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Abstract

Massive multiple input multiple output (MIMO) has drawn intensive attention of researchers for solving huge data
transmissions in the fifth generation wireless communication. Antennas aligning in array bring in advantages for
interference reduction of incoming wave signals and interference offset among antenna elements. The design of
antenna array is studied in this paper. The design is turned into a maximization problem. A contraction adaptive
particle swarm optimization (CAPSO) method is proposed to solve the problem. Different from previous methods,
CAPSO is based on a contraction factor which limits the variation neighborhood during the solution searching
process. The adaptive technique can tune the searching range of CAPSO. Simulations are reported comparing the
CAPSO method with other methods. Convergence rate is analyzed through two toy functions. CAPSO shows a fast
convergence property. Then it is used to solve antenna array design. The CAPSO method shows good performance
for different numbers of array elements.
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1 Introduction
Massive multiple input multiple output (MIMO) is a hot
topic for providing good quality of service (QoS) in the
fifth generation (5G) wireless mobile communication [1].
Not only data transmission efficiency but also transmis-
sion reliability and privacy security have to be considered
to assure good QoS [2, 3]. Moreover, new communication
technology is also welcome such as cooperative commu-
nication, heterogeneous network, and compressive sen-
sor network [4–6]. Among different network structures,
resource allocation, network efficiency, throughput, and
other aspects need to be studied as soon as possible [7, 8].
Antenna is essential in physical layer communication to

assure data transmission in 5G wireless communication
[9]. Antenna array is even more useful due to high gain
and reliability of arranging many elements [10]. Optimal
antenna design methods can be classified to deterministic
methods and heuristic methods. Deterministic methods
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often converge very quickly but requiring prior knowl-
edge of geometric structure of antennas [11–13]. To solve
difficult design models, relaxation techniques are gener-
ally utilized to reduce the complexity of models [14–16].
Parallel computing, matrix decomposition, and other
methods are also utilized to speed up the convergence rate
for deterministic methods [17–21].
Heuristic algorithms for antenna design include genetic

algorithm (GA) [22], particle swarm optimization (PSO)
[23], differential evolution [24, 25], and neighborhood
field optimization [26]. Recently, improved heuristic algo-
rithms have been used to design wireless communication
network designs, power allocation, and antennas [27, 28].
PSO has been studied and applied to many differ-

ent problems in the real world [29]. Since its creation,
standard PSO has been improved from many aspects
including parameter control, search equation, and neigh-
borhood network structure. This paper attempts to tune
algorithmic parameters based on contraction and acceler-
ating factors.
The above is discussed for the purpose of the paper.

There are two contributions in the paper. The first is
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the improved parameter adaptation based on contrac-
tion, which improves the form of the iterative formula for
the PSO algorithm. Another one is the convergence rate
analysis and application to antenna design with different
numbers of antenna elements.
Section 3 briefly introduces the antenna design prob-

lem and related works. Section 4 introduces standard PSO
and the proposed contraction adaptive particle swarm
optimization (CAPSO) algorithms. Section 6 reports sim-
ulation results compared with other methods, and the
paper is concluded in Section 7.

2 Method and experiment
The study of the paper is to effectively solve antenna
array designs. The study is accomplished by two parts.
First, antenna array designs are expressed as an opti-
mization problem. The problem model contains the main
factors in antenna array designs. Second, a contraction
adaptive particle swarm optimization algorithm is used
to solve the problem model. The efficiency of the algo-
rithm should be analyzed to assure the problem model
being effectively solved. Comparisons are made by taking
three algorithms which are of the same type as the pro-
posed CAPSO algorithm. Comparison results show that
the CAPSO algorithm is more efficient than other algo-
rithms. Then, it is used to solve antenna array designs.
The experiment is based on numerical simulations. To
verify the effectiveness of the proposed method, designs
are modeled as easy to use and scalable type. The analysis
shows that the proposed method is useful and effective to
solve antenna array designs.

3 The design of antenna array and related works
Formore than a century, especially after the SecondWorld
War, antenna theory, design, and application have been
rapidly developed. Antenna array is an important type
of antenna [30]. An antenna system consisting of two
or more discrete antennas is called an antenna array.
There are many kinds of antenna arrays, according to the
arrangement of elements, wired array, and plane array
[31, 32].
A linear array is an antenna array consisting of a plural-

ity of units separated from each other and centered on a
line [33]. A linear array is divided into uniform linear array
and non-uniform linear array: uniform linear array means
the equal distance between the adjacent antenna unit and
the constant incentive phase difference between adjacent
units, that is to say each unit is a linear array excited by
the law of equality. Non-uniform linear array refers to that
the distance between the adjacent antenna elements is not
equal, and each element is a linear array inspired by the
law of non-synchronous progressive phase.
Let us consider the design of the linear antenna array.

The array consists of many elements aligning to a line

shape. Previously, array elements were assumed to be dis-
tributed with equal distance. This arrangement simplifies
the geometric structure and saves computation. On the
other hand, recent researches show that unequal distance
distribution is apt to provide better QoS. Thus, an unequal
distance distribution structure is considered in the paper.
The design model is:

max f =
∣
∣
∣
E(u)
PM

∣
∣
∣

s.t. E(u) =
G∑

i=1
Iiejϕi ejkuxidi

u = cos θ − cos θ0
di − dk ≥ dc, 1 ≤ k < i ≤ G,
dc > 0

, (1)

where k = 2π/λ, λ is the wavelength, G is the number of
array elements, and PM is the peak value of the main lobe
of antenna array. θ0 is the incoming direction of the main
beam. dc is the minimum distance between two succes-
sive elements. Ii and ϕi are the amplitude of excitation and
phase, respectively.
In model (1), di could be any real numbers such that

di − di−1 ≥ dc and di+1 − di ≥ dc. Moreover, Ii and ϕi are
also variables to be defined by users. These can be set as
parameters in the antenna array system.

4 The CAPSOmethod
The CAPSO method is composed by four stages. They
are initialization, updating particles’ velocity and position,
solution evaluation, and updating parameters as shown in
Fig. 1. Initially, CAPSO begins with a swarm of particles,
where the number of particles is denoted as NP. In gen-
eral, each particle is a solution for model (1). Hence, the
CAPSO algorithm is initialized withNP feasible solutions,
which can be easily implemented in parallel [34].
When updating particles’ velocity and position stage,

vi (1 ≤ i ≤ NP) is updated by the following formula:

vij(t + 1) = ϕ(vij(t)) + c1r1d
p
ij(t) + c2r2d

g
ij(t) , (2)

where index i refers to the ith solution and j refers to
the jth variable of the ith solution, t is the iteration num-
ber. Parameter ϕ is called contraction factor controlling
the velocities of particles. Parameters c1 and c2 are called
accelerating factor, which have to be set by users. Num-
bers r1 and r2 are two random numbers between 0 and 1,
which are generated at each iteration. dpij is:

dpij(t) = pij(t) − xij(t) , (3)

where pij refers to the best personal solution found by
particle i. dgij is:

dgij(t) = gj(t) − xij(t) , (4)
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Fig. 1 Flow chart of the CAPSO method

where gj refers to the best solution found by all particles.
Finally, new solution is produced by:

xij(t + 1) = xij(t) + vij(t + 1) , (5)

It can be seen from (2), ϕ, c1 and c2 are algorithmic
parameters as well as NP.

ϕ is called contraction factor controlling the velocities of
particles. c1 and c2 control the extent that particle i flying
toward local best solution or global best solution. These
three parameters are adapted as follows:

c1 = cmax
1 +

(

cmax
1 − cmin

1
) × t

tmax , (6)

where cmax
1 and cmin

1 are respectively the maximal and
minimal vales for c1. tmax is the maximal number of
iterations. Similarly, c2 is adapted:

c2 = cmax
2 +

(

cmax
2 − cmin

2
) × t

tmax , (7)

ϕ is adapted:

ϕ = 2
∣
∣
∣2 − (c1 + c2) − √

(c1 + c2)2 − 4(c1 + c2)
∣
∣
∣

, (8)

The adaptive formula of ϕ is previously studied in [35].
In the CAPSO method, parameters ϕ, c1 and c2 are all

adapted based on (6), (7), and (8). c1 and c2 are based on
the iteration process of the method. Their values gradu-
ally decrease from cmax

i to cmin
i (i = 1, 2). Based on (8), ϕ

also decreases along with iteration. Note that c1 + c2 ≥ 4
is required to fulfill the root operation. Thus, the CAPSO
method performs a large search step size in the former
iteration process, while performing small search step size
in the later iteration process. The procedures of CAPSO
are identical to the philosophy of heuristic methods
[36, 37].

5 Numerical experiment settings
The CAPSO method will be studied on toy functions and
then applied to solve antenna array designs in this section.
The following toy functions are used:

(1) f1(x) = −100
(

x21 − x22
) − (

1 − x21
)

;
(2) f2(x) = − (

4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + x42
)

;

Both functions are unconstrainedmaximization problems
with two independent variables, which can take any real
numbers. The CAPSO method is independently tested 25
times on each function with tmax = 10, 000.
In the simulation of antenna array designs, excitation

amplitude Ii and phase ϕi for element i are set to constant.
di between adjacent elements are independent variables
and computed based on distance of adjacent elements.
The length of array L is set to Nλ. Hence, with different
numbers of elements G, L is automatically changed. The
design problem is then scalable and can be tested with any
number of array elements.

6 Results and discussion
Let us first study the convergence rate of the CAPSO
method. Standard PSO [35], IPSO [37], and APSO [35]
are used for comparison. In the simulation, NP is set to
40 following [35]. The results are presented in Table 1.
This table gives the average number of iterations that a
method finds global optimal solution with threshold 10−8.
In terms of the mean number of iterations, the CAPSO
method converges to global optimum faster than the other
methods. In terms of standard deviation (std), the CAPSO
method has larger std than standard PSO on both func-
tions. The std of CAPSO is also larger than that of IPSO
and APSO for f1, but the std of CAPSO is much smaller
than that of IPSO and APSO for f2. The last column of
Table 1 gives the hypothesis test of CAPSO versus PSO,
IPSO, and APSO. The p values less than 0.05 means a sig-
nificant difference between two methods. It can be seen
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Table 1 Result comparison of the CAPSO method versus
standard PSO, IPSO, and APSO methods

Method f (·) Mean std p

PSO f1 1099.20 434.68 2.16E−7

f2 4033.60 32.00 7.31E−6

IPSO f1 908.80 222.27 2.37E−7

f2 3072.00 448.85 1.15E−7

APSO f1 939.20 210.12 2.36E−7

f2 3172.80 446.58 1.20E−7

CAPSO f1 449.60 553.93 N/A

f2 2004.80 46.64 N/A

Hypothesis test decides significant difference of results of two methods and is
shown in the p column. N/A means the data is not available

that CAPSO is significantly better than the other three
methods.
Parameter NP is not very sensitive to problem types.

For PSO and its improved methods, NP is often set to
40, though some researches used 30 or 50 for large-scale
problems. In this paper, six NP values ranging from 10
to 60 are tested. The results on f1 and f2 are presented
in Fig. 2. The function values are normalized to clearly
present the results. It can be seen from the figure that
NP = 30 or NP = 40 are much better than other

values. Moreover, NP = 30 gives the best results on
both functions. Hence, the default setting of CAPSO is
NP = 30, which will be used to solve the antenna array
design.
In the simulation of antenna array designs, tmax =

1000G and the CAPSO method is executed 25 times to
gain an average performance. Figures 3, 4, and 5 respec-
tively show the best execution of 25 times for G = 10,
G = 30, and G = 50.
Figure 3 shows a far field pattern associated with the

optimal solution when G = 10. It can be seen from the
figure that the main lobe is about 10 dB better than the
nearest side lobe. Moreover, the range of the main lobe
is about 5° around θ0 = 90◦. Thus, the attained antenna
array G = 10 is a wide-band case.
Figure 4 shows a far field pattern associated with the

optimal solution when G = 30. It can be seen from
the figure that the main lobe is about 14 dB better than
the nearest side lobe. Moreover, the range of main lobe is
about 2° around θ0 = 90◦. Thus, the attained arrayG = 30
is narrower than the array G = 10.
Figure 5 shows a far field pattern associated with the

optimal solution when G = 50. It can be seen from the
figure that the main lobe is about 16.5 dB better than
the nearest side lobe. Moreover, the range of main lobe is
about 2° around θ0 = 90◦. Thus, the attained arrayG = 50

Fig. 2 Performance of the CAPSO method with NP = 10, 20, 30, 40, 50, and 60 for f1 and f2
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Fig. 3 Optimal result obtained by the CAPSO method for G = 10

Fig. 4 Optimal result obtained by the CAPSO method for G = 30
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Fig. 5 Optimal result obtained by the CAPSO method for G = 50

is similar as the array G = 30, but is narrower than the
array G = 10.
From the above simulation, it can be seen that the gain

of antenna array increases with the number of elements.
However, the band width decreases with the number of
elements from 10 to 30 array elements. The band width
does not decrease with array elements from 30 to 50.
Because the tested antenna array problem scales from 10
to 50 array elements, the results show that our method is
suitable to such designs.

7 Conclusion
Radio waves are widely used in communication, broad-
casting, target detection, navigation, and other fields. The
transmission and reception of radio waves depend on
antennas.
This paper focuses on how to optimize the positions

of antenna array elements so as to maximize the perfor-
mance of antenna in transmitting and receiving data. The
far field pattern and side lobe level value are main met-
rics of the performance of antenna array. The proposed
CAPSOmethod is based on contraction factor adaptation.
Accelerating factors are also adapted.
A numerical experiment is tested on two toy functions

for analyzing the convergence rate of the CAPSOmethod.
Compared with three other methods, CAPSO can
achieve good convergence performance. The simulation
on antenna array shows that the CAPSO method is able

to find good solution, though when the number of ele-
ments becomes large, the band width decreases. The band
width does not decrease too much from 30 elements to
50 elements. Because the tested antenna array problem is
scalable, the results show that our method is suitable to
such designs.
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