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Abstract

With the integration of the modern industrial control systems (ICS) with the Internet technology, ICS can make full
use of the rich resources on the Internet to facilitate remote process control. However, every coin has two sides. More
exposure to the outside IT world has made ICS an attractive target for hackers, so it becomes urgent to protect the
security of ICS. Skilled attackers can penetrate control networks and then manipulate sensor readings or control signals
persistently until the system crashes, while still keeping themselves undetected by following the expected behavior of
the system closely. This kind of attacks are referred to as stealthy attacks. As far as we know, many existing intrusion
detection techniques only investigate the magnitudes of behavior residuals, so they cannot detect this kind of
stealthy attacks. In this paper, we discover that residuals generated during stealthy attacks exhibit significant skewness
compared to attack-free residuals. Based on the new observation, we propose an effective and fast technique to
detect stealthy attacks against ICS based on residual skewness analysis. Skewness coefficients can distinguish the
counterfeited residuals from the attack-free residuals effectively. A larger absolute value of the skewness coefficient
generally indicates the occurrence of a more intense stealthy attack. Finally, we conduct comprehensive experiments

to verify the effectiveness and efficiency of the proposed stealthy attack detection approach.
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1 Introduction

Nowadays, industrial control systems (ICS) [1] play a very
important role in national critical infrastructures, such
as smart grids [2—4], water treatment systems [5], chem-
ical processing plants [6], oil and natural gas pipelines
[7], or large-scale communication systems [8]. With the
rapid development of Internet technology (IT), ICS are
also strengthening the connectivity to the Internet so as
to make full use of the rich resources on the Internet to
support remote process control and intelligent decision-
making. However, the growing openness of ICS has made
them an attractive target for malicious attackers [9, 10].
In 2010, the notorious cyber worm “Stuxnet” infected
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the core control program of the Natanz uranium enrich-
ment base in Iran and misled the centrifuge that produces
enriched uranium into accelerating unconventionally, and
finally caused a severe damage to the centrifuge and the
whole nuclear plant was forced to stop. In 2015, the
“BlackEnergy3” attacked the Ukrainian power grid. The
counterfeited control instructions of relays caused abnor-
mal circuit disconnections, immediately followed by a
large-scale blackout. At Black Hat 2017 [11], Dr. Staggs
stated that the wind farm vendor design and implementa-
tion flaws left the wind turbine programmable automation
controllers and OPC (OLE for process control) servers
vulnerable to attacks. Additionally, they designed attack
tools to exploit wind farm control network design and
implementation vulnerabilities. So many ICS security
incidents indicate that the security of ICS has become an
urgent international issue [12, 13].

Intrusion detection systems (IDS) [14, 15] provide an
effective solution to identify malicious attacks against
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traditional information systems by analyzing network pro-
tocols and traffic data. However, when applying IDS to
ICS, the real-time process data is another important fac-
tor to consider [16]. The evolution of an industrial process
generally follows fundamental laws of nature, which is
a distinct feature of ICS. Attackers usually attempt to
cause fatal physical damages to ICS by manipulating pro-
cess data (e.g., sensor readings [17, 18] or control signals
[19, 20]) maliciously. Therefore, by monitoring and ana-
lyzing the “physics” of ICS, we can detect a wide variety
of intrusions. IDS generally construct a physical model
for the target control system, based on which to fore-
cast its expected behaviors. Once the monitored behaviors
deviate from the expected values significantly, an alarm is
raised.

However, in recent years, Liu et al. [18] discovered
a new kind of stealthy attacks against ICS, which can
bypass existing intrusion detection schemes. As we
all know, the dynamic behavior of a control system
generally does not change significantly within a short
time period due to physical constraints. Therefore, the
attacker can make the observed behavior of a system
follow its expected behavior closely during a stealthy
attack, but still inject enough false information into the
system after a long period of time [16], and finally
cause a fatal damage to the target system. Since then,
stealthy attacks against ICS have attracted much attention
[21, 22]. Previously, we proposed a detection approach
against stealthy attacks based on residual permutation
entropy [23].

In this paper, we propose an effective and much faster
stealthy attack detection technique based on residual
skewness analysis of system behaviors, which is more suit-
able for the real-time requirement of industrial control
systems. Counterfeited residuals generally conform to a
skewed distribution, which is different from a normal dis-
tribution, if the intruder intends to achieve specific attack
goals. The values of the residual skewness coefficient can
effectively distinguish a residual sequence generated dur-
ing a stealthy attack from an attack-free residual sequence.
Accordingly, stealthy attacks can be identified success-
fully. We launch stealthy attacks on two simulated ICS
and verify the effectiveness of the proposed stealthy attack
detection technique. The key contributions of this work
are summarized as follows:

e We investigate the prediction residuals of system
behaviors under stealthy attacks and discover that the
residual distribution exhibits a significant degree of
skewness compared to a normal distribution.

e We make full use of the skewness contained in the
prediction residuals and propose a novel detection
technique against stealthy attacks based on residual
skewness analysis.
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e Comprehensive experiments are conducted on
simulated ICS to verify the effectiveness and efficiency
of the proposed stealthy attack detection approach.

The rest of the paper is organized as follows. Section 2
introduces some research literature about ICS IDS. In
Section 3, we present some preliminaries of our approach.
In Section 4, we elaborate on the novel detection tech-
nique against stealthy attacks based on residual skewness
analysis. Experiments are conducted to verify the effec-
tiveness and efficiency of the proposed stealthy attack
detection approach in Section 5. Experimental results are
discussed in Section 6. Finally, we draw a conclusion in
Section 7.

2 Related work

Due to the increasing connectivity between ICS and the
outside IT world, cyber attacks against IT systems also
endanger ICS. Traditionally, intrusion detection tech-
niques against cyber attacks are mainly divided into two
categories: misuse-based and anomaly-based. Misuse-
based intrusion detection techniques, also referred as
signature-based, rely on a precise definition of malicious
system behaviors. If system activities match the known
malicious behavior patterns, a potential attack is detected.
Anomaly-based intrusion detection techniques exploit a
definition of normal behavior and flag any visible devi-
ation from normal behavior as unintentional faults or
intentional attacks. In this section, we try to present a
new taxonomy of intrusion detection techniques on ICS.
Attacks against ICS often cause abnormal network traffics
or violate network protocol specifications. Furthermore,
due to the close correlation between ICS and physical pro-
cesses, investigating process data can also help identify
malicious intrusions against ICS. Therefore, we introduce
the research literature of ICS IDS from three aspects:
network traffic mining, network protocol analysis, and
process data analysis.

2.1 Intrusion detection based on network traffic mining
ICS have relatively fixed operation objects and business
processes, simple and static network topologies, and small
numbers of applications, which result in relatively stable
traffic patterns under normal conditions. Fluctuation of
network traffics generally indicates the status change of
ICS, which enables intrusion detection based on network
traffic mining.

Traditional IDS based on network traffic analysis [24]
generally extract information such as source and destina-
tion IP addresses and ports, traffic durations, and average
time intervals between adjacent packets, and then apply
data mining technologies to these collected information to
identify abnormal system behaviors. The commonly used
traffic mining techniques include supervised clustering
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[25], semi-supervised clustering [26], mixed Gaussian
model [27], neural network [28, 29], fuzzy logic [30-32],
single-class support vector machine [33], multi-class sup-
port vector machine [34], and deep learning [35]. The
purpose of these techniques is to establish complex non-
linear relationships between network traffics and system
behaviors. The relationships, together with the current
network traffic data, are then used to judge the security
status of a target system. However, the computation over-
head is usually high due to the large number of traffic
features. In order to improve detection efficiency, some
researchers utilized techniques like the ant colony algo-
rithm [36] and the principal component analysis method
[37] to remove redundant traffic features.

2.2 Intrusion detection based on network protocol
analysis

Protocol specifications generally define the packet for-
mats and communication modes allowed by the protocol.
Intrusion detection rules can be extracted from proto-
col specifications. Accordingly, malicious behaviors that
violate protocol specifications can be identified effec-
tively. Common open protocols in ICS include ModBus,
ICCP/TASE.2, and DNP3. These protocols are vulnerable
to a variety of network attacks such as theft, tampering,
and counterfeiting.

Cheung et al. [38] constructed a protocol specifica-
tion model based on legal values of different data fields
and legal relationships between different fields in a data
packet. Additionally, they built normal communication
patterns based on the security requirements, the data
transmission directions and transmission ports of specific
ICS. Anomalies violating the protocol specification model
or the desired communication patterns could be detected,
which belongs to anomaly-based intrusion detection tech-
niques. Morris et al. [39] used Snort (an intrusion detec-
tion software) to generate signatures for ModBus protocol
vulnerabilities. These signatures were used to examine
communication data in field networks and identify illegal
data, which is a typical misuse-based approach. Moreover,
in order to achieve rapid development, other researchers
modify the traditional IDS to make them suitable for ICS.
Lin et al. [40] integrated a packet parser of industrial con-
trol protocols (e.g., DNP3) into the famous network intru-
sion detection system Bro developed by the University of
Berkeley, to support intrusion detection in ICS.

In addition to open protocols, IDS based on propri-
etary protocols are also designed. Hong et al. [41] ana-
lyzed automatic systems in the substations of smart grids
and detected anomalies or malicious behaviors in multi-
cast messages based on the specifications extracted from
the IEC 61850 standards (e.g., Generic Object Oriented
Substation Event (GOOSE) and Sample Value technol-
ogy (SV)). Hadeli et al. [42] extracted legal and illegal
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network traffic models from the protocol specifications of
power systems and transformed them into Snort rules for
intrusion detection.

The above two categories of IDS build the first secu-
rity barrier for ICS. However, the close relationship
between ICS and the physical world makes ICS differ-
ent from traditional information systems. Therefore, the
above two categories of IDS, originally designed for tradi-
tional information systems, are difficult to identify attacks
against physical processes, which do not cause abnormal
network traffics nor violate network protocol specifica-
tions. Therefore, IDS based on process data analysis have
emerged.

2.3 Intrusion detection based on process data analysis
Process information is an important factor to consider
in ICS IDS. Attackers usually mislead the controller into
making wrong decisions [17] by tampering with process
information, and finally cause a fatal damage to ICS. Such
attacks can be detected by comparing the observed and
expected process values in real time. Once the deviation
exceeds a predefined threshold significantly, an alarm is
raised [43]. HadZziosmanovi¢ et al. [44] classified process
variables into three categories: constants, enumeration,
and continuous variables. Afterwards, a normal behavior
model was built for each process variable. During system
operation, once an observed process value deviated from
its normal behavior model, the system generated an alarm.
Carcano et al. [45] used measurement data from multiple
industrial sensors to denote system states and proposed
a state distance measurement method. Intrusions could
be identified by examining the proximity between the
current state and the critical states.

Other researchers use time series forecasting tech-
niques to predict the future outputs of ICS. The pre-
dicted outputs are compared with the monitored values
to generate residuals. Afterwards, some statistical analy-
sis techniques are performed on the residuals to identify
intrusions. If the system operates normally, the residual
sequence follows a Gaussian distribution approximately.
Once an intrusion occurs, the actual behavior of a sys-
tem deviates from its expected behavior, i.e., the residu-
als are different from O observably [46]. Cardenas et al.
[47] summarized two categories of intrusion detection
methods based on residual analysis: sequential detection
and change detection. The former aims to find intru-
sions as soon as possible, i.e., determining the shortest
residual sequence based on which IDS can make a nor-
mal/abnormal judgment. The latter detects a possible
anomaly at an unknown time point. In other words, the
system detects the transition from a normal state to an
abnormal state based on whether the residual or the accu-
mulated residual exceeds a certain threshold. The com-
monly used change detection methods can be classified
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into two categories: stateless [48] and stateful [16]. The
stateless and stateful detection methods raise alarms when
the residual and the cumulative residual at the current
time point exceed a threshold, respectively.

However, Liu et al. [18] discovered a new kind of data
injection attacks against state estimation in power grids
in 2011. This attack injects erroneous data into the sys-
tem persistently until the system crashes, but always keeps
the residual magnitudes below the detection threshold,
thus to bypass the stateless intrusion detection scheme.
This is the first stealthy attack against ICS. Since then,
stealthy attacks have emerged in a variety of industrial
control scenarios (e.g., chemical process control [47] and
industrial waste water treatment [49]). Until 2016, Urbina
et al. [16, 50] stated that existing intrusion detection
technology still cannot detect stealthy attacks effectively,
so they proposed a new method to measure the nega-
tive impacts of stealthy attacks on ICS and tried to limit
the negative impacts by configuring detection schemes
and metrics properly. Since then, some researchers have
conducted further research on stealthy attacks, but they
mainly focused on how to perform stealthy attacks on spe-
cific ICS [21] or exploring the impacts of stealthy attacks
on some more complex systems [22]. As a result, detect-
ing stealthy attacks against ICS becomes an urgent issue.
In our previous work [23], we proposed a detection tech-
nique against stealthy attacks based on the analysis of
residual permutation entropy. This technique was effec-
tive but not very fast. In this paper, we propose an effective
and much faster technique to detect stealthy attacks based
on residual skewness analysis, which utilizes the resid-
ual distribution skewness to identify abnormal system
behaviors.

3 Preliminaries

The approach proposed in this paper belongs to the cat-
egory of IDS based on process data analysis. Intrusion
detection based on process data analysis mainly includes
three steps. First, build a physical model for the tar-
get system in order to predict its expected outputs yi
in the future. Second, compute the residuals ry between
the observed outputs y; and the predicted values y; dur-
ing system operation. Third, perform statistical analysis
on the residual sequence to detect intrusions. In this
section, we introduce physical models of ICS, prediction
techniques, and intrusion detection statistics.

3.1 Physical models of ICS

Physical models generally characterize time-varying
behaviors of ICS, so a reasonable model can predict
the expected behavior of a system accurately. We can
derive physical models from first principles (e.g., New-
ton’s laws, electromagnetic laws, and fluid dynamics) or
from historical data of ICS using system identification

(2019) 2019:74 Page 4 of 14

technology. There are two commonly used models in
system identification: auto-regressive integrated moving
average (ARIMA) [51] and linear dynamical state-space
(LDS) [52]. The ARIMA model of a time series {yx} is
formalized as follows:

p q
Y= bivk—i+ Y O + €k (1)

i=1 j=1

where y; and y,_; (i = 1,2,. .., p) are the current and last
poutput values of a system, g and &x_; j = 1,2,...,4q) are
the current and last g prediction errors, which are Gaus-
sian noises with a zero mean and a non-zero variance, ¢;
and 6; are model parameters, which should be estimated
from the time series {yx} [53].

ARIMA models just build relationships between system
outputs, but cannot relate system inputs to system out-
puts. If both the control signals (inputs) and the sensor
readings (outputs) are available, we can construct the LDS
model as follows:

X1 = Axy + Buy 4+ Key, 2)

¥ = Cxr + Duy + ey, (3)

where A, B, C, D, and K are system matrices character-
izing the dynamics of a physical system, and &; and e
are process and sensor noises following Gaussian distribu-
tions. D is generally equal to 0 owing to the strict causality
of most physical systems. The LDS model indicates that
the next state x4y, € R” of a system is determined by
the current state x; € R” and the current control signal
u; € RP. Additionally, as shown in Eq. (3), the expected
output y, € R of the system is a linear combination of
system states x.

3.2 Kalman filtering for process forecasting
Kalman filtering (KF) [54] is a well-known technique to
forecast the future behavior of a LDS model. The KF algo-
rithm performs two operations recursively: prediction and
update. The prediction step projects forward the current
posteriori state to the next priori state, along with uncer-
tainties. Once the system output (inevitably corrupted
with some errors and noises) of the next step is measured,
the update step computes the posteriori state of the next
step as a weighted average of its priori estimate and the
sensor measurement. A greater weight is assigned to a
priori state estimate with higher certainty.

We respectively use x; and xy to denote the priori and
posteriori states at step k before and after the k-th system
output y, is observed. The prediction step is denoted by:

% = Axg + Buy, (4)

p-

i1 = AP AT + KQKT, (5)
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where P, and Py denote the priori and posteriori
covariance matrices of prediction errors at step k + 1 and
k, respectively, and Q; is the covariance matrix of the pro-
cess noise ey at step k. Accordingly, KF predicts the next
expected output y;,; of the system as follows:

Yir1 = Cxpiye (6)

Once the next system output y; , ; is measured, the update
step is performed as follows:

-1
KLy =P, ,C" [P CT+ R ()
X1 = Xy, + KALyq [J’k+1 - Cx/:ﬂ] ’ (8)
Py =[1 - KALi;1 C1 Py, , )

where I is the identity matrix, Ry denotes the covari-
ance matrix of the measurement noise e, the Kalman
gain matrix KALy; is estimated by minimizing Pj,;.
Py, in Eq. (9) is the consequent minimized posteriori
covariance matrix. As shown in Eq. (8), the posteriori
state x¢41 is computed as a weighted average of the pri-
ori state estimate x;_; and the deviation between the
new sensor measurement y;,; and its forecast Cx1:+1'
KALj,, determines how much the new sensor measure-
ment contributes to the posteriori state estimation. If the
past prediction is with higher certainty (i.e., Py smaller
and accordingly P, , smaller), the contribution of the
new sensor measurement y;_; should be less (KALy;
smaller).

3.3 Detection statistics

After building the physical model for the target control
system and performing the process forecasting procedure,
IDS perform statistical analysis on the forecasting resid-
uals to detect potential attacks. Generally, there are two
kinds of residual testing techniques: stateless and stateful

[50].
The stateless test raises an alarm for each observable
deviation, i.e., [yx — x| = |rx| = n1 (k > 0), where y
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and Ji are the measured system output and its forecast
at step k, and 1 is a pre-defined detection threshold. In
the stateful test, the change (no matter how small) of r
is tracked using another statistic Sx. The non-parametric
CUmulative SUM (CUSUM) is one of the most popular
stateful detection statistic. It is a variable defined recur-
sively as S = 0 and Sgy1 = (Sx + |rx| — &)™, where
(x)* denotes max (0, x), and § is a small positive value used
to keep Sy from increasing persistently when the system
operates normally. Once Sj exceeds the detection thresh-
old 7 (t is defined based on a tolerable false alarm rate),
in other words, there exists a persistent deviation across
multiple time steps, an alarm is generated and Sy 1 is reset
to 0 when the detection procedure restarts. The intru-
sion detection procedure based on process data analysis is
summarized in Fig. 1.

4 Detecting stealthy attacks

In this section, we present the novel detection approach
against stealthy attacks based on residual skewness anal-
ysis. We first take a water level control system as an
example to describe the stealthy attack model. Then, we
present the detection strategies against stealthy attacks.

4.1 The stealthy attack model

We take a water level control system as a motivating exam-
ple to describe the stealthy attack model against ICS. The
architecture of the system is shown in Fig. 2. The water
level in the tank should be maintained below 0.8 m (the
high level) and above 0.2 m (the low level) by turning on or
off the inlet and outlet pumps at proper moments. Water
spill occurs at 1.1 m.

Suppose that each pump has only two states: on and off.
A water level sensor is used to monitor the water level in
the tank and transmits measurement data to the controller
(PLC). The PLC generates appropriate control commands
according to the real-time sensor measurements. For sim-
plicity, the outlet pump is assumed to keep working when
the system operates normally. As a result, only the inlet
pump needs to be controlled to maintain the water level in

Intrusion Detection

yk_l_r Physical Models | ¥,
: of ICS: >

> Residual Generation

He= Ve~

Intrusion
Detection:
Stateless or

Stateful

u, —»{ LDS or ARIMA

Fig. 1 Intrusion detection based on process data analysis
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Fig. 2 A water level control system
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the tank. Moreover, we assume that the amount of water
coming in is greater than the amount of water going out
per unit time while the two pumps are both working.
The inlet pump should be turned off once the water level
exceeds the high level, and should be turned on again once
the water level goes down below the low level.

We assume that the adversary is able to gain knowl-
edge of the physical model of the target ICS, the process
forecasting and intrusion detection techniques, and can
tamper with the sensor measurements secretly. Thus the
adversary can launch a successful stealthy attack. The
physical model of the system can be derived from the mass
balance equation, which relates the water level /1 with the
volume of water coming in Q™™ and the volume of water
going out Q°" per unit time as follows:

Area% = Q" — QOu, (10)

det
where Area denotes the cross-sectional area of the tank,
and Q™ and Q°“ are positive constants when the two
pumps are both working, and zero otherwise. Assuming
that the discrete time interval is 1 s, the LDS model is
derived as follows:

i t
Q- Q"

11
Area (1)

hgy1 = hi +
where /i1 and /iy are the water heights at step k + 1
and &, and Q}(“ — Qz‘“ is the control input at step k. In
this example, we assume that Ql‘:’” keeps constant when
the system operates normally and Q}* changes over time
according to the control instructions issued by the con-
troller. As a result, this equation is not an ARIMA model
but a LDS model with xx = h, up = [Q), Q2™] T'B=
],A =1l,andC = 1.

[ 1 1
Area’ Area

The adversary attempts to manipulate the water level in
the tank maliciously by tampering with the sensor mea-
surements persistently but remain undetected until water
spill occurs. Specially, during a surge stealthy attack [47],
the goal of the adversary is to cause maximum damage to
the system as quickly as possible. Suppose that the stateful
test is adopted by IDS due to its stronger detection ability
compared to the stateless test. Once the detection thresh-
old 7 is reached, the stateful statistic Sy should stay at the
threshold until the water overflows. Otherwise, the attack
can be easily identified by IDS. Accordingly, the adversary
needs to solve the following equation:

Sk + IJ’Z -l =8=r1, (12)

where y¢ and ji denote the observed and forecasted water
levels during a stealthy attack, respectively. By solving
this equation, the adversary can get the following attack

model:
=@ +8), k=1
y;l_{jlk—S, k>1

The model means that the fake water levels that are
lower than their forecasts should be sent to the PLC per-
sistently until the water spill occurs. In the first step of
the attack, the residual between the fake water level and
its forecast is — (7 + §). In the following steps, the resid-
uals should be kept at —§. In another word, the adver-
sary should increase the observed water levels at a lower
rate than the forecasts. The attack goal is achieved when
the controller receives a high water-level measurement
from the sensor and issues a “turn-off” control command
to the inlet pump, but the deviation (A) between the
observed sensor measurement and the real water level
exceeds overflow-high. Figure 3 illustrates three attacks
with different slopes from the low level to the high level.

(13)
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g. 3 Different attacks on the water level control system

According to the maximum deviations (A) caused by the
three attacks, we can draw a conclusion that only a; and a3
can make the tank overflow, and only a3 achieves a water
spill. a1 is not a successful attack since it yields a smaller
deviation A; < overflow-high.

This example verifies that the state-of-the-art stateless
or stateful statistics cannot identify this kind of stealthy
attacks, since only the residual magnitudes (|y} — k) are
investigated but the residual signs are ignored. In order to
achieve a successful stealthy attack, the adversary has to
make the residual signs follow certain regularities. In this
example, the residuals generated during a surge stealthy
attack are denoted by:

o —(t+8), k=1

Negative signs of residuals enable the adversary to
inject enough false data into the system until it crashes.
Moveover, in order to complete a successful stealthy attack
as quickly as possible, the adversary keeps the residual
magnitudes as large as possible under the premise of not
being detected. The two features make the residuals gen-
erated during a stealthy attack exhibit significant skewness
when compared to Gaussian noises. Based on the new
discovery, we propose a novel stealthy attack detection
technique based on residual skewness analysis.

(14)

4.2 Detecting Stealthy Attacks Based on Residual
Skewness Analysis

The proposed stealthy attack detection approach mainly

includes three steps as follows:

(1) Estimate parameters of the normal residual distri-
bution. Suppose that the attack-free forecasting residuals
follow a normal distribution. A priori residual distribu-
tion is helpful to stealthy attack detection. Therefore, we
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first collect a series of attack-free residuals by operat-
ing the target ICS in “air-gapped” separation for a period
of time and then estimate the two parameters (mean u
and variance o'2) of the normal residual distribution using
the maximum likelihood estimation (MLE) method as
follows:

1
M=x=7le’) (15)
n i=1
1 n
ol ==Y (%—%7 (16)
n
i=1

where x; is the ith value of the attack-free residual
sequence, and X denotes the mean value.

(2) Compute the skewness coefficients of the residu-
als to be tested. During the stealthy attack detection, we
first generate an artificial random sequence ryynq follow-
ing the normal distribution estimated above (i.e., #rang ~
N (i, 52)). After that, we replace a small proportion of
entries in the original residual sequence r, to be tested
with rrand and generate a new sequence rest for testing.
Here, we define an new operator & to denote the sequence
replacement operation as follows:

(17)

where L(rrand)/L(r,) =~ 6, and L(-) denotes the length of
a sequence and 6 is a positive real value around 5%. The
procedure of the sequence replacement is shown in Fig. 4.
Afterwards, we compute the skewness coefficient (SC) of
the new residual sequence i as follows:

Y (i —)?

3

Ttest = Vo W Frand,

SC = (18)

Oy
where [ is the length of rieg, 7 is the ith entry in rieg, 7
and o, are the mean value and standard deviation of riest,
respectively. If the residuals are set equal to —§ or § by the
adversary during a stealthy attack, and a small portion of
residuals are replaced with normal residuals, the residual
distribution becomes right-skewed or left-skewed (i.e., the
tail is on the right or left side of the distribution), as shown
in Fig. 5. This feature can help us identify the counterfeited
residuals and further detect stealthy attacks.

(3) Detecting stealthy attacks according to the skewness
coefficients of residuals. Generally, there are two kinds of
industrial control scenarios: a larger or a smaller value of a
process variable indicates a more dangerous system state.
In the first scenario, the attacker attempts to counterfeit
negative residuals persistently. In order to eliminate the
negative residuals, the controller generates commands to
increase the value until the system crashes. However, in
this case, the skewness coefficient of the observed resid-
uals is greater than 0, since the residual distribution is
right-skewed as shown in Fig. 5a, indicating the occur-
rence of a stealthy attack. The second scenario is just the
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&

Fig. 4 The sequence replacement procedure

opposite. The attacker tries to counterfeit positive resid-
uals, making the real value of the target process variable
decrease over time until the system crashes. In this sce-
nario, the skewness coefficient of the observed residuals is
negative, since the residual distribution is left-skewed as
illustrated in Fig. 5b.

Therefore, we should fully understand the characteris-
tics of the target ICS before intrusion detection, i.e., which
scenario the system belongs to. During attack detection,
the skewness coefficients of residuals are computed and
investigated over time. If the sign of the skewness effi-
cient conforms to the current control scenario and its
absolute value exceeds a predefined positive threshold
€ (i.e, |SC| > ¢€), a stealthy attack is detected and
an alarm is raised. For simplicity, we can only investi-
gate the absolute value of the skewness coefficient for
attack detection. However, its sign can help the system
operator better understand the adversary’s intentions and
then make appropriate strategies for system recovery. The
entire procedure of the Detecting Stealthy Attacks based
on Residual Skewness Analysis algorithm, or “DSARSA”
for short, is summarized in Algorithm 1.

In this algorithm, lines 1 and 2 estimate the state-
space model and the normal distribution parameters of
the attack-free residuals. Line 3 defines a counter used in
attack detection. Lines 4 to 26 perform the stealthy attack
detection procedure. Lines 5 to 7 present the prediction
procedure of Kalman Filtering, and the updating proce-
dure of Kalman Filtering is described by Lines 22 to 24.
Lines 8 and 9 compute the current forecasting residual.
The skewness coefficient of the residual sequence to be
tested is computed by lines 10 to 21. If the absolute value
of the skewness coefficient exceeds the detection thresh-
old ¢, the detection procedure is terminated, and a flag F
indicating the occurrence of a stealthy attack is returned

by the algorithm and triggers an alarm(lines 17 to 20, 27).
Once the alarm is handled properly and the system goes
back to safety, the detection procedure restarts.

5 Experimental

In this section, we study the effectiveness of the stealthy
attack detection approach based on residual skewness
analysis by conducting experiments in a Matlab-Simulink
environment.

A water level control system and a water’s pH value con-
trol system are simulated in our experiment. Both of them
are typical ICS as discussed in [16]. Note that the pro-
posed approach can apply to a variety of ICS in addition
to the two experimental systems as long as the state-space
model of the system can be constructed.

The first system has been discussed as a motivating
example in Section 4.1. The dynamics of the water level
in the tank can be described by a well-known LDS model
derived from the mass balance equation. For simplicity, we
assume that the cross-sectional area of the tank is 1 m2,
and the outlet pump keeps working when the system oper-
ates normally. The inlet pump should be turned off when
the water level exceeds 0.8 m and be turned on again when
the water level drops below 0.2 m. Water spill occurs at
1.1 m.

The water’s pH value control system is a more complex
non-linear system as presented in [16]. The HCI dosage
determines the pH value of the water. The HCl pump
starts to dose HCl into the water if the pH value exceeds
7.05, and the pump is turned off if the pH value drops
below 6.95. Figure 6 depicts the actions (ON/OFF) of the
HCI pump and the water’s pH values responding to it. The
time-delay feature of the system causes the wide oscil-
lations of the pH response curve. The nonlinearity and
high latency make it difficult to drive a LDS model from
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Algorithm 1: DSARSA Algorithm

Input: attack-free residual sequence r, detection
threshold ¢, length / of the residual sequence
to be tested, ratio 6 of residuals to be
replaced, initial parameters xg, Py, Qg and Rg

Output: detection result F

1 Estimate the system state-space model (4, B, K, C

and D);

2 Estimate the normal distribution parameters p and

o? of the attack-free residuals r;

3 k<« 1;
4 while true do
5 * < Axp_1 + Bug_y;
P, <« AP AT + KQ;_KT;
5//( <~ Cx;,
get the observed value of the target process
variable yg;
o Ik <Yk — Ik
10 if K > [ then

®w N

11 ro(_{rka’l)-._)rk};
12 generate a random residual sequence of

length |1 x 6] Frang ~ N (11, 02);
13 Trest < VY4 ;

- 1 k .
14 P T ikl T

1 k -
15 Oy <= \/7 Z;:k—l+1(ri - %
k —

16 SC(reest) < | Zi:kflJrl (ri — 7')3]/0;”3;
17 if |SC(rsest)| > € then
18 F < TRUE;
19 break;
20 end
21 end

2 KAL, < P, CT[CP, CT + R]};
23 xp < % + KAL [y, — Cx ];

24 Py <[I - KALC]P;

25 k<« k+1;

26 end

27 return F;

first principles. Therefore, we use system identification
techniques to build a high-order LDS model to simulate
the system dynamics approximately.

6 Results and discussion
On the two simulated ICS, we launch surge stealthy
attacks. During attack detection, we set the length of the
residual sequence for testing equal to 100 and the param-
eter 0 equal to 5%. Then, we investigate the residual
sequence {ry_g9, ..., k_1, 7k} at each step k > 100.

In the water level control system, the simulated surge
stealthy attack starts from 201 s, as illustrated in Fig. 7a.
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After that, the deviation between the sensor reading and
the real water level in the tank increases persistently until
the water spill occurs at 286 s. Figure 7b shows the resid-
uals between the forecasted and measured water levels.
It can be seen from Fig. 7c that the skewness coefficient
curve stays close to 0 from 1 s to 200 s, but starts to rise
significantly after 200 s, indicating the occurrence of the
stealthy attack. Additionally, the positive skewness coef-
ficients indicate a right-skewed residual distribution. In
other words, there is a small number of large values in
the right-hand tail of the distribution, which comes from
the artificial random sequence ryanq, and a large num-
ber of small values in the left hand, which comes from
the original residual sequence r, for testing. As a result,
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Fig. 6 The relationship between the water’s pH value and the actions
of the HCl pump

we can draw a conclusion that the attacker attempts to
deceive the controller with the fake negative residuals
and mislead the controller into making opposite deci-
sions until the tank overflows. Figure 7d to f show the
intrusion process, the compromised residuals and the
detection result on the water’s pH value control system.
The stealthy attack starts from 301 s and the skewness
coefficient curve starts to decline near 301 s, which indi-
cates a left-skewed residual distribution, i.e., the tail is
in the left hand. In this scenario, the attacker tries to
counterfeit positive residuals. Accordingly, the deceived
controller keeps increasing the HCI dosage into the water
until the water container is corroded. Figure 8 shows that

(2019) 2019:74 Page 10 of 14

the counterfeited residuals fluctuate randomly in a small
range above —§ or under §, and our detection scheme
can still detect this variant of surge stealthy attacks suc-
cessfully. The experimental results indicate that the resid-
ual skewness coefficient is sensitive to the occurrence of
stealthy attacks and verify the excellent detection ability of
the proposed approach.

Additionally, skilled attackers may replace some entries
in the residual sequence with a series of random values
(e, {ri} ~ N(u,0?)), trying to bypass the intrusion
detection system. Figure 9 illustrates that the attacker
replace 10% of entries in the residual sequence with ran-
dom values. In this case, the proposed detection scheme
is still capable of identifying this kind of advanced stealthy
attacks effectively (i.e., the skewness coefficient curve
starts to rise or decline sharply from a certain time point),
although the convergent absolute values of skewness coef-
ficients are smaller than those in the above two attack
scenarios shown in Figs. 7 and 8. However, it is more diffi-
cult for the adversary to achieve his goal if the ratio of the
random values becomes higher, so we study the impacts
of the ratio of random values on the time to achieve attack
goals and the detection ability of our approach.

Figure 10a and c show the impacts of the ratio of the
random residuals on the time to achieve attack goals on
the water level control system and the water’s pH value
control system, respectively. We can see that the time to
achieve attack goals increases quickly as the ratio of the
random residuals rises, especially when the ratio exceeds
60%. Figure 10b and d show that the ratio of the ran-
dom residuals can also weaken the detection ability of
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our approach. When the ratio is less than 70%, the con-
vergent values of skewness coefficients are significantly
different from O (i.e., greater than 0 in the water level con-
trol system and less than 0 in the water’s pH value control
system). However, when the ratio reaches or exceeds 80%,
it is not easy for our detection scheme to identify the
stealthy attack. Additionally, when the ratio exceeds 80%,

the stealthy attack detection technique based on residual
permutation entropy [23] cannot work well either. There-
fore, the detection abilities of the technique proposed
and the technique proposed previously are nearly equal.
Fortunately, in this case, it takes a much longer time to
achieve the attack goals, so attackers are generally unwill-
ing to counterfeit so many random residuals during an
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Fig. 9 Detection of stealthy attacks with a certain percentage of random residuals. When stealthy attacks with a certain percentage of random
residuals in (b) and (e) are conducted on the water level control system and the pH value control system, respectively, the real water level shown in
(@) deviates significantly from the seemingly normal but compromised water level, and the real pH value shown in (d) also deviates observably from
the seemingly normal but compromised pH value. The significant changes of skewness coefficients of residuals shown in (c) and (f) indicate that the
approach proposed can identity stealthy attacks with a certain percentage of random residuals effectively
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attack. Hence, the proposed residual skewness analysis-
based technique is able to detect stealthy attacks against
ICS effectively in most cases.

It is worth noting that there exists an interesting
phenomenon in Fig. 10. It can be seen from Fig. 10b that
the skewness coefficient curve drops slightly at the begin-
ning of the stealthy attack, and then rises significantly.
This phenomenon is caused by a transition from a left-
skewed residual distribution to a right-skewed residual

distribution, since we investigate a set of time sliding
windows of residuals during intrusion detection. At the
beginning of a stealthy attack, most of the residuals in
the current sliding window are Gaussian noises and only
a small portion of counterfeited negative residuals, which
results in a left-skewed distribution, so the skewness coef-
ficient is less than 0. As time goes on, the sliding window
contains more counterfeited negative residuals and only
a small portion of gaussian noises, so the left-skewed
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Fig. 11 Detection time comparison of two different approaches, (a) the residual permutation entropy-based approach and (b) the residual
skewness analysis-based approach. The blue points are observed computing time and the red lines are fitted lines for the blue points
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distribution turns into a right-skewed distribution, and
the skewness coefficient becomes greater than 0. A sim-
ilar phenomenon occurs in the water’s pH value control
system as shown in Fig. 10d. A right-skewed distribution
turns into a left-skewed distribution.

Additionally, we study the impacts of the length of
time windows for testing on the computing time of the
detection algorithm, and compare the computing time
of the proposed approach with that of the residual per-
mutation entropy-based approach proposed in our pre-
vious work [23]. Figure 11 shows that the detection
approach proposed in this paper is about ten times faster
than the approach proposed previously. Therefore, we
can conclude that the residual skewness analysis-based
approach is more efficient and more suitable for indus-
trial control systems, which requires low latency and high
reliability [1].

7 Conclusions
In this paper, we propose an effective and efficient detec-
tion technique against stealthy attacks on ICS. This
approach makes full use of the distribution skewness
of the forecasting residuals generated during stealthy
attacks, which can effectively distinguish the counter-
feited residuals from the attack-free residuals. As a result,
the occurrence of stealthy attacks can be identified effec-
tively. Comprehensive experimental results verify the
effectiveness and efficiency of the proposed approach.
However, this method proposed in this paper still has
some shortcomings. The values of the algorithm param-
eters (e.g., the detection threshold ¢, the length / of the
residual sequence for testing, the ratio 6 of residuals to
be replaced) should be set manually. Overdependence on
human experience may weaken the detection ability of our
approach. In the future, we will try to study and model
the relationships between the algorithm parameters and
the detection performance, based on which to devise an
automatic and real-time parameter updating technique,
to accomplish the adaptive updating of the parameter
values according to the changing detection performance,
and evaluate the proposed techniques on larger industrial
control systems.
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