
RESEARCH Open Access

WiFi/PDR-integrated indoor localization
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Abstract

In this paper, we propose a WiFi/pedestrian dead reckoning (PDR)-integrated localization approach based on
unscented Kalman filters (UKF). The UKF integrating WiFi localization with PDR is used for ultimate location
estimation. Instead of setting process and measurement noise-related parameters empirically as previous works, the
error covariance of user heading estimation in PDR state model can be accurately estimated by developing another
UKF, while the measurement noise statistics in WiFi localization are estimated by deploying a kernel density
estimation-based model. Another developed UKF is used for device attitude tracking in user heading estimation of
PDR. Besides, in order to adapt the unconstrained carrying positions and orientations of smartphones, we propose a
robust carrying position recognition method based on orientation invariant features. Experimental results show that
the proposed WiFi/PDR-integrated localization approach may improve traditional approaches in terms of reliability and
localization accuracy.
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1 Introduction
Recently, various indoor localization technologies [1–4],
such as WiFi, ultra-wideband, radio frequency identifi-
cation, and pedestrian dead reckoning (PDR), have been
developed. Among them, WiFi and PDR have been
regarded as two of the most popular indoor localization
solutions, since both of them require no additional hard-
ware cost. For WiFi localization, fingerprinting database
called radio map is constructed during offline phase by
collecting RSS values of multiple access points (APs) at
predefined calibration points. During online phase,
smartphones with wireless cards installed may estimate
the locations by matching online RSS vectors with
fingerprints in the constructed radio map. For PDR,
smartphones using self-contained inertial sensors can
progressively infer the user’s position by combing
displacement of the current step with the position of
previous step. The displacement of current step is calcu-
lated by combing walking step detection, step length,
and user heading estimation.

WiFi localization and PDR both have their drawbacks
and advantages. WiFi localization always suffers from
accuracy deteriorations caused by RSS fluctuations [5]
and complicated indoor radio environments. PDR may
obtain accurate localization results within a short period,
while accumulated errors [6] are introduced by the noisy
inertial sensors. Therefore, it is reasonable to integrate
PDR with WiFi localization. The absolute WiFi
localization results may calibrate PDR results and reduce
the accumulated errors, while PDR may avoid the accu-
racy deteriorations caused by temporal RSS fluctuations.
Existing approaches integrating PDR with WiFi

localization include particle filter [7, 8], Kalman filter
[9, 10], and its variants [11, 12]. Particle filter may
obtain high localization accuracy when a large num-
ber of particles are deployed, but high computation
and storage cost are required. Kalman filter (KF) [9]
and extended Kalman filter (EKF) [12]-based
approaches are computational lightweight. However, the
linearization of model may degrade the localization accu-
racy, since the PDR state model is highly nonlinear.
Recently, in order to adapt the nonlinearity of PDR model,
unscented Kalman filter (UKF) [13, 14] is presented to in-
tegrate WiFi localization with PDR, which achieves a good
balance between localization accuracy and computation
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cost. Instead of linearizing the model using Jacobian matri-
ces in EKF, UKF deploys unscented transformation to esti-
mate the mean and covariance matrix of state vector, which
is accurate to the second-order Taylor series expansion.
Though a lot of works [7–14] have been done in inte-

grating PDR with WiFi localization, some key problems
remain to be solved to enhance reliability and applica-
bility. Firstly, existing approaches always empirically set
process and measurement noise parameters, whose
inaccurate settings may render degraded performance.
Secondly, most existing integrated localization approaches
assumes that the device carrying positions and device
orientations are fixed, such as held in hand [15, 16]. This
assumption limits the applications of localization system
using smartphones, whose carrying positions and orien-
tations are always unconstrained. An orientation
independent device carrying position recognition
method should be developed to predetermine the
device carrying position.
This paper proposes a novel-integrated localization ap-

proach based on two UKFs. One UKF is used for ultim-
ate location estimation, whose state and measurement
models are PDR and WiFi localization, respectively. For
PDR state model, we develop another UKF for device
attitude tracking, which renders an improved user head-
ing estimation. By constructing the relationship between
quaternion vector and user heading, the error covariance
of heading estimation can be also accurately obtained.
For measurement model, we adopt the kernel density
estimation (KDE) method to obtain measurement noise
statistics, rather than set them empirically as previous
approaches. Besides, in order to adapt the unconstrained
daily use of smartphones, we propose a robust carrying
position recognition method based on orientation inva-
riant features. Parameter settings of walking step length
estimation and walking step detection are tuned accor-
ding to the recognized carrying positions. Experimental
results show that our WiFi/PDR-integrated localization
approach may improve traditional approaches in terms
of reliability and localization accuracy.
In the rest of this paper, the related works are firstly pre-

sented in Section 2. Section 3 introduces an overview and
some definitions of the proposed integrated localization
approach. Section 4 proposes a robust device carrying
position recognition. PDR based on the first UKF and
ultimate location estimation based on the Second UKF are
described in Sections 5 and 6, respectively. The expe-
rimental results and related analysis are reported in
Section 7. We present conclusions in the last section.

2 Related works
WiFi fingerprinting [17] approach has been widely used
in indoor localization, due to its low hardware cost and
relatively wide-scale coverage. Because of the complex

radio propagation environment such as multipath, RSS
values from a fixed AP at a fixed point may fluctuate
and degrade the localization accuracy significantly. In
order to exploit the strength of WiFi localization and
avoid its weakness, we integrate PDR to improve the
accuracy and reliability of WiFi localization results.
Among various WiFi/PDR-integrated approaches, re-

ference [7] introduces a particle filter integrating inertial
sensors with WiFi localization. They generate new par-
ticles representing user locations according to PDR.
Then, WiFi localization results are used to update the
weight of each particle by computing distances between
particle positions and the WiFi localization results. The
user location is obtained by weighting all particles. Simi-
larly, reference [18] presents an integrated approach
using the particle filter. The major difference is the
updating scheme of particle weights, which is inversely
proportional to the Euclidean distance between online-
collected RSS vector and the particle’s nearest finger-
print. The particle filter-based approach may obtain high
localization accuracy, but it requires extensive compu-
tational cost to do certain operations on hundreds of
particles. Therefore, the particle filter is unsuitable to be
run on resource-limited smartphones.
Reference [9] presents a Kalman filter-based WiFi/

PDR-integrated approach. This approach assumes PDR
being a linear formulation and that the user heading and
walking step length are known accurately. As a result,
nonlinearity of PDR will render an inaccurate estimation of
predicted localization error covariance. More recently, re-
ference [11] presents an EKF to integrate WiFi localization
with PDR. The measurement noise variance is set empiri-
cally, thus degrading localization accuracy of EKF.
In order to handle the strong nonlinearity of PDR,

references [13, 14] deploy UKF to integrate WiFi
localization with PDR, which achieves a good balance
between localization accuracy and computation cost.
UKF approximately obtain the change of mean and
covariance matrix of variable after nonlinear transfor-
mation more accurately than EKF, while requires com-
parable computation cost. However, existing UKFs still
empirically set the measurement and process noise
parameters, which will degrade the localization accuracy.
For user heading estimation of PDR using uncon-

strained smartphones, uDirect approach [19] tends to
extract user heading directly within a particular area,
where the forward walking acceleration dominates the
horizontal acceleration signals. Unfortunately, such an
area is always disturbed by body locomotion. In contrast,
our previous proposed rotation matrix and principal
component analysis (RMPCA) approach [20] is more
robust, because it employs all acceleration samples in
the horizontal plane. The first principal component of
principal component analysis (PCA) [21] is assumed to
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be parallel with the user heading. Therefore, we employ
RMPCA-based approach for user heading estimation.
In this paper, we also deploy UKF to integrate WiFi

localization with PDR. The main novelty is that we may
accurately estimate the related process and measurement
noise statistics rather than set them empirically. For
WiFi localization, we deploy KDE [22] to construct a
relationship between RSS signal and user location for
measurement update and adaptively calculate the mea-
surement noise statistics. For user heading in PDR, we
also deploy RMPCA-based approach. To adapt the non-
linearity of measurement model, rather than deploy EKF
for device attitude tracking, we develop another UKF
integrating inertial sensors and magnetometers. The
function relating user heading with quaternion vector
representing device attitude is also constructed. As a
result, the error covariance of user heading estimation
and predicted PDR localization results may be
obtained accurately.
Besides, for unconstrained smartphones, it is neces-

sary to determine the device carrying position, since
it may directly affect the parameter settings of the
step detection and step length estimation of PDR
model. This paper develops a robust device carrying
position recognition method based on orientation
invariant features. The generation of the orientation
invariant features also relies on the UKF-based device
attitude tracking.

3 Overview of the proposed integrated
localization approach
Figure 1 overviews the proposed integrated localization
approach based on two UKFs. The ultimate location
estimation is achieved by the second UKF, whose state
model is PDR and measurement model is WiFi localization.

For WiFi fingerprinting localization, we deploy KDE to
adaptively estimate measurement noise statistics. Besides,
in order to reduce the computation cost, we employ the
localization result of PDR to restrict the radio map into a
small sub-region.
For PDR using unconstrained smartphones, it includes

carrying position recognition, walking step detection,
walking step length estimation, and RMPCA-based
walking direction estimation modules. Upon carrying pos-
ition recognition, different parameters for walking step
detection and walking step length estimation modules
may be set for different device carrying positions.
This paper investigates four classical carrying posi-
tions [23]: put in trouser pocket (in-pocket), gazed by
the user and held in hand (hand-held), against ear
during phone calls (phone-call), and held in swinging-
hand (swinging-hand).
One key component of PDR is the continuous device

attitude tracking using the first UKF, which integrates
accelerometers, gyroscopes, and magnetometers. The
tracked device attitude is necessary for RMPCA-based
user heading estimation and its error covariance calcu-
lation. The tracked device attitude is also used in gene-
rating orientation invariant features for robust carrying
position recognition.
In order to describe PDR, we define global coordinate

system (GCS) and device coordinate system (DCS). GCS
is defined by the axis XG pointing east, YG pointing
north, and ZG being the opposite direction of gravity
vector. User heading is defined as the counterclockwise
rotation angle from the positive direction of YG to user
walking direction. DCS is defined by axes XDCS, YDCS,
and ZDCS. The former two axes point right and forward
in the front device screen plane, while ZDCS axis is a
standard cross-product of XDCS and YDCS.

Fig. 1 Overview of the proposed UKF-based integrated localization approach
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4 Robust device carrying position recognition
It is important to recognize the carrying position of an
unconstrained smartphone accurately and robustly, since
carrying positions may directly impact the parameter
settings for step detection and step length estimation.
Many previous works [24, 25] have pointed out that the
acceleration patterns for different carrying positions
show distinct features. The statistics of three dimen-
sional raw measured acceleration samples are deployed
as input features to develop the carrying position classi-
fier. The developed classifiers are all designed upon rela-
tively stable device orientations. If the device orientations
are unconstrained, the raw measured acceleration samples
may vary a lot with the changing orientations under the
same carrying positions. As a result, these classifiers may
render degraded recognition accuracy with the uncon-
strained uses of smartphones.
In order to adapt the arbitrary smartphone orien-

tations, we develop a robust carrying position classifier
based on three kinds of orientation invariant features,
including the total magnitude of acceleration MAcc,
magnitude of the acceleration in the horizontal plane
HAcc, and acceleration in the gravity direction GAcc,

MAcc ¼ Accj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acc2x þ Acc2y þ Acc2z

q
ð1Þ

HAcc ¼ Acc− Acc � gnormalð Þgnormalj j2 ð2Þ

GAcc ¼ Acc � gnormalð Þgnormalj j2 ð3Þ

where Acc = [Accx Accy Accz]
T is the raw measured ac-

celeration vector at DCS, |·|2 is the two-norm of a vec-
tor, gnormal is the normalized gravity vector at DCS,
which can be calculated by tracked device attitude as
seen in (7). These features also exploit the principle that
different carrying positions show distinct acceleration
patterns. In contrast, these features remain stable for the
same carrying positions, regardless of smartphone orien-
tation changes.The design of a carrying position classi-
fier consists of three phases: data pre-processing, feature
extraction, and classifier training. Firstly, we collect ac-
celeration samples continuously and divide them into
small segments by a sliding window [25], whose size is 2
s and with 50% overlap between adjacent windows. After
data pre-processing, we extract three orientation inva-
riant feature samples within the sliding window. Upon
these feature samples, we deploy their statistics as ulti-
mate input features of classifier, including variance,
mean, medium, maximum, and minimum. These ulti-
mate input features are all useful to discriminate
carrying positions. For example, owing to the different
intensity of user body locomotion, medium values of
HAcc for in-pocket and swinging-hand positions are
always much larger than those of phone-call and hand-

held positions.After feature extraction, as suggested by
previous works [25, 26], we deploy random forest [26] as
the carrying position classifier. We gather a total of 4000
samples for four carrying positions to train the classifier.
For each carrying position, all possible device orientations
are covered as much as possible and sampled uniformly.
The ten-fold cross-validation method is used to evaluate
the random forest-based classifier. The data samples are
partitioned into ten parts randomly. Nine ones are used
for training and the rest one for testing.Table 1 shows the
random forest-based position recognition results with the
proposed orientation invariant features and normal
features, which are the same statistics of the raw measured
acceleration samples. The results show that compared
with the classifier using normal time domain features [25],
the proposed robust position classifier shows an average
classification accuracy improvement from 90.9 to 98.5%.
This is because the orientation invariant features may
better adapt the arbitrary device orientation change and
enhance the generalization ability of the related classifier.
As seen in Table 1, except for a very low probability of
confusing between hand-held and phone-call positions,
and swinging-hand and in-pocket positions, the device
carrying positions can be correctly recognized by a suffi-
ciently high probability. Therefore, in the rest of the paper,
we assume that the device carrying position can be cor-
rectly recognized in the proposed WiFi/PDR-integrated
positioning approach.

5 Pedestrian dead reckoning (PDR)
PDR estimates the user position by combing dis-
placement of the current step with the position of
previous step,

Li ¼ Li−1 þ SLi
cos ψið Þ
sin ψið Þ

� �
ð4Þ

where Li = (xi, yi) and Li − 1 = (xi − 1, yi − 1) are the two-
dimensional location vectors of current (the ith) and the
previous steps, SLi is the estimated step length and ψi is
the user heading. We assume that the beginning user
position and user heading are known by deploying
various methods [27].

5.1 Step detection and step length estimation
Step detection is achieved by the peak detection algo-
rithm [20]. It is founded on periodic acceleration signals,
whose peak point corresponds to the heel strike event
among each walking step. We deploy the total magni-
tude values of acceleration signals as inputs of the peak
detection algorithm, which is robust to device attitude
changing. To alleviate negative effect of the signal noise,
we smooth the acceleration samples by averaging the
raw neighboring samples. Then, each walking step is
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identified by the peak detection algorithm. To eliminate
the false detection of peak points due to acceleration
jitters, we set two threshold parameters to restrict mag-
nitude of the peak point and time interval of consecutive
peak points,

MAccpeak−g0
�� ��≥ATh

ΔTpeak≥TTh

�
ð5Þ

where MAccpeak is the magnitude of peak point, g0
is the local gravity value, ATh represents the magni-
tude threshold of peak point, ΔTpeak is time interval
of consecutive peak points, and TTh represents the
shortest time interval allowed between consecutive
peak points. Practically, the time interval threshold is
set around two thirds of the walking step period. For
magnitude threshold setting, since the body locomotion
intensity may vary with device carrying positions, it should
be trained and tuned according to the recognized device
carrying position.
For estimating walking step length, various methods

[28] have been proposed. These methods establish the
estimation function relating step length with variables
including walking step frequency and acceleration
related statistics. Practically, it is difficult to establish a
general walking step length estimation function adapting
different users. We adopt the following linear function:

StepLength SL ¼ α � freþ β � varþ γ ð6Þ

where fre is the walking step frequency; var is the
variance of accelerations among one walking step; and α,
β, and γ are the related parameters. For different device
carrying positions, the walking step length estimation
parameters may change due to different acceleration
signal statistics. These parameters can be set by offline
training for each user and recognized carrying position.

5.2 First UKF: device attitude tracking fusing inertial
sensors and magnetometers
We deploy a quaternion vector as the state variable of
the first UKF to represent the device attitude. We firstly
describe the state and measurement models of the first
UKF. Then, the unscented transformation and related
UKF formulations are given.

5.2.1 State and measurement models
In order to deploy quaternion vector, we relate device
attitude with quaternion vector by employing rotation
matrix,

hDCS tð Þ ¼ RDCS
GCS q tð Þð Þ� �T

hGCS tð Þ ð7Þ

RDCS
GCS qð Þ ¼

q20 þ q21−q
2
2−q

2
3 2 q1q2−q0q3ð Þ 2 q1q3 þ q0q2ð Þ

2 q1q2 þ q0q3ð Þ q20−q
2
1 þ q22−q

2
3 2 q2q3−q0q1ð Þ

2 q1q3−q0q2ð Þ 2 q0q1 þ q2q3ð Þ q20−q
2
1−q

2
2 þ q23

2
4

3
5
ð8Þ

where hGCS(t) and hDCS(t) describe the same 3 × 1 vec-
tor at GCS and DCS, respectively, RDCS

GCSðqðtÞÞ is the

related rotation matrix at time t, q ¼ ½q0 q1 q2 q3 �T
is the normalized quaternion vector. The normalized
gravity vector gnormal at DCS in Eq. (2) can be calculated
if we substitute hGCS(t) with the local gravity vector at
GCS and know the related quaternion vector.

Upon the rigid body angular motion law [29], the state
model is given as follows:

qkþ1 ¼ Fkqk þ wq
k ð9Þ

where state transition matrix Fk = exp(0.5∗Ts
∗Ω(wk)),

Ω wkð Þ ¼
0 −wx

k −wy
k −wz

k
wx
k 0 wz

k −wy
k

wy
k −wz

k 0 wx
k

wz
k wy

k −wx
k 0

2
664

3
775 ð10Þ

where Ts is the sampling interval and wk ¼
wx
k wy

k wz
k

	 
T
is the raw measured angular velocity at

time instants kTs. Process noise variable wq
k and related

covariance matrix Wk can be calculated as in [29].
The measurement model of UKF is:

zkþ1 ¼ akþ1

mkþ1

� �
¼ ϕ qkþ1

� �þ vkþ1

¼ RDCS
GCS qkþ1

� �� �T
0

0 RDCS
GCS qkþ1

� �� �T
" #

� g0
h0

� �
þ vakþ1

vmkþ1

� �
ð11Þ

where ak + 1 and mk + 1 are the raw observed acceleration
and magnetic field vectors represented at DCS; vakþ1 and
vmkþ1 are the zero mean white Gaussian measurement noise

Table 1 Confusion table of random forest classifier with orientation invariant and normal features

Orientation invariant/normal features Hand-held Phone-call Swinging-hand In-pocket

Hand-held 0.982/0.904 0.018/0.063 0/0.033 0/0

Phone-call 0.01/0.064 0.990/0.915 0/0.004 0/0.017

Swinging-hand 0/0.018 0/0.001 0.986/0.896 0.014/0.085

In-pocket 0/0 0/0 0.028/0.081 0.972/0.919
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of the accelerometer and magnetometer, respectively; g0
and h0 are the local gravity vector and local magnetic field
vector at GCS, respectively. The covariance of the measure-
ment noise Rk+ 1 is given as follows:

Rkþ1 ¼ Ra
kþ1 0
0 Rm

kþ1

� �
¼ Rσ2aI3 0

0 Rσ2mI3

� �
ð12Þ

where Rσ2a and Rσ2m are adaptively set according to the
intensity of the perturbations as in our previous work
[30].

5.2.2 UKF formulations for device attitude estimation
UKF may approximately obtain the mean and covariance
values of a random variable after a nonlinear transfor-
mation by deploying unscented transformation (UT). As
seen in Eq. (11), since only the measurement formula-
tion is nonlinear, we adopt UT on the measurement for-
mulation to calculate mean and covariance matrix of the
state variable. Firstly, given the state estimation ðq̂k ; PkÞ,
the state update formulations are described as follows:

q̂−
kþ1 ¼ Fk q̂k

P−
kþ1 ¼ FkPk F

T
k þWk

�
ð13Þ

where q̂−kþ1 and P−
kþ1 are the priori state estimation and

corresponding covariance matrix.
For measurement formulation, based on the input

variable ðq̂−
kþ1;P

−
kþ1Þ, UT generates a set of sigma points

ξi, k + 1 (i = 0, 1,⋯, 2L) with related weights wi,

ξ0;kþ1 ¼ q̂−kþ1

ξi;kþ1 ¼ q̂−
kþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞP−

kþ1

q� �
i
i ¼ 1;⋯; Lð Þ

ξi;kþ1 ¼ q̂−
kþ1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞP−

kþ1

q� �
i
i ¼ Lþ 1;⋯; 2Lð Þ

8>><
>>:

ð14Þ

wm
0 ¼ λ

Lþ λ
;wc

0 ¼
λ

Lþ λ
þ 1−α2 þ β
� �

wm
i ¼ wc

i ¼
λ

2 Lþ λð Þ ; i ¼ 1;⋯; 2L

λ ¼ α2 Lþ κð Þ−L

8>>>><
>>>>:

ð15Þ

where L is set to the dimensionality of the quaternion
vector, λ is a scaling factor, α is a small positive
value, κ = 0 and β = 2, ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLþ λÞP−

kþ1

p Þi is the ith co-
lumn of the square root matrix, and wm

i and wc
i are

the weights of different sigma points to calculate
mean and covariance of the observed variable z.
After generating the sigma points, we give measure-

ment update formulations as follows:

zi;kþ1 ¼ ϕ ξi;kþ1

� �
z−kþ1 ¼

X2L
i¼0

wm
i zi;kþ1

Pzz;kþ1 ¼
X2L
i¼0

wc
i zi;kþ1−z−kþ1

	 

zi;kþ1−z−kþ1

	 
T þ Rkþ1

8>>>>>><
>>>>>>:

ð16Þ

Then, the Kalman filter gain is calculated as follows:

Pqz;kþ1 ¼
X2L
i¼0

wc
i ξ i;kþ1−ξ0;kþ1

	 

zi;kþ1−z−kþ1

	 
T
Kkþ1 ¼ Pqz;kþ1 Pzz;kþ1

� �−1
8><
>:

ð17Þ

Finally, the quaternion vector and its related covari-
ance matrix are estimated as follows:

q̂kþ1 ¼ q̂−kþ1 þ Kkþ1 zkþ1−z−kþ1

� �
Pkþ1 ¼ P−

kþ1−Kkþ1Pzz;kþ1K
T
kþ1

�
ð18Þ

5.3 RMPCA-based user heading estimation
Deploying RMPCA method may directly estimate the
user heading. However, it is difficult to accurately and
robustly estimate the covariance matrix of user heading
estimation in the second UKF, since the function relating
quaternion vector with user heading will have a strong
nonlinearity. In order to reduce the nonlinearity of the
function, we represent the user heading ψ as a sum of
the initial heading estimation of RMPCA ψRMPCA and a
difference value Δψ,

ψ ¼ ψRMPCA þ Δψ ð19Þ

We define an intermediate reference coordinate sys-
tem (RCS) for each step by rotating GCS ψRMPCA

radians around ZG counterclockwise, which also includes
three axes XR, YR, and ZR. In fact, the difference value
Δψ is the angle that rotates from the positive direction
of axis YR to walking direction counterclockwise at RCS.
Therefore, we may derive the relationship between Δψ
and quaternion vector based on the principle of
PCA-based approach.
Firstly, we transform all raw measured acceleration sig-

nals at DCS along a walking step period into a fixed time
t1 of the same walking step by related rotation matrices.
The rotation matrices are assumed to be accurate enough,
since the sample time intervals within the same step are
short enough. We denote these acceleration samples pro-
jected into specific time t1 with device coordinate system
DCS1 as aDCS1ð jÞ; j ¼ 1;…;N step

acc .
Then, we can project these samples into GCS,
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aGCS jð Þ ¼ RDCS
GCS q t1ð Þð ÞaDCS1 jð Þ; j

¼ 1;…;N step
acc ð20Þ

where aGCSð jÞ ¼ aGCSx ð jÞ aGCSy ð jÞ aGCSz ð jÞ
h iT

is the
jth acceleration signal at GCS, RDCS

GCSðqðt1ÞÞ is the rota-
tion matrix from GCS to DCS1. The horizontal accele-
ration sample component is given as follows:

aGCSx jð Þ
aGCSy jð Þ

� �
¼ Q q t1ð Þð ÞaDCS1 jð Þ; j

¼ 1;…;N step
acc ð21Þ

Q q t1ð Þð Þ ¼ q
_2

0 þ q
_2

1−q
_2

2−q
_2

3 2 q
_
1q
_

2−q
_

0q
_

3

� �
2 q

_
1q
_

3 þ q
_

0q
_

2

� �
2 q_1q

_
2 þ q_0q

_
3

� �
q_
2
0−q

_2
1 þ q_

2
2−q

_2
3 2 q_2q

_
3−q

_
0q
_

1

� �
" #

ð22Þ

where qðt1Þ ¼ q
_
0 q

_
1 q

_
2 q

_
3

	 
T
is the quaternion

vector at time t1, the first two rows of RDCS
GCSðqðt1ÞÞ com-

prise Q(q(t1)). The horizontal acceleration sample com-
ponent at RCS is described as,

aRCSx jð Þ
aRCSy jð Þ

� �
¼ C

aGCSx jð Þ
aGCSy jð Þ

� �
; j ¼ 1;…;N step

acc ð23Þ

C ¼ cos UHRMPCAð Þ sin UHRMPCAð Þ
− sin UHRMPCAð Þ cos UHRMPCAð Þ

� �
ð24Þ

Finally, according to the principle of PCA, the max-
imum energy of the horizontal acceleration signal com-
ponents is obtained along the walking direction at RCS,

Δψ ¼ max
Δθ

− sinΔθ cosΔθ½ �
XN step

acc

j¼1

aRCSx jð Þ
aRCSy jð Þ

� �
aRCSx jð Þ
aRCSy jð Þ

� �T
− sinΔθ cosΔθ½ �T

8<
:

9=
;
ð25Þ

where Δθ is the angle variable that rotates from the axis
YR to the walking direction counterclockwise. Combin-
ing equations from (23) to (27), we define the following
matrices,

~A q t1ð Þð Þ ¼ ~a11 ~a12
~a21 ~a22

� �
¼ CQ q t1ð Þð Þ

�
XN step

acc

j¼1

aDCS1 jð ÞaDCS1 jð ÞT
2
4

3
5Q q t1ð Þð ÞTCT

ð26Þ

~f q t1ð Þ;Δθð Þ ¼ − sinΔθ cosΔθ½ �~A q t1ð Þð Þ − sinΔθ cosΔθ½ �T

ð27Þ

Combine equations from (25) to (27),

∂ ~f q t1ð Þ;Δθð Þ
� �

∂ Δθð Þ ¼ 0 ð28Þ

We will get the following restriction formulation about
the angle Δψ,

tan 2 � Δψð Þ ¼ ~a12
~a11−~a22

ð29Þ

where ~a11 , ~a12 , and ~a22 can be calculated from Eq. (26).
Practically, the absolute difference between user hea-
ding obtained by RMPCA approach and the actual user
heading is always smaller than π/4. Therefore, we may
get formulation relating quaternion vector with the
angle Δψ,

Δψ ¼ f q t1ð Þð Þ ¼ 0:5� arctan
~a12

~a11−~a22


 �
ð30Þ

Substitute (30) into (19), the user heading can be ul-
timately given as,

ψ ¼ ψRMPCA þ f q t1ð Þð Þ ð31Þ
where ψRMPCA is a constant value obtained by the initial
heading estimation of RMPCA and f(q(t1)) is a nonlinear
function with the quaternion vector at a fixed time
within the same step as input variable.

6 Second UKF for ultimate location estimation
6.1 KDE-based WiFi localization for measurement update
This section presents the KDE-based WiFi localization,
which is used for establishing measurement equation of
the second UKF. Owing to the uncertainty of RSS values
caused by complicated radio propagation environment,
an explicit formulation relating user location with RSS
values and related measurement noise are unavailable.
Rather than setting the measurement noise statistics
empirically as previous works, we deploy KDE model to
accurately estimate the statistics.
UpNon minimum mean-squared error (MMSE)

criteria, we estimate the user location and the related
covariance matrix,

l̂ ¼
Z

l �Ω l rjð Þdr ð32Þ

Pr ¼
Z

l−̂l
� �

l−̂l
� �T

Ω l rjð Þdr ð33Þ

where l is the user position vector, r is the collected
RSS sample vector, and Ω(l|r) is the posterior density of
the user position with collected RSS vector r. The pos-
terior density is obtained by KDE [22], which is a widely
used nonparametric density estimator. Using the RSS
fingerprints in radio map fðri; liÞji ¼ 1;…;Ng , with
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mean RSS vector ri collected at the calibration point li,
the posterior density estimation is given as follows:

Ω̂ ljrð Þ ¼ Ω̂ l; rð Þ
Ω̂ rð Þ ¼

PN
i¼1℘ r; ri;Σrð Þ℘ l; li;Σlð ÞPN

i¼1℘ r; ri;Σrð Þ
¼

XN

i¼1
~wi rð Þ℘ l; li;Σlð Þ ð34Þ

~wi rð Þ ¼ ℘ r; ri;Σrð ÞPN
i¼1℘ r; ri;Σrð Þ ð35Þ

where Ω̂ðljrÞ is the estimated posterior density, ℘(⋅) is a
Gaussian distribution kernel function, ri and li are mean
vectors of the kernel functions, diagonal matrices Σr and
Σl are the related covariance matrices, respectively, N is
the number of calibration points, and d is the number of
APs used in RSS vector. As suggested by Silverman [31],
we set Σr = σ∗Id and give the related parameter as
follows:

σ� ¼ 2d þ 1ð Þn=4ð Þ−1= dþ4ð Þ~σ ð36Þ

where Id is d × d identity matrix, ~σ ¼ 1=d
Pd

i¼1σ
2
i is the

averaged marginal variances of RSS values for each AP.
For the parameter Σl, it represents the user walking vel-
ocity and is set according to the user walking velocity
values.
The posterior density distribution can be regarded as a

Gaussian mixture of ℘(l; li, Σl), i = 1,… , N with weights
~wiðrÞ. As a result, the MMSE location estimation and its
covariance are determined by the first two moments
[32], which will be used as the measurement model of
the second UKF.
Besides, we specify a trusted area to limit the WiFi fin-

gerprinting localization into a sub-region instead of the
whole radio map. For KDE-based WiFi localization, the
location is estimated by weighting calibration points
pre-stored in the radio map, whose calculations may
incur extensive computation cost. Therefore, we limit
the involved calibration points into a trusted area,

Scurrent ¼ ri; lið Þ li−L̂previous

�� ��
2≤DTh; i ¼ 1;…;N

��n o
ð37Þ

where Scurrent is the fingerprints set used in WiFi
localization of current walking step, L̂previous is the lo-
cation estimation result of previous walking step, and
DTh is the radius determined by location estimation
covariance. Therefore, the defined trusted area decreases
the computation cost significantly by decreasing the
number of calibration points involved in WiFi
localization.

6.2 Second UKF: integrating PDR with WiFi localization
Firstly, we establish the state model for the second UKF
by substituting Eq. (31) into Eq. (4):

Li ¼ Li−1þ f
_

qdið Þ
¼ Li−1 þ SLi

cos f q t1ð Þð Þð Þ cos ψi
RMPCA

� �
− sin f q t1ð Þð Þð Þ sin ψi

RMPCA

� �
sin f q t1ð Þð Þð Þ cos ψi

RMPCA

� �þ sin ψi
RMPCA

� �
cos f q t1ð Þð Þð Þ

� �

ð38Þ
where f

_ ð�Þ is the displacement function of qdi

¼ qðt1ÞT SLi
	 
T

, q(t1) is the quaternion vector esti-
mated by the first UKF at a specific time t1 of the ith
step, f(q(t1)) is nonlinear function as seen in (30), and
ψi
RMPCA is the initial heading estimation of the RMPCA

approach of the ith step.
Secondly, compute the a priori state estimation L−

i and
related error covariance P−

i ,

L−
i ¼ L̂i−1 þmean f

_
qdið Þ

� �
ð39Þ

P−
i ¼ Pi−1 þ P f

_
qdið Þ

� �
ð40Þ

where L̂i−1 and Pi − 1 are the posteriori location estima-
tion and error covariance matrix at the i − 1 th step,

respectively, Pð f_ ðqdiÞÞ is the covariance of input va-

riable qdi after function f
_ ð�Þ , meanð f_ ðqdiÞÞ is the

mean of input variable qdi after function f
_ ð�Þ , and

related covariance matrix of qdi is given as

Pqdi ¼
Pq t1ð Þ 0
0 σ2SL

� �
ð41Þ

where Pq(t1) is the posteriori error covariance matrix of
q(t1) estimated by the first UKF, and σ2SL is the walking
step length estimation covariance. Similar to Section

5.2.2, meanð f_ ðqdiÞÞ and Pð f_ ðqdiÞÞ are also calculated
by unscented transformation using input variable (qdi,
Pq(t1)).
Thirdly, we deploy KDE-based WiFi localization to

construct the measurement model:

Lr
i ¼ Li þ ~vri ð42Þ

where Lr
i is the WiFi localization result using RSS vector

ri _ step collected at the ith step.

Lr
i ¼

XNi step

i¼1
~wi ri step
� �

li ð43Þ

~R
r
i ¼ ~vri ~vri

� �T ¼
XNi step

i¼1
~wi r

i step
� �

� Σl þ li−Lr
i

� �
li−Lr

i

� �T� �
ð44Þ

where ~R
r
i is the measurement noise covariance matrix,

ðri; liÞ∈Si step are the fingerprints included in the trusted
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area derived from (37) at the ith step, Ni _ step is the num-
ber of calibration points involved.
Finally, the a posteriori location estimation at the ith

step L̂i and related covariance matrix Pi can be pre-
sented as follows:

Ki ¼ P−
i P−

i þ ~R
r
i

� �−1
ð45Þ

L̂i ¼ L−
i þ Ki Lr

i−L
−
i

� � ð46Þ

Pi ¼ P−
i −KiP

−
i ð47Þ

The ultimate location estimation of the second UKF
and the estimation error covariance are given by Eqs.
(46, 47), respectively.

7 Results and discussion
7.1 Experimental setup
Experiments were carried in a realistic indoor office
environment including one hall, one long corridor and
three rooms, whose total size are 43.5 m × 11.2 m, as
shown in Fig. 2. We deploy a smartphone collecting RSS
and inertial sensor data, respectively. For WiFi
localization, we establish the radio map by gathering 100
RSS vector samples at each calibration point from all
eight APs, which are approximately uniformly placed.
The calibration points also distribute approximately uni-
formly, with the neighboring distance along the direction
of corridor about 1 m. For PDR, the participant walked
along the path indicated by the blue solid line, with one
of the four investigated carrying positions and at least
ten times for each position. The initial position and user
heading of each experimental run are known, and the
related inertial sensors are already well calibrated [33].
We compare the proposed integrated localization

approach with individual PDR and WiFi localization ap-
proaches. To validate the effectiveness of device tracking
model and the KDE model, we also compare the UKF-,
EKF-, and KF-based integrated approaches whose related
process and measurement noise covariance matrices are
set empirically, while the other modules remain un-
changed. The process and measurement noise covariance

matrices for the empirical localization approaches are set
as two constant ones, which make the approaches perform
best along testing path. Experiments for each walking path
are implemented independently, and the localization
results are obtained from the total 40 tests of four
carrying positions. We define the localization error as
the Euclidean distance between estimated two-dimen-
sional location vectors and the true ones. We define the
localization accuracy as the total probability of
localization error within a certain value, which is also
called cumulative error distribution.

7.2 Localization accuracy performance analysis
Firstly, we compare user heading estimation accuracy
of uDirect approach, RMPCA using EKF for attitude
tracking, and the proposed UKF for attitude tracking,
respectively. As shown in Fig. 3, RMPCA-based
approaches perform much better than that of uDirect
approach. The former approaches exploit all accele-
rations in the horizontal plane for walking direction
extraction, rather than the latter approach relies one
acceleration sample in a specific region, which is easily
to be disturbed. For RMPCA (UKF) approach, the
device attitude and related rotation matrix is obtained
by deploying UKF, which may better adapt the non-
linearity of measurement model. As a result, it may fur-
ther increase heading estimation accuracy. In particular,
probability of absolute heading estimation error within
15° for RMPCA (UKF) is 89.7%, while those of RMPCA
(EKF) and uDirect are 83.8% and 58.4%, respectively.
Similarly, as seen in Fig. 4, compared with uDirect ap-
proach, RMPCA (UKF) and RMPCA (EKF) approaches
reduce the mean absolute estimation error by 44.6%
and 53.2%, respectively.
Secondly, we compare localization accuracy between the

proposed UKF-based integrated localization approach and
the other approaches, as seen in Fig. 5. The proposed
approach performs much better than the other compared
approaches. In particular, accuracy within 1m of the
proposed approach is 74.8%, while those of UKF (empi-
rical), EKF (empirical), KF (empirical), PDR, and WiFi
localization are 55.4%, 51.8%, 48.4%, 32.4%, and 21.2%,

Fig. 2 Experimental environment including one hall, one corridor, and three rooms
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respectively. Table 2 also validates the localization error
reduction of the proposed approach. Compared with UKF
(empirical), EKF (empirical), KF (empirical), PDR, and
WiFi localization approaches, the proposed approach
reduces mean localization errors by 24.8% (0.25m), 30.3%
(0.33 m), 36.1% (0.43 m), 58.5% (1.07 m), and 66.4%
(1.50 m), respectively.
Compared with the individual approaches including

PDR and WiFi localization, all the integrated localization

approaches may obtain significant accuracy improvement.
This is because the integrated localization approach may
exploit the complementary advantages of PDR and
WiFi localization. For example, though individual
WiFi localization obtains worse accuracy performance
than PDR during a short duration, its localization
error does not accumulate with walking path. There-
fore, WiFi localization results may be used to correct
the accumulated tracking error of PDR.

Fig. 3 Absolute heading estimation error distribution comparisons. The compared approaches include uDirect approach and RMPCA approaches
using UKF and EKF for attitude tracking, respectively

Fig. 4 Performance comparisons of mean and standard deviation of absolute heading estimation error
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Compared with the other integrated approaches, the
proposed UKF-based integrated localization approach
obtains significant accuracy performance improvement.
This can be contributed to three reasons. Firstly, UKF
may better adapt the nonlinearity of PDR model than
EKF- and KF-based integrated approaches. This can also
be seen from the accuracy improvement of UKF (empi-
rical) than EKF (empirical) and KF (empirical)
approaches. Secondly, for measurement noise statistics
of WiFi localization, instead of setting them empiri-
cally, we deploy the KDE-based model to accurately
measure them. Therefore, during integration process,
false cases such as WiFi localization results of a lar-
ger error being given a larger weight may be avoided
effectively. Finally, to measure the process noise
statistics of PDR model accurately, we construct the
relationship between quaternion vector and user heading
estimation and develop a continuous device attitude
tracking model based on another UKF. Compared
with previous EKF-based device attitude tracking method,

the user heading estimation improvement using another
UKF is also obtained.

8 Conclusions
In this paper, we propose an UKF-based WiFi/PDR-inte-
grated localization approach. For WiFi localization, we
deploy a KDE-based model to measure the measurement
noise covariance adaptively rather than set them empi-
rically. For PDR, we deploy another UKF model for
device attitude tracking by integrating inertial sensors
with magnetometers and construct relationship between
quaternion vector and user heading. As a result, an
improved user heading estimation is obtained. Further-
more, the covariance of user heading estimation can also
be accurately measured and used for PDR in the UKF.
Besides, the proposed device carrying position classifier
using orientation invariant features may achieve signifi-
cant recognition accuracy improvement than those using
normal features, when the device orientation is uncon-
strained. Experiments show that compared with the

Fig. 5 Localization accuracy comparisons. The compared approaches include the proposed UKF-based integrated approach, UKF (empirical), EKF
(empirical), KF (empirical), PDR, and WiFi positioning

Table 2 Performance comparisons of various positioning error (m) measures

Compared approach Proposed UKF UKF (empirical) EKF (empirical) KF (empirical) PDR WiFi localization

Mean error 0.76 1.01 1.09 1.19 1.83 2.26

75 percentile 1.02 1.30 1.47 1.61 2.65 3.20

90 percentile 1.46 1.88 2.26 2.39 3.81 4.44
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integrated localization approaches empirically setting
process and measurement noise parameters based on
UKF, EKF, and KF, respectively, individual approaches
including WiFi localization and PDR, the proposed
localization approach decreases mean localization error
by 24.8% (0.25 m), 30.3% (0.33 m), 36.1% (0.43 m), 58.5%
(1.07 m), and 66.4% (1.50 m), respectively.
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