqs. (1),
(2), and (3)) are calculated the same as in [9].

Precision = TP + TN
TP + FP + TN + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

True positive (TP) is the number of correctly classi-
fied phishing pages. True negative (TN) is the number

of correctly classified legitimate pages. False negative
(FN) is the number of phishing pages misclassified as
legitimate pages. False positive (FP) is the number of
legitimate pages misclassified as phishing pages. Besides,
we use F1 score (Eq. (4)) as a metric to evaluate our
approach.

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Dataset preparation. We collect phishing websites from
phishtank.com. We first check and filter those invalid

Fig. 8 Result of DT with different ratios of positive/negative samples. We tested the Decision Tree classifiers using the following positive/negative
ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058
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Fig. 9 Result of AB with different ratios of positive/negative samples. We tested the AdaBoost classifiers using the following positive/negative ratios:
7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

pages manually. We then exclude the pages whose lay-
out elements are too small and whose layout appear-
ance is totally different from their target. We select
46 target pages, 448 suspicious pages, and 40 normal
pages different from target pages to test our approach.
In property vector extraction, we obtain 4133 compar-
ison vectors as positive samples whose label is set to
1 and 19918 comparison vectors as negative samples
whose label is set to 0. Positive samples consist of pairs
of target pages and corresponding similar suspicious
pages. Negative samples consist of pairs of target pages
and corresponding dissimilar suspicious pages, pairs of

normal pages and suspicious pages, and pairs of nor-
mal pages and target pages. There are 24051 sam-
ples in total to evaluate our four classifiers, shown in
Table 3.

5.1 Classifier effectiveness
We first evaluate the classifiers’ effectiveness under dif-
ferent parameters. In these experiments, we use all of our
effective 24051 samples mentioned above to evaluate and
ignore the unbalance of positive and negative samples,
which we will analyze the impact in the next experiment.
The results are as follows:

Fig. 10 Result of RF with different ratios of positive/negative samples. We tested the Random Forest classifiers using the following positive/negative
ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058
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Fig. 11 Result of SVM with different training set size. We test the SVM classifier using subsets with the following sizes: 803, 1622, 2357, 3201, 4043,
4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase of
data size, the results get better

• Support Vector Machine (SVM). We employ SVM as
the classifier and test four metrics regarding the
parameter gamma in the SVM algorithm. According
to the experiment results shown in Fig. 3, the
accuracy is around 96%, while the rest three metrics
are mostly above 80%. With the rising of gamma, the
value of accuracy and F1 almost remain constant,
while recall falls down a little and precision goes up a
little. When gamma is about 0.0002, the four metrics
get close to their best performance.

• Decision Tree (DT). We employ DT as the classifier
and test four metrics regarding the parameter

max_depth in the DT algorithm. The results are
shown in Fig. 4, where the four metrics remain
constant whenmax_depth is above 20, and their
values may fluctuate a little. The accuracy is about
93%, while the precision is the lowest, which is
around 80%. Whenmax_depth is about 25, the four
metrics achieve the best.

• AdaBoost (AB). We employ AB as the classifier and
test four metrics regarding the parameter
n_estimators in the AB algorithm. The four metrics
displayed in Fig. 5 are above 82.5%, and their values
increase slightly when the value of n_estimators

Fig. 12 Result of DT with different training set size. We test the Decision Tree classifier using subsets with the following sizes: 803, 1622, 2357, 3201,
4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase
of the data size, the results get better
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Fig. 13 Result of AB with different training set size. We test the AdaBoost Decision Tree classifier using subsets with the following sizes: 803, 1622,
2357, 3201, 4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With
the increase of the data size, the results get better

increases. The accuracy is close to 94%. When
n_estimators is about 250, the system obtains a
relatively optimal performance.

• Random Forest (RF). We employ RF as the classifier
and test four metrics regarding the parameter
n_estimators in the RF algorithm. Figure 6 gives the
experiment results, and we can see that the accuracy
is above 96%, and the rest of the three metrics are
above 90% and their values keep nearly stable over
different values of n_estimators. The system gets a
better performance, when n_estimators is about 100.

5.2 Effectiveness of positive-negative sample
distributions

Here, we evaluate the effect of the ratio of posi-
tive/negative samples. We change the number of negative
samples to control the ratio.We tested the classifiers using
the following positive/negative ratios: 7.089, 3.499, 2.081,
1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075,
and 0.058. The results are shown in Figs. 7, 8, 9, and 10.
The accuracy decreases with the increase of the ratio,
while all three other metrics increase. A ratio of 1 to 2 is
recommended.

Fig. 14 Result of RF with different training set size. We test the Random Forest classifier using subsets with the following sizes: 803, 1622, 2357, 3201,
4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase
of the data size, the results get better
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Table 4 Test results of the four classifiers

Classifier Accuracy Precision Recall F1

SVM 0.96948 0.96235 0.86115 0.90134

DT 0.93676 0.80674 0.90015 0.84467

AB 0.94500 0.85218 0.93378 0.87145

RF 0.97310 0.93695 0.92046 0.92078

5.3 Sensitivity to size of training set
Finally, we evaluate how the size of the training set
affects the detection results. Here, we test classifiers using
subsets with the following sizes: 803, 1622, 2357, 3201,
4043, 4909, 5628, 6425, 7230, and 8155, where the ratio
of positive/negative is close to 1. The results are shown in
Figs. 11, 12, 13, and 14. The accuracy is above 95%. With
the increase of data size, SVM and Random Forest explic-
itly improve their performance, while Decision Tree and
AdaBoost have implicit tendency under the distribution
of the testing samples.

5.4 Results and discussion
According to the experiment results, we present the best
performance values of each classifier in Table 4. Among
these four classifiers, Random Forest performs the best by
considering all the four metrics. All the classifiers show
more than 93% accuracy and more than 84% F1, which
demonstrates that our approach can make an effective
detection in phishing websites.
Table 5 illustrates three metrics of our work and

four other approaches (CANTINA [6], CANTINA+ [11],
Corbetta et al. [33], and Zhang et.al [19].
Although the metrics of our approach is not the best,

it still performs better than Corbetta et.al [33] and Zhang
et.al [19]. However, with respect to other approaches, our
method is light-weight as it only takes one class of fea-
tures, CSS structure, as the input to identify the similarity
of web pages and detect phishing attacks. Moreover, our
method is independent of the language of web pages.
In addition, according to the evaluation conducted in
Sections 5.2 and 5.3, the accuracy and robustness of such
learning-based solutions are greatly influenced/limited by
the size of the dataset and the distribution of the testing

Table 5 The precision, recall, and F1 score of our work and other
approaches

Approaches Precision (%) Recall (%) F1

CANTINA [6] 94.2 97.0 0.956

CANTINA+ [11] 97.5 93.47 0.963

Corbetta et.al [33] 95.3 73.08 0.827

Zhang et.al [19] 91.0 91.90 0.915

Our work 93.7 92.05 0.921

samples. More testing samples and the adjustment of
classifier parameters will promote our results.

6 Conclusion
In phishing web site detection, comprehensively evaluat-
ing page similarity remains a great challenge. In this paper,
we propose a learning-based aggregation analysis mech-
anism to determine similarity of page layouts and detect
phishing pages. Our approach automatically trains clas-
sifiers to determine web page similarity from CSS layout
features, which does not require human expertise. We
prototyped our approach and evaluated it using a large
amount of phishing web pages. The experiment results
demonstrate that our approach is accurate and effective in
determining similarity from page layouts. Our approach
can effectively enhance the performance of existing anti-
phishing mechanisms.
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