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Abstract

Degree distribution plays a great role in the performance of Luby transform codes. Typical degree distributions
such as ideal soliton distribution and robust soliton distribution are easy to implement and widely used.
Nevertheless, their adaptabilities are not always outstanding in various code lengths, especially in the case of short
length. In this paper, our work is to optimize degree distributions for the short-length LT codes by using swarm
intelligence algorithm, considering its conceptual simplicity, high efficiency, flexibility, and robustness. An
optimization problem model based on sparse degree distributions is proposed in the first place. Then, a solution on
the basis of an enhanced chicken swarm optimization algorithm, termed as ECSO, is designed for the problem. In
ECSO, substitution of bottom individuals, revision of chicks’ update equation, and introduction of differential
evolution are designed to enhance the ability of optimization. Simulation comparisons show that the proposed
solution achieves much better performance than two other swarm intelligence-based solutions.
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1 Introduction
Power line communication (PLC) is regarded as a ser-
ious candidate for the realization of smart grid networks
due to its high data rate, easy connection between de-
vices, broad coverage, and low-cost deployment. For
PLC, data transmission over long distances and at high
frequencies is a challenging issue, and some schemes
have been proposed on the basis of cooperative ap-
proaches. Among them, the cooperative communication
schemes leveraging digital fountain code (DFC) attract
considerable attention from researchers because of their
lower redundancy and higher reliability [1, 2].
Developed by Byers et al. in 1998, DFC is a popular

probabilistic forward error correction scheme [3]. One of
the most distinctive properties of DFC is rateless. Encoded
packets are continuously delivered like a fountain, and any
receiver can reconstruct the source data once a sufficient
number of packets are received [4]. Examples of fountain
codes include LT codes [5], raptor codes [6], and online
codes [7]. Compared with the two others, LT codes have
simpler encoding procedure and are more representative,

leading a wider scope of application, including deep space
communication [8], data distribution [9], wireless sensor
networks [10], and cloud storage [11].
A good degree distribution is necessary for the

above-mentioned DFC-based cooperative communication
schemes, since degree distribution plays a crucial role in
the performance of encoding and decoding of LT codes.
The encoder generates an encoded symbol on the basis
of a particular probability distribution, the so-called
degree distribution, and the decoder utilizes the same
degree distribution to recover the original input
symbol. There are five suggested degree distributions:
(1) all-at-once distribution; (2) binomial distribution
(BD); (3) binomial exponential distribution (BED); (4)
ideal soliton distribution (ISD); and (5) robust soliton
distribution (RSD). Although the distributions men-
tioned above are easy to be implemented, their per-
formance varies in distinct occasions. Correspondingly,
a large amount of attention has been paid to improve
the performance of LT codes by optimizing the degree
distribution, some achievements have been made also.
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According to the length of the LT codes, existing
methods for optimizing degree distribution can be di-
vided into two categories: the methods for long length
(MLL) [12–15] and the methods for short length (MSL)
[16–19]. In this paper, our work is seeking a simple
MSL; hence, a review of MLL is briefed. Among MSL, in
[16], the decoding process was studied as a Markov
chain and an analytical combinatorial approach is pre-
sented. In [17], the effect of the RSD on decoding delay
as well as percentage overhead for LT codes with small
message size was investigated. Results showed that the
decoding latency can be decreased by optimizing the
RSD’s parameters. In [18], Esa Hyytiä et al. proposed an
iterative optimization algorithm, whose idea was bor-
rowed from importance sampling theory. In [19], the de-
gree optimization problem was reformulated in form of
standard semidefinite programming (SDP) on AND–OR
tree analysis of BP algorithm. Considering a large num-
ber of optimization variables in the obtained SDP, the
authors proposed an alternative linear program that can
be solved numerically for a reasonable number of source
packets. It is noteworthy that the attempts above were
met with limited success. For example, the approach in
[16] is effective only when the message length is less than
30. For the approach in [17], it relies heavily on heuristic
knowledge from simulation test and it lack of targeted
strategy. Importance sampling theory utilized in [18] still
needs further exploration for better performance. Accord-
ingly, investigating MSL remains an open problem.
During the past few decades, natured-inspired computa-

tion algorithms have attracted significant attention from
scholars as an attractive issue. Among them, the most suc-
cessful are evolutionary computation (EC) and swarm
intelligence (SI). EC algorithms are search methods that
take their inspiration from natural selection and survival
of the fittest in the biological world. SI algorithms are in-
spired by the collective behavior of social systems (such as
fish schools, bird flocks, and ant colonies) and have be-
come an innovative computational way to solving hard
optimization problems. Due to the simplicity and flexibil-
ity of EC and SI, some schemes have been developed for
the degree distribution optimization of short-length LT
codes [20–22]. Among them, the solution in [22] is a typ-
ical SI-based instance, in which Deng et al. utilized a par-
ticle swarm optimization (PSO) algorithm with a gradient
to design the degree distribution for reducing the decod-
ing overhead. The evaluation upon sparse degree distribu-
tions has approved the effectiveness to some extent.
However, this SI-based optimization can easily to fall into
the local solution because of the inherent characteristics
of the PSO.
Recently, chicken swarm optimization (CSO), a novel

SI algorithm mimicking hierarchal order and behaviors
of the chicken swarm, has been proposed in [23]. In

CSO, the individuals follow diverse approaches of evolu-
tionary according to their fitness values, which is lacking
in most of typical EC and SI algorithms such as genetic
algorithms (GA), differential evolution (DE), and PSO.
Statistical comparisons on 12 benchmark problems illus-
trate its superiority in the terms of accuracy, efficiency,
and robustness. Many endeavors have also been made to
further improve the performance of CSO [24–26]. In
[24], for optimally selecting the sensor nodes to form a
virtual node antenna array, a novel swarm intelligence
optimization algorithm called cuckoo search chicken
swarm optimization (CSCSO) is proposed, in which
chaos theory, inertia weight Lévy flight, and grade mech-
anism are leveraged to improve the performance. For
the problem that the typical chicken swarm optimization
can easily fall into a local optimum in solving
high-dimensional problems, an improved chicken swarm
optimization is proposed in [25]. The relevant parameter
analysis and the verification of the optimization capabil-
ity by test functions in high-dimensional case were
made. In [26], MPCSO, an enhanced version incorpo-
rated with monomers turbulence in rooster (MTR) strat-
egy and particle renovation in hen (PRH) strategy, is
proposed for solving L-RNP problem. Simulation results
prove the effectiveness of these improved algorithms.
Specifically, it is recognized that CSO offers an effective
approach to the optimization of complex problems.
Motivated by the above facts, our work in this paper is

to optimize the degree distribution for short-length LT
codes by leveraging CSO. Firstly, we provide a framework
for the optimization problem, where the form with sparse
degree distributions is considered. The optimization ob-
jective is to minimize decoding overhead with recov-
ering the entire original data. Secondly, a solution
based on an enhanced CSO algorithm is put forward
for achieving optimal degree distributions. Substitu-
tion of bottom individuals is drawn to enhance the
efficiency of roosters’ cruising. The update equation
of chicks is also revised. Besides, DE strategy is intro-
duced to refine the information interaction among
the individuals. Finally, we design and carry out simu-
lation experiments. Simulation results show that the
addressed approach is capable of achieving much bet-
ter performance than other algorithms. To the best of
our knowledge, this is the first work that optimizes
the degree distributions of LT codes by utilizing
CSO-based algorithm.
The remainder of this paper is organized as follows.

Section 2 introduces the preliminary of LT codes.
Section 3 formulates the optimization problem. In
Section 4, the basic CSO algorithm is briefed and the
ECSO-based solution is presented in detail. Simulation
results are shown in Section 5. The conclusion of this
paper is given in Section 6.
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2 LT coding method
2.1 Encoding and decoding of LT codes
Three procedures consist the encoding process of LT
codes. Firstly, the source data is partitioned into k input
symbols. Secondly, a degree d is chosen randomly ac-
cording to an adopted degree distribution ρ(d) to gener-
ate an encoded symbol, with 1 ≤ d ≤ dmax, dmax is the

maximal degree value,
Pdmax

d¼1ρðdÞ ¼ 1. The degree d de-
cides the number of input symbols combined into an
encoded symbol. Thirdly, d input symbols, also named
neighbors, are chosen randomly and accumulated via
XOR operation to produce an encoded symbol at the LT
encoder. The last two procedures work periodically to
generate a number of encoded symbols.
At the LT decoder, belief-propagation (BP) algorithm is

utilized in common to reconstruct source data from the n
encoded symbols. Usually, n is slightly bigger than k.
Firstly, the decoder searches the encoded symbols with
only one (degree-1) neighbor to decode directly. Secondly,
the recovered input symbols are exclusive-XORed with
their neighbors to update the encoded symbols. Mean-
while, the edge between each encoded symbol and its
neighbor is removed. These two procedures will be iter-
ated until no encoded symbol with degree-1 is available.

2.2 Degree distribution
The behavior of LT code is mainly determined by the de-
gree distribution and the number of encoded symbols
received by the LT decoder. The overhead ε = n/k indi-
cates the performance of LT code and depends on a
given degree distribution. In [5], Luby designed an ISD
based on an analogy of throwing an infinite number of
balls randomly into k number of bins:

ρ dð Þ ¼
1
k

for d ¼ 1

1
d d−1ð Þ for d ¼ 2; 3…; k

8><
>: ð1Þ

In the ideal case, the overhead equals to 1, indicating
the best performance. However, ISD works poorly in
practice, since the decoding behavior of finite length LT
codes may fluctuate among randomly encoded symbol.
Hence, in the same paper, Luby addressed another de-
gree distribution, known as RSD μ(d). By adding an ad-
justment term τ(d) to ρ(d), μ(d) can be expressed as

μ dð Þ ¼ ρ dð Þ þ τ dð Þ
Xk
d¼1

ρ dð Þ þ τ dð Þ
: ð2Þ

with

τ dð Þ ¼

R
kd

for d ¼ 1; 2;…;

R
k

ln R=δð Þ for d ¼ k
R

0 for d ¼ k
R
þ 1;…; k

8>>>>><
>>>>>:

ð3Þ

where R ¼ c lnðk=δÞ ffiffiffi
k

p
, c is a positive constant, and δ

is the probability of decoding failure. Further discussion
and reasoning for this distribution can be found in the
references [6].
Compared with ISD, RSD is more viable and practical.

The performance analysis of RSD is derived based on the
assumption that k is infinite. However, source data in
practice is usually divided into finite pieces, and as a re-
sult, the feature of LT code under RSD will not exactly
match the mathematical analysis, especially in the case of
small k. RSD provides an easy way to construct a distribu-
tion that works well but not optimally. In this paper, we
will propose a more universal and effective approach for
optimizing degree distribution of LT codes with short
length, by leveraging an emerging SI algorithm.

3 Optimization problem
3.1 Variables design based on sparse degree distribution
For the SI-based optimization, the challenge of huge
searching space is a pivotal issue. When the degrees ran-
ging from 1 to k are planned to be optimized, the di-
mension of searching space equals to the source data
length k. In this situation, due to the complexity of en-
coding and decoding of LT codes, it is not easy for the
SI-based algorithm to achieve a desirable solution within
an acceptable time, especially in the case of data length
reaching hundreds, thousands, or more.
To reduce the search space dimension, sparse degree

distribution (SDD) is chosen in our work for designing
the variables that can properly stand for the probability
mass function ρ(d). In SDD, partial degrees are consid-
ered to have zero probabilities, which simplify the design
of the degree. Adopting a SDD has been an alternative
scheme used in LT codes optimization [2, 18, 20–22]. In
particular, we consider distribution where positive prob-
abilities are assigned to optimization components whose
indices are powers of two and less than k, i.e., for dj = 2j

and j = 1, 2, … , D. dmax = 2D is the highest indice
with dmax < k. On the other hand, all the other degrees
are assumed to have zero probabilities. Accordingly, the
variables to be designed can be expressed as vectors Ω
= {ρ(d1), ρ(d2), …, ρ(dD)}.Obviously, the dimension of
search space is D and much less than the typical value k.

3.2 Objective formulation
Efficiency and complexity are the two main factors con-
sidered when designing a degree distribution. Usually,
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efficiency is indicated by the decoding overhead, related
to the average number of encoded symbols required for
successfully recovering all original data. A smaller aver-
age decoding overhead signifies a higher efficiency. On
the other hand, complexity is generally evaluated by the
average degree of encoded symbols required for success-
fully recovering all original data. It is also hoped that the
average degree is as small as possible.
In this paper, we choose efficiency to formulate the ob-

jective function. Suppose the encoded symbols transmit
in an ideal channel and T denotes the number of
encoded symbols required for decoding an input symbol.
Then, our optimization objective can be formulated as

overhead ¼ E T½ �−k
k

; ð4Þ

where E is the expectation of received encoded symbols’
number.
During the iteration, for simplifying the calculation,

we directly employ the mean of T to measure the per-
formance of degree distribution instead of the overhead.
Correspondingly, the fitness function can be defined as

f Ωð Þ ¼ 1
m

Xm

r¼1
T rð Þ; ð5Þ

where m is the number of decoding trials. T(r) is the num-
ber of encoded symbols required for a successful decoding
in the rth sample. Accordingly, the design of degree distri-
bution can be denoted as a minimization problem

OS Ωð Þ ¼ arg min fð Þð Þ: ð6Þ
To accurately evaluate the value of T, a stepwise de-

coding mode is employed and works as follows.
Step 1: When the number of encoded symbols at the

decoder is bigger than ⌈k(1 + δ)⌉, the BP decoding starts
to work. δ is a default value of overhead set by the de-
signer. ⌈⌉ denotes floor rounding calculation.
Step 2: If the decoder fails to decode the whole input

symbols, it recruits another ⌈kδ⌉-encoded symbols and
continues the decoding operation.
Step 3: If the decoder succeeds in decoding the whole

input symbols, the amount of encoded symbols is re-
corded and the stepwise decoding mode is terminated. If
not, go back to Step 2.

4 ECSO-based solution
4.1 Preliminaries of typical CSO
Proposed by X.B. Meng et al., chicken swarm
optimization is a bio-inspired metaheuristic optimization
algorithm that mimics a hierarchal order in chicken
swarm and behaviors of the chicken swarm [23]. The
rules of chicken behavior in CSO can be summarized as
follows:

4.1.1 Division and classification
The entire chicken swarm is divided into several groups,
and each group consists of a rooster, some hens, and
several chicks. Each type of chickens follows specific
laws of motions.

4.1.2 Hierarchy and relationship
The fitness value of the chickens outlines a hierarchy of the
swarm. The individuals with the best fitness are regarded
as the roosters, each of which is a leader of the group. The
individuals with the worst fitness values are considered as
chicks. The others would be the hens. The hens randomly
choose which group to live in. The mother-child relation-
ship between the hens and the chicks is also randomly
established. The swarm hierarchy, dominance relationship,
and mother-child relationship in a group will remain un-
changed until an update command is issued. In the typical
CSO, the update command arrives every G times.
During the evolutionary, each individual follows their

group-mated rooster and keeps moving to find a better
position, whereas the different type of chickens employ
different movement pattern. Suppose N stands for the
number of original chickens in the swarm. NR, NH, NC,
and NM respectively represent the number of roosters,
hens, chicks, and mother hens. N =NR +NH +NC. As-
sume all the virtual chickens, depicted by their positions
xi, j(t) at step t, search for food in a D-dimensional space
where i ∈ [1, … ,N], j ∈ [1, … ,D], and t ∈ [1, … ,W]. W
is the iteration number. The roosters with better fitness
values can search for food in a wider range of places
than those roosters with worse fitness values, and their
movements can be formulated as

xi; j t þ 1ð Þ ¼ xi; j tð Þ 1þ Randn 0; σ2
� �� �

; ð7Þ

σ2 ¼
1 for f i≤ f w

exp
f w− f i
f ij j þ ε

� �
for others

8<
: ; w∈ 1; N½ �; w≠i;

ð8Þ
where Randn(0, σ2) indicates a Gaussian distribution
with mean 0 and standard deviationσ. ε is the smallest
constant utilized to avoid zero-division error. fi expresses
the fitness value of the rooster xi. w is the index of a
rooster chosen randomly from rooster’s group.
Hens follow their group-mated roosters to search for

food. More dominant hens would have an advantage in
competing for food than more submissive ones. These
phenomena can be formulated mathematically as

xi; j t þ 1ð Þ ¼ xi; j tð Þ þ c1Rand xr1; j tð Þ−xi; j tð Þ� �
þc2Rand xr2; j tð Þ−xi; j tð Þ� �

;

ð9Þ

c1 ¼ exp f i− f r1
� �

= abs f ið Þ þ εð Þ� �
; ð10Þ
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c2 ¼ exp f r2− f i
� �� �

; ð11Þ

where Rand is a uniform random number limited in [1, 0].
r1 indicates a rooster’s index, which is the ith hen’s group-
mate, and r2 (r1 ≠ r2) indicates the index of the chicken
(rooster or hen) selected randomly from the swarm.
The chicks move around with their mother to search

for food. This is formulated below.

xi; j t þ 1ð Þ ¼ xi; j tð Þ þ FL xm; j tð Þ − xi; j tð Þ� �
;

ð12Þ

where xm, j (t) is the position of ith chick’s mother. FL is
a coefficient in the range [0, 2], representing the ability
of the chick for following its mother to seek food.

4.2 Enhanced CSO algorithm
In this section, an enhanced CSO algorithm for designing
degree distribution of short-length LT codes is proposed
and described. For ease of description and comparison, we
termed the proposed algorithm as ECSO. Fundamentally,
the enhancement in ECSO comprises three parts: substi-
tution of bottom individuals (SBI), revision of chicks’ up-
date equation (RCE), and introduction of DE (IDE). For a
better understanding, the principles of these three strat-
egies are illustrated as follows.

4.2.1 Substitution of bottom individuals
Among a large chicken swarm, the individuals with
worst fitness values, a certain part of chicks, basically fail
to not only have a beneficial impact on the evolution
process due to their poor performance, but also cause a
waste of calculation amount. Recognizing this fact, in
our work, the NW individuals with the worst fitness
value are defined as bottom individuals and expected to
be eliminated. On the contrary, roosters’ positions report
the best behaviors of the whole swarm and predetermine
the rapidity and accuracy of convergence. The perturb-
ation number of each rooster during a single evaluation
plays a major role in the efficiency of the rooster swarm.
A larger perturbation number implies a higher chance of
improvement of the rooster search.
Based on the two points above, SBI strategy shown in

Fig. 1 is suggested as follows. Firstly, each bottom individ-
ual is substituted by a rooster to leave the size of popula-
tion unchanged and facilitate the design of the
optimization process. Treating NR as the initial size of
roosters, the extended size of roosters will reach NR +NW

after the substitution operation. For ease of programming,
let NW be an integer multiple of NR. Secondly, according
to the diversity of the individuals’ status, the extended
rooster swarm is classified into NR groups, each of which
contains roosters with the same fitness value. In the typ-
ical CSO algorithm, the hens randomly choose which

group to live in so as to increase the variety of the
evolution. Whereas in our approach, hens are allocated to
the group where roosters provide the nearest neighbor
Euclidean distance to enhance the convergence of great
population. The chicks join in the group where their
mother lives in. Afterward, each group is divided into NW/
NR + 1 subgroups, each of which consists of one rooster,
several hens, and a few chicks. The allocation of chicken is
generated randomly. Thirdly, in order to balance the rela-
tionship between the convergence and variety, the initial
size of the rooster is suggested to increase by degrees dur-
ing the iterative evolution. For instance, NR equals to 2 in
the former half iteration of the evolution process while in-
creases to 3 in the latter half iteration.

4.2.2 Revision of chicks’ update equation
In typical CSO, each chick only achieves position infor-
mation from their own mother, rather than the roosters.
In this case, it is hard for the chicks to obtain a better
solution once their mothers fall into local optimum.
Hence, the update equation of the chick is modified, and
the formula (12) is rewritten as

xi; j t þ 1ð Þ ¼ xi; j tð Þ þ FL xm; j tð Þ−xi; j tð Þ
� �

þ c3 xrbest; j tð Þ−xi; j tð Þ� �
; ð13Þ

where c3 indicates the learning coefficient. rbest expresses
the index of the rooster with the best fitness value in the
current iteration.

4.2.3 Introduction of DE
It should be noted that, in CSO, the information inter-
action among the individuals mainly occurs within a
limited range, weakening the global optimization ability
and deep optimization ability. For the roosters, the per-
turbation range is decided by σ only and the states of
hens and chicks are not fully utilized. Besides, it would
be hard to obtain a better performance by simultan-
eously updating the individuals’ states on all dimensions,
because of their own superior fitness values. That is to
say, the improvement upon a certain dimension would
be possibly counteracted by the deterioration of some
other dimensions. As for the update of hens, as shown in
(8), a hen can only follow roosters to search for food, but
fail to share information with other hens. It is necessary
and possible to further improve the performance of the
CSO by refining the manner of information interaction.
Motivated by this, this paper introduces DE strategy to

the CSO algorithm. Proposed by Price and Storn in [27],
DE is an excellent EC-based algorithm with many advan-
tages including simplicity, robustness, and memory. In
the enhanced CSO algorithm, after updating the position
of all chickens, the algorithm enters DE operation to
seek novel candidate solutions. Mutation, crossover, and
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selection are operated for the new generation. DE/rand/
1/bin in [28] is chosen as the scheme of DE strategy.

4.3 Procedure of ECSO-based approach
Overall, the procedures of the ECSO-based approach for
optimizing degree distribution of short-length LT codes
are suggested as below:

Step 1: Initialize a starting distribution ΩI = [pI, 1, pI,
2, …, pI, j, …, pI, D] in terms of the input
symbols k and the number of probability degree
distributions N, with pI, j∈ (0, 1) and

PD
j¼1 pI; j

¼ 1.
Step 2: Utilize the starting distributions to construct

the initial populations of ECSO algorithm. Each
probability degree distribution stands for the
position of a chicken in the swarm, and there are
totally N chickens. The position of the ith
individual in the initial solution is expressed as xIi
¼ ½pIi;1; pIi;2;…; pIi; j; …; pIi;D�.

Step 3: Start the optimization process with t = 1 and
calculate the fitness values through formula (4).

Step 4: If t%G = 1, establish hierarchal order and
execute SBI operation based on the sorted fitness
values. Update the position of roosters, hens, and
chicks by using formula (6), formula (8), and
formula (13) respectively. Normalization is also
leveraged to ensure

PD
j¼1 pi; jðtÞ ¼ 1. [pi, 1(t), pi,

2(t), … , pi, j(t), … , pi, D(t)] denotes the state of the
ith individual in the tth iteration.

Step 5: Start the mutation operation as the first
process of DE strategy. Three individuals are
chosen randomly for generating a mutant vector
given by

vi t þ 1ð Þ ¼ xy1 t þ 1ð Þ þM xy2 t þ 1ð Þ−xy3 t þ 1ð Þ� �
; i≠y1≠y2≠y3;

ð14Þ

where M ∈ [0, 2] denotes the amplification factor.y1,
y2, y3 ∈ [1, …,N] denotes random indexes, respectively.

Step 6: Execute the binomial crossover operation as
the second process of DE strategy. Use the mutant
vectors and positions of individuals to obtain
corresponding trial vectors. The rule is presented as

ui; j t þ 1ð Þ ¼ vi; j t þ 1ð Þ for Rand jð Þ≤CR or j ¼ jrand
xi; j t þ 1ð Þ for Rand jð Þ≥CR and j≠ jrand

�
;

ð15Þ

where Rand(j) is the jth evaluation of a uniform random
number generator with the outcome ∈[0, 1]. CR ∈ [0,
1] represents crossover probability. jrand is selected ran-
domly from 1 to D.

Step 7: Switch to the selection operation as the third
process of DE strategy. Use the greedy criterion to
decide whether a trial vector would become a
member of the next generation. The greedy
criterion is provided as

xi t þ 1ð Þ ¼ ui t þ 1ð Þ for f ui t þ 1ð Þð Þ < f xi t þ 1ð Þð Þ:
ð16Þ

Step 8: Set t = t + 1, if the step meets the maximum
iteration, terminate the algorithm and output the
optimal solution; otherwise, go to Step 4.

Fig. 1 Framework of SIB strategy. Describes the mechanism and process of the substitution of bottom individual (SBI) strategy. After the
operation of initialization and ranking, the initial rooster and bottom individuals are selected. Substitution and classification are then implemented
to redefine the hierarchy of the population. Afterward, subgroup can be obtained by grouping operation
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5 Simulation results
5.1 Simulations setup
In this section, simulation experiments have been imple-
mented using MatLab R2014a platform. Two simulation
jobs are carried out to evaluate the performance of the
proposed approach. Firstly, we investigate the effective-
ness of SBI, RCE, and IDE and evaluate the performance
of the ECSO algorithm in comparison with other algo-
rithms by using 12 benchmark functions presented in
Table 1. Secondly, for validating the effectiveness of the
ECSO-based approach, three instances, namely K32, K64,
K128, are provided to illustrate the optimization capability
under different short-length scenarios, among which k is
set as 32, 64, and 128. Correspondingly, D is set as 5, 6,
and 7, respectively. It is clear that the bigger the k is, the
harder the design of degree distribution becomes.

5.2 Testing on the benchmark functions
To validate the effectiveness of SBI, RCE, and IDE,
we termed the algorithm combining SBI and CSO as
SCSO, the algorithm combining RCE and CSO as
RCSO, and the algorithm combining IDE and CSO as
ICSO. Three algorithms Adaptive PSO (APSO) [29],
DE [28], and CSO [23] are chosen and compared in
this section. Among them, APSO has a linear de-
creasing inertia weight when the number of iterations
increases. DE simulates genetic processes (mutation,
crossover, and selection operations) to generate the
optimal solution by iterations. For all the algorithms,
the population size is set as 100; the maximum num-
ber of generations is 100. The dimension of searing
space is 10. The basic control parameters of the seven
algorithms are given in Table 2. Note that, for SCSO
algorithm and ECSO algorithm, set NR=NW=15,
NH=65 during the former half iteration of the evolu-
tion process and set NR=NW=25, NR=55 during the
latter half iteration of the evolution process.

According to the principle of Monte Carlo, all the al-
gorithms are executed 40 times independently to
achieve statistical results.
Tables 3 and 4 show the statistical results obtained

from the 40 runs, under the benchmark functions. The
mean results, the best results, the worst results, and the
standard deviation of fitness value are reported. Itali-
cized data in the table indicate the best values among
those achieved by all three algorithms. It is obvious that
SBI strategy, RCE strategy, and IDE strategy could
greatly improve the performance of the CSO, for most
of the benchmark functions tested. Besides, the three
strategies could work harmoniously since ECSO that
combines all the three strategies almost invariably ob-
tains the smallest values compared to the others. Take
F12 for instance, the mean final fitness values of SCSO,
RCSO, and ICSO are 11.477, 9.072, and 9.693, respect-
ively, and the corresponding values of APSO, DE, and
CSO are 19.405, 65.162, and 16.762, respectively,
whereas ECSO wins the best value, 7.073.

5.3 Comparison and analysis on the degree distribution
optimization
To evaluate the performance of the ECSO-based ap-
proach, PSO-G-based approach in [19] and typical
CSO-based approach are compared in this section. Just
like the above section, all three algorithms are executed
40 times. For all the algorithms, the size of the popula-
tion is set as 100 and the maximum number of genera-
tions is set as 80. For PSO-G-based approach, the
parameters are the same to those in [22]. For
CSO-based approach and ECSO-based approach, the pa-
rameters are the same to those in Table 2. The rest of
the parameters are set as follows: δ = 0.05 and m = 20.
Statistical results for instances K32, K64, and K128 are

shown in Tables 5, 6, and 7. For one thing, it is obvious

Table 1 Benchmark functions tested in this paper

Function ID Bounds Optimum

High conditioned elliptic F1 [− 100,100] 0

Penalized F2 [− 50,50] 0

Rosenbrock F3 [− 30,30] 0

Ackley F4 [− 32,32] 0

Griewank F5 [− 600,600] 0

Sphere F6 [− 100,100] 0

Step F7 [− 100,100] 0

Schwefel’s P1.2 F8 [− 100,100] 0

Rastrigin F9 [− 5.12,5.12] 0

Axis parallel hyer-ellipsoid F10 [− 5.12,5.12] 0

Schwefel’s P2.22 F11 [− 100,100] 0

Quartic F12 [− 1.28,1.28] 0

Table 2 Parameter settings for the seven algorithms

Type APSO DE CSO SCSO RCSO ICSO ECSO

ω 0.9–0.4 N/A N/A N/A N/A N/A N/A

c1 2 N/A N/A N/A N/A N/A 2

c2 2 N/A N/A N/A N/A N/A 2

c3 N/A N/A N/A N/A 0.4 N/A 0.4

G N/A N/A 5 5 5 5 5

NR N/A N/A 15 15–25 15 15 15–25

NH N/A N/A 65 65–55 65 65 65–55

NC N/A N/A 25 25 25 25 25

NM N/A N/A 30 30 30 30 30

NW N/A N/A N/A 15–25 N/A N/A 15–25

CR N/A 0.8 N/A N/A N/A 0.8 0.8

M N/A 0.5 N/A N/A N/A 0.5 0.5

N/A not applicable
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Table 3 Performance comparison of all algorithms based on benchmark functions F1–F6

Function Algorithm Standard deviation Mean Best Worst

F1 APSO 5.9492E+04 8.7705E+03 7.7646E−09 5.3110E+05

DE 7.4107E+03 1.3125E+03 1.0849E−29 6.2729E+04

CSO 7.6889E+02 1.0121E+02 4.7242E−51 7.4324E+03

BCSO 6.6555E+02 8.7229E+01 1.5939E−56 6.5051E+03

DCSO 9.7958E+02 1.2479E+02 2.3529E−13 9.7158E+03

CCSO 3.7588E+02 5.5510E+01 5.1173E−49 3.5087E+03

ECSO 1.1425E+02 1.3967E+01 1.7777E−76 1.1238E+03

F2 APSO 4.8242E+08 3.0668E+08 2.9954E+00 1.6746E+09

DE 1.4118E+08 6.6593E+07 5.6825E+00 8.1316E+08

CSO 5.2294E+07 1.3454E+07 4.4328E−03 3.9428E+08

BCSO 5.7113E+07 1.3255E+07 4.6421E−03 4.2143E+08

DCSO 3.5179E+07 6.6830E+06 1.3967E+00 2.9323E+08

CCSO 3.8502E+07 6.9098E+06 4.8575E−03 3.6967E+08

ECSO 3.8038E+07 5.8436E+06 9.9838E−02 3.6491E+08

F3 APSO 3.8828E+11 2.5392E+12 1.8276E+12 3.0721E+12

DE 3.6839E+11 1.8362E+11 8.6652E+06 2.1543E+12

CSO 1.5036E+11 4.1156E+10 8.3924E+00 9.5963E+11

BCSO 1.2359E+11 2.4851E+10 8.0768E+00 1.1022E+12

DCSO 1.0919E+11 2.3546E+10 8.9219E+00 9.4549E+11

CCSO 1.0876E+11 2.2786E+10 8.2943E+00 9.5715E+11

ECSO 1.0614E+11 1.7426E+10 7.5968E+00 9.7048E+11

F4 APSO 7.9438E+00 8.5669E+00 9.4325E−01 2.0735E+01

DE 4.8955E+00 1.4568E+01 4.9839E+00 2.0421E+01

CSO 5.3134E+00 2.9588E+00 9.1020E−06 1.9524E+01

BCSO 4.9538E+00 2.4553E+00 1.0627E−06 1.9181E+01

DCSO 4.9357E+00 2.8540E+00 6.1677E−04 1.9620E+01

CCSO 5.0396E+00 2.7284E+00 7.3455E−06 1.9609E+01

ECSO 3.6984E+00 1.3313E+00 1.8692E−07 1.9516E+01

F5 APSO 1.2130E+00 1.9364E+00 3.5936E−01 4.3676E+00

DE 5.9648E−01 1.3952E+00 6.9788E−01 3.4824E+00

CSO 4.8664E−01 3.1842E−01 2.9110E−05 2.3938E+00

BCSO 4.8423E−01 2.7001E−01 8.1348E−10 2.3181E+00

DCSO 4.8122E−01 2.6827E−01 2.3956E−08 2.2155E+00

CCSO 4.8224E−01 3.0687E−01 2.4610E−06 2.4380E+00

ECSO 4.0396E−01 1.7115E−01 1.3262E−14 2.2312E+00

F6 APSO 2.2211E−01 1.0988E−01 2.8881E−03 1.8355E+00

DE 3.4216E−01 3.0496E−01 3.1631E−03 1.5045E+00

CSO 1.3665E−01 3.4548E−02 1.6614E−14 1.0647E+00

BCSO 1.2132E−01 3.0265E−02 8.0612E−16 9.2391E−01

DCSO 1.2599E−01 3.3452E−02 4.3039E−12 1.0142E+00

CCSO 1.1833E−01 3.0734E−02 5.6060E−15 8.9365E−01

ECSO 1.0101E−01 2.2448E−02 4.6118E−18 7.9359E−01
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Table 4 Performance comparison of all algorithms based on benchmark functions F7–F12

Function Algorithm Standard deviation Mean Best Worst

F7 APSO 1.7199E+01 4.3650E+00 0.0000E+00 1.0870E+02

DE 2.2119E+01 2.0320E+01 0.0000E+00 9.8650E+01

CSO 9.4792E+00 3.0670E+00 0.0000E+00 6.4400E+01

BCSO 9.4334E+00 2.9095E+00 0.0000E+00 6.6550E+01

DCSO 9.0134E+00 4.0845E+00 4.5000E−01 6.4250E+01

CCSO 8.0428E+00 2.4880E+00 0.0000E+00 5.9200E+01

ECSO 6.7709E+00 1.6255E+00 0.0000E+00 5.2950E+01

F8 APSO 5.7047E+03 8.2521E+03 2.2036E+03 2.5229E+04

DE 3.4683E+03 3.8976E+03 5.5399E+02 2.2475E+04

CSO 3.4032E+03 2.4246E+03 3.3888E+02 2.1273E+04

BCSO 3.0753E+03 2.3294E+03 2.7688E+02 1.6230E+04

DCSO 2.6553E+03 1.1508E+03 5.3335E−05 1.6955E+04

CCSO 3.1754E+03 1.6036E+03 1.2732E+02 2.2657E+04

ECSO 2.6438E+03 1.1180E+03 3.9454E−07 1.6007E+04

F9 APSO 2.7305E+02 1.5363E+02 1.8616E+01 1.1794E+03

DE 2.0441E+02 2.5411E+02 5.7273E+01 1.0046E+03

CSO 1.0097E+02 4.0486E+01 9.6601E−06 6.2801E+02

BCSO 1.0187E+02 3.6269E+01 1.2021E−08 6.5835E+02

DCSO 1.0786E+02 4.3412E+01 9.1331E−07 6.5675E+02

CCSO 1.0120E+02 3.9449E+01 6.0732E−07 6.7608E+02

ECSO 8.0768E+01 2.3935E+01 1.0119E−08 5.7983E+02

F10 APSO 1.9719E+01 4.4414E+00 2.0279E−02 1.6054E+02

DE 2.7524E+01 2.2175E+01 1.8682E−01 1.3731E+02

CSO 1.2493E+01 3.7259E+00 4.7947E−12 7.6476E+01

BCSO 1.1817E+01 3.1029E+00 8.9682E−13 8.2953E+01

DCSO 1.1784E+01 3.6059E+00 1.3398E−08 7.8886E+01

CCSO 1.0974E+01 2.9772E+00 1.4122E−12 8.3549E+01

ECSO 8.2519E+00 1.7539E+00 3.9075E−13 6.5495E+01

F11 APSO 1.9944E+11 3.6391E+10 3.2077E+01 1.7823E+12

DE 1.7313E+10 3.2944E+09 2.4898E+03 1.5493E+11

CSO 4.6866E+08 5.2398E+07 2.7157E−06 4.6870E+09

BCSO 3.4758E+08 3.5540E+07 7.7432E−08 3.4934E+09

DCSO 3.2962E+08 3.4301E+07 1.7245E−04 3.3122E+09

CCSO 1.0896E+09 1.2330E+08 2.9050E−06 1.0878E+10

ECSO 1.0777E+08 1.1629E+07 1.1224E−06 1.0810E+09

F12 APSO 1.2648E+02 1.9405E+01 1.9131E−02 1.1248E+03

DE 1.2314E+02 6.5162E+01 1.1084E−01 8.0601E+02

CSO 6.0829E+01 1.6762E+01 3.9479E−03 4.3591E+02

BCSO 5.5154E+01 1.1477E+01 4.2233E−03 4.5967E+02

DCSO 3.5858E+01 9.0720E+00 2.1421E−03 2.6972E+02

CCSO 4.2886E+01 9.6930E+00 2.5033E−03 3.6524E+02

ECSO 4.0757E+01 7.0128E+00 2.1833E−03 3.6695E+02
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that the results of the CSO-based approach and the
ECSO-based approach are superior to those of the
PSO-G approach, which proves the advantage of CSO.
Take K64 for instance, the mean final fitness value of
PSO-G is 74.6711, whereas the corresponding values of
CSO and ECSO are 74.0125 and 73.3750, respectively.
For the worst final fitness value, the performance gap
between the CSO and PSO-G is 1.75, and the perform-
ance gap between the ECSO and PSO-G is 2.375. For
another, it can be observed that the ECSO-based ap-
proach always achieve the best optimization results in all
instances. Take K128 for instance, for the mean final fit-
ness value, compared with PSO-G and CSO, the im-
provements of the proposed ECSO are 4 and 0.9562,
respectively. For the best final fitness value, the improve-
ments are 4 and 1.732, respectively. In addition, the
standard deviations are compared. Although the super-
iority of ECSO is not obvious, its standard deviations are
still within an acceptable scope.
Table 8 lists the best degree distributions obtained by

the ECSO-based approach. A common phenomenon
about the distributions of degree values can be found:
lower degrees possess bigger probabilities. The probability
of degree (D = 1) is the biggest and that of degree (D = 2)
is the second biggest. Besides, the sum of two probabilities
is more than 0.5, which guarantees the success of decod-
ing and is in accordance with the characteristic of typical
degree distributions such as ISD and RSD.
Figure 2 shows the merit of the proposed ECSO-based

approach in terms of aggressive nature, in which the
curves are averaged by the statistical data of 40 runs. It
can be observed that both the convergence rate and
optimization precision of ECSO are better than those of
PSO-G and CSO. In addition, during the optimization

process, the ECSO-based approach can always take the
leads with the lowest fitness values when the iteration
exceeds 10. For K32, the fitness value of ECSO quickly
drops down to 38.0941 when the iteration increases to
20, whereas the fitness values of PSO-G and CSO are
39.4872 and 38.6013, respectively. As the iteration rises
to 40, the convergence rates of the three approaches be-
come to slow down, but the performance of the ECSO is
still the best. For K128, the fitness value of ECSO
quickly falls rapidly to 147.1244 when the iteration in-
creases to 30, whereas the fitness values of PSO-G and
CSO are 152.3841 and 148.8773, respectively. Though
the gap between ECSO and CSO is smaller, the gap be-
tween ECSO and PSO-G is still considerable. Greater
improvement can be expected when the k rises to thou-
sands, which is very meaningful to the practical applica-
tions of short-length LT codes.

6 Conclusion
Recognizing the design of degree distribution is critical
to the DFC-based cooperative communication schemes;
this paper proposes an ECSO-based approach for opti-
mizing degree distributions of short-length LT codes.
Firstly, we establish an optimization framework for the
problem on the basis of sparse degree distributions. The
search space dimension is reduced to D with dmax = 2D

and the average number of encoded symbols required is
chosen to calculate the objective fitness value. Secondly,
an enhanced CSO algorithm, termed as ECSO, is de-
signed for the problem, in which three strategies, SIB,
RCE, and IDE, are suggested to enhance the ability of

Table 5 Comparison of the optimization solutions with three
algorithms for solving K32

Algorithm Standard
deviation

Mean Best Worst

f f f Overhead f Overhead

PSO-G 0.4129 38.3575 37.8000 0.1813 39.8000 0.2438

CSO 0.3382 37.6063 36.6250 0.1445 38.3750 0.1992

ECSO 0.3477 37.4281 36.5000 0.1406 38.0000 0.1875

Table 6 Comparison of the optimization solutions with three
algorithms for solving K64

Algorithm Standard
deviation

Mean Best Worst

f f f Overhead f Overhead

PSO-G 0.8183 74.6711 70.2235 0.0972 77.3750 0.2090

CSO 0.7815 74.0125 69.1326 0.0802 75.6250 0.1816

ECSO 0.7602 73.3750 68.0000 0.0625 75.0000 0.1719

Table 7 Comparison of the optimization solutions with three
algorithms for solving K128

Algorithm Standard
deviation

Mean Best Worst

f f f Overhead f Overhead

PSO-G 1.9759 149.0875 145.0000 0.1328 153.0000 0.1953

CSO 1.3793 146.0437 142.7320 0.1151 148.7500 0.1621

ECSO 1.4517 145.0875 141.0000 0.1016 147.2500 0.1504

Table 8 Optimal degree distributions obtained from the
ECSO-based approach for solving K32, K64, and K128

d k = 32 k = 64 k = 128

1 0.1826 0.0835 0.0824

2 0.3754 0.6660 0.4676

4 0.2886 0.0822 0.2673

8 0.0817 0.0596 0.0430

16 0.0717 0.0801 0.0667

32 – 0.0286 0.0423

64 – – 0.0307
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optimization. Thirdly, an ECSO-based approach is de-
scribed in detail. Simulation results demonstrate the ef-
fectiveness of the three strategies and show that the
ECSO-based approach outperforms the PSO-G-based
approach and CSO-based approach in terms of
optimization efficiency and convergence rate. For the fu-
ture work, our research will focus on optimizing degree
distribution for unequal error protection (UEP) applica-
tion of DFC-based cooperative communication schemes,
by employing novel SI algorithms.
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