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Abstract

In recent years, topics related to robotics have become one of the researching fields. In the meantime, intelligent
mobile robots have great acceptance, but the control and navigation of these devices are very difficult, and the
lack of dealing with fixed obstacles and avoiding them, due to safe and secure routing, is the basic requirement of
these systems. In this paper, the modified artificial potential field (APF) method is proposed for that robot avoids
collision with fixed obstacles and reaches the target in an optimal path; using this algorithm, the robot can run to
the target in optimal environments without any problems by avoiding obstacles, and also using this algorithm,
unlike the APF algorithm, the robot does not get stuck in the local minimum. We are looking for an appropriate
cost function, with restrictions that we have, and the goal is to avoid obstacles, achieve the target, and do not stop
the robot in local minimum. The previous method, APF algorithm, has advantages, such as the use of a simple
math model, which is easy to understand and implement. However, this algorithm has many drawbacks; the major
drawback of this problem is at the local minimum and the inaccessibility of the target when the obstacles are in
the vicinity of the target. Therefore, in order to obtain a better result and to improve the shortcomings of the APF
algorithm, this algorithm needs to be improved. Here, the obstacle avoidance planning algorithm is proposed
based on the improvement of the artificial potential field algorithm to solve this local minimum problem. In the
end, simulation results are evaluated using MATLAB software. The simulation results show that the proposed
method is superior to the existing solution.
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1 Introduction
An intelligent mobile robot must reach the designated
targets at a specified time. The robot must determine
its location relative to its objectives at each step and
issue a suitable strategy to achieve its target. Informa-
tion about the environment is also needed to avoid
obstacles and design optimal routes. In general, the
objectives of this study are (1) improving the APF
algorithm in order to trace the path and avoid obsta-
cles by a mobile robot and (2) comparing the per-
formance and efficiency of the proposed algorithm
with the previous method, APF algorithm. In the real
world, it gets a lot of use. For example, we have an
automatic ship that we want to avoid collision with
obstacles and to take the best possible route for a

low cost. It is possible to detect the distance between
the robot with the target and obstacles with the help
of the sensor. However, the sensor discussion is sep-
arate from this article.
Mobile intelligent robot is a useful tool which can

lead to the target and at the same time avoid obsta-
cles facing it [1]. There are conventional methods of
obstacle avoidance such as the path planning method
[2], the navigation function method [3], and the opti-
mal regulator [4]. The first algorithm that was pro-
posed for the discussion of obstacle avoidance is the
Bug1 algorithm. This algorithm is perhaps the sim-
plest obstacle avoidance algorithm. In the first algo-
rithm, Bug1, as shown in Fig. 1, the robot completely
bypassed the first object, and then, it leaves the first
object and performs at the shortest distance from the
target. Of course, this approach is very inefficient, but
it ensures that the robot is reachable for any purpose.
In this algorithm, the current sensor readings play a
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key role. The weakness of this algorithm is the exces-
sive presence of the robot alongside the obstacle [5].
In the second algorithm, Bug2, as shown in Fig. 2, the

robot moves on the starting lineup to the target, and if it
sees the obstacle, it will round the obstacle, and when it
again reaches a point on the line between the start to
the target, it leaves an obstacle. In this algorithm, the
robot spends a lot of time moving along the obstacle,
but this time is less than the previous algorithm [5].
In the following, Mr. Khatib introduced an algorithm

called APF in 1985 [6]. This algorithm considers the
robot as a point in potential fields and then combines
stretching toward the target and repulsion of obstacles.
The final path of the output is the intended path. This
algorithm is useful given that the trajectory is obtained
by quantitative calculations. The problem is that in this
algorithm, the robot can be trapped in the local mini-
mum of potential fields and cannot find the path; hence,
in this paper, some amendments have been made to

resolve this issue, which is discussed in Section 3. Subse-
quently, in March 1991, Borenstein and Koren presented
vector histogram field algorithm (VHF) [7]. In this algo-
rithm, with the help of one of the distance sensors, a
planar map of the robot environment is prepared; in the
next step, this planar map is translated into a polar
histogram. This histogram is shown in Fig. 3, where the
x-axis represents the angles around the obstacle and
the y-axis represents the probability of an obstacle at
the desired viewing angles. In this polar map, the
peaks represent bulky objects and valleys represent
low-volume objects; valleys below the threshold are
suitable valleys for moving the robot; finally, the suit-
able valley which has a smaller distance to the target
is selected from the valleys, and the position of this
valley determines the angles of motion and speed of
the robot [7].
Improvements on VFH led to the introduction of

VFH‐ and VFH+ [8]. The next algorithm is the sensor

Fig. 1 Bug1 algorithm with two points H1 and H2 as collision points. L1 and L2 are selected as the exit point

Fig. 2 Bug2 algorithm with two points H1 and H2 as collision points. L1 and L2 are selected as the exit point
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fusion in certainty grids for mobile robots which is one
of the well-known, powerful, and efficient algorithms for
using a multi-sensor combination to identify the envir-
onment and determine the direction of movement. In
this algorithm, the robot’s motion space is decomposed
into non-overlapping cells and is provided with a graph-
ical motion environment, and then based on the algo-
rithms for searching the graph, the path of the
movement is determined [9]. In the following, the Fol-
low the Gap method (2012) was proposed [10]; in this
algorithm, the robot calculates its distance with each
obstacle. The robot can know the distance between ob-
stacles by knowing its distance with each obstacle. The
robot then detects the greatest distance between obsta-
cles and calculates the center angles of the empty space.
After the central angular momentum, the robot calcu-
lates the empty space, combines it with the target angle,
and shows the ending angle. Obviously, in this combin-
ation, it is done on a weight basis, so that the obstacles
that are closer to the robot are weighing more because
their avoidance is a priority for the robot. Figure 4 shows
how this method works.
Fuzzy logic and neuro-fuzzy networks can also be used

to avoid obstacles. In this regard, fuzzy logic can be
helpful in solving the problems caused by the ocean flow
in the underlying surfaces [11]. It should be noted that
the algorithms discussed in the research background for
avoiding an obstacle are different from each other, and
each algorithm has proposed a separate and new method
for avoiding obstacles. So far, novel methods to avoid
obstacles in addition to the mentioned methods are also
presented [12–16]. In the following section, we first in-
vestigate the artificial potential field algorithm and then
modify this algorithm in Section 3. In [17], the
state-dependent Riccati equation (SDRE) algorithm is
studied on the motion design of cable-suspended robots
with uncertainties and moving obstacles. A method for
controlling the tracing of a robot has been developed by
the SDRE. In [18], the fuzzy logic method is used to

predict the movement of obstacles and accelerate the
linear velocity of the robot. In this paper, the movement
trend of the obstacle in approaching the robot is divided
away from the robot and translated by the robot. With
respect to the three trends, the robot can increase the
velocity, decrease the velocity to pass by the obstacle, or
stop to wait for the obstacle to pass. Some simulation re-
sults show that the proposed method can help the robot
avoid an obstacle without changing the initial path. In
[19], we have a four-dimensional unmanned aerial vehi-
cle’s platform equipped with a miniature computer
equipped with a set of small sensors for this work. The
platform is capable of accurately estimating the precision
mode, tracking the speed of the user, and providing un-
interrupted navigation. The robot estimates its linear
velocity by filtering a Kalman filter from the indirect and
optical flow with the corresponding distance measure-
ments. In [20], a new method for defining the path in
the presence of obstacles is proposed, which describes
the curve as a two-level intersection. The planner, based
on the definition of the path along with the cascaded
control architecture, uses a non-linear control technique
for both control loops (position and attitude) to create a
framework for manipulating multivariate behavior. The
method has been shown to be able to create a safe path
based on perceived obstacles in real time and avoiding
collisions. Li et al.[21] refer to the tracking control of
Euler-Lagrange system problems with external impedi-
ments in an environment containing obstacles. Accord-
ing to a new sliding discovery, a new tracking controller
is proposed to determine the tracing, convergent errors
reach zero as infinite time. In addition, based on the
non-destructive sliding terminal, a simultaneous control
algorithm with time constraints has also been developed
to ensure that tracking errors are approaching a re-
stricted area close to the source at a given time. By
introducing multi-purpose collision avoidance functions,
both controllers can ensure that the obstacle is avoided.
In [22], the mobile sensor deployment (MSD) problem

Fig. 3 Polar histogram [7]
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had been studied in mobile sensor networks (MSNs),
aiming at deploying mobile sensors to provide target
coverage and network connectivity with requirements of
moving sensors. This problem is divided into two
sub-problems, the Target COVerage (TCOV) problem
and Network CONnectivity (NCON) problem. For the
TCOV problem, it is proved that it is NP-hard. For a
special case of TCOV, an extended Hungarian method is
provided to achieve an optimal solution; for general
cases, two heuristic algorithms are proposed based on
the clique partition and Voronoi diagram, respectively.
For the NCON problem, at first, an edge constrained
Steiner tree algorithm is proposed to find the destina-
tions of mobile sensors, and then, we used extended
Hungarian to dispatch rest sensors to connect the net-
work. Theoretical analysis and simulation results have
shown that compared to extended Hungarian algorithm
and basic algorithm, the solutions based on TV-Greedy
have low complexity and are very close to the optimum.
In [23], a novel approach is presented to obtain the opti-
mal performance bounds for a multi-hop multi-rate
wireless data network. First, the optimal relay place-
ments are determined for a target terminal located at a
distance D away from the access point. Second, for a
general analytical PHY layer throughput model, the
maximum achievable MAC throughput is determined as

a function of the number of relays for a target located at
distance D.
In all the research mentioned above, the local mini-

mum problem has not been solved, and we designed the
modified APF method to solve this problem. In this
paper, in the second part, firstly, the previous method of
APF algorithm is presented. Then, in Section 3, the APF
method is modified to remedy the defects of this
method.

2 Problem statement and formulation
2.1 Methods
The artificial potential field model suggested by Khatib
[6] is a typical field model (Fig. 5). In the artificial poten-
tial field model, T represents the target for the robot to
generate attraction and O represents the obstacles that
produce repulsion for the robot.
In a planar space, the problem of avoiding the collision

of a robot with an obstacle O is shown in Fig. 5. If XD

indicates the target position, the control of the robot
with respect to the obstacle O can be done in the artifi-
cial potential as follows:

UALL Xð Þ ¼ UA Xð Þ þ UR Xð Þ ð1Þ

where UA, UR, and UALL respectively represent attraction

Fig. 4 Central angle display of free space [10]
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potential energy, repulsive potential energy, and artificial
potential field. Then its gradient function can be written
as follows:

FALL ¼ FA þ FR ð2Þ
FA ¼ − grad UA Xð Þ½ � ð3Þ
FR ¼ − grad UR Xð Þ½ � ð4Þ

where FA is the attraction generated by the robot to
reach the target position of XD and FR represents the
force created by UR(X), which is caused by the repulsion
of the obstacle. FA is proportional to the distance be-
tween the robot and the target. Then, the attraction kS
factor is also considered, and the attraction potential
UA(x) field is simply obtained as follows:

UA ¼ 1
2
kSRA

2 ð5Þ

Additionally, UR(X) is a non-negative, non-linear func-
tion that is continuous and differentiable, and its poten-
tial penetration must be limited to a particular region
around the obstacle without undesired turbulence forces.
Therefore, the equation Urep(X) is as follows:

UR Xð Þ ¼ 0:5Z
1
RR

−
1
G0

� �2

RR≤G0

0 RR > G0

8<
: ð6Þ

where X = (x, y) is the position of the robot, XOB = (xOB,
yOB) is the position of the obstacles, and XD = (xD, yD) is

the target position. RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX−XDÞ2 þ ðY−YDÞ2

q
is the

shortest distance between a robot and a target in a pla-

nar space, Z is the repulsive increase factor, RR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX−XOBÞ2 þ ðY−YOBÞ2

q
is the shortest distance be-

tween the robot and obstacles in the planar space, and
G0 represents a safe distance from the obstacles [24].
According to the kinetic theory, the relation G0 ≥ VMAX/
2AMAX is used, where VMAX denotes the maximum
speed of the robot and AMAX represents the maximum
speed of the acceleration (negative acceleration). So at-
traction and repulsion functions are written as follows:

FA ¼ −∇
1
2
kSRA

2

� �
¼ kSRA ð7Þ

FR Xð Þ ¼ Z
1
RR

−
1

RR
3

� �
1

RR
3 RR≤G0

0 RR > G0

8<
: ð8Þ

It is assumed that φ is the angle between the X ‐ axis
and the line from the point of the robot to the obstacle.
Then, both the repulsion components in the direction of
the X ‐ axis and the Y ‐ axis can be obtained. Given θ is
the angle between the X ‐ axis and the line from the
point of the robot to the target, the attraction compo-
nents in the X ‐ axis and the Y ‐ axis are considered as
the following equations [24]:

FRx X;XOBð Þ ¼ FR X;XOBð Þ cosφ ð9Þ
FRy X;XOBð Þ ¼ FR X;XOBð Þ sinφ ð10Þ

FAx X;XDð Þ ¼ FA X;XDð Þ cosθ ð11Þ
FAy X;XDð Þ ¼ FA X;XDð Þ sinθ ð12Þ

First, the force of the repulsion and attraction in
the g-axis and the v-axis are calculated, and then, f is
the angle between the resulting force and the d-axis.
Finally, the angle of the steering command is calcu-
lated as follows:

Fig. 5 Artificial potential field model [38]
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Fx ¼ FAx X;XDð Þ þ FRx X;XOBð Þ ð13Þ

Fy ¼ FAy X;XDð Þ þ FRy X;XOBð Þ ð14Þ

δ ¼ arctan
Fy

Fx
; Fx > 0

δ ¼ π þ arctan
Fy

Fx
; Fx≤0

8><
>: ð15Þ

The next position of the robot can be continuously
calculated according to the following function until it
reaches the convergence condition:

X f ¼ X þ L� cosδ
Y f ¼ Y þ L� sinδ

�
ð16Þ

where L denotes the step size and Xf and Yf represented
the next position of the robot. Then, if the obstacles are
simple particles, the artificial potential field model is
used to secure the robot to the point of the target. How-
ever, there are several problems. First, the result from
the sum of the two forces of attraction and repulsion in
some places is zero, which results in stopping the robot
moving or wandering around those points that are called
local minimum. Second, when the target is surrounded
by obstacles, the path cannot converge, and the robot
cannot reach the target. In order to overcome these
shortcomings, Section 3 addresses the modification of
the artificial potential field algorithm.

3 Algorithm design
Researchers around the world have been researching
about artificial potential field defects and have presented
suggestions for improving this method [25–37]. Here, a
regulative agent has been added to improve the artificial
potential field algorithm with the target of overcoming
the minimum local and inaccessible target. When the
robot is close to the target, this regulative agent reduces
the attraction control as a linear function, and the repul-
sion decreases as a higher-order function (M ≥ 3). A
flowchart illustrating the steps of the modified APF algo-
rithm is given in Fig. 6.

3.1 Modified artificial potential field model
In the planar space, the modified function of the attrac-
tion field function is defined as follows:

UA ¼ 1
2
kSRA

2 ð17Þ

The modified attraction field function is written as
follows:

UR Xð Þ ¼ 0:5Z
1

Rrep
−

1
G0

� �2

RA
N Rrep≤G0

0 Rrep > G0

8<
:

ð18Þ

where X = (x, y) is the position of the robot, Xob = (xob, yob)
is the position of the obstacles, and Xd = (xd, yd) is the tar-
get position. RA is the shortest distance between the robot
and the target in the planar space, and RA

N is the regula-
tive factor. The attraction function is the gradient across
the attraction field, which is obtained as follows:

FA ¼ −∇
1
2
kSRA

2

� �
¼ kSRA ð19Þ

In the same way, the repulsive function is a negative
gradient from the field of repulsion, which is obtained as
follows:

Fig. 6 The framework of the modified APF algorithm
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FR ¼ Z � FR1 Xð Þ þM � Z � FR2 Xð Þ RR≤G0

0 RR > G0

�

ð20Þ

As shown in Fig. 7, in the modified model, FR is
decomposed into FR1 and FR2, where FR1 is the compo-
nent’s force in the direction of the line between the
robot and the obstacle and FR2 is the component’s force
in the direction of the line between the robot and the
target.

FR1 ¼ 1
RR

−
1
G0

� �
RA

M

RA
3

FR2 ¼ 1
RR

−
1
G0

� �2

RA
M

8>><
>>:

ð21Þ

The two components of repulsion and attraction in the
direction of the x-axis and the y-axis can be obtained as
follows [24]:

FRx X;XOBð Þ ¼ FR X;XOBð Þ cosφ ð22Þ
FRy X;XOBð Þ ¼ FR X;XOBð Þ sinφ ð23Þ

Fig. 7 Analysis of forces on a robot
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Fig. 8 The simulation result of the artificial potential field algorithm for circular obstacles with radius R = 0.18
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FAx X;XDð Þ ¼ FA X;XDð Þ cosθ ð24Þ

FAy X;XDð Þ ¼ FA X;XDð Þ sinθ ð25Þ

The force of the repulsion and attraction on X ‐ axis
and Y ‐ axis are calculated, and the angle δ is calculated

between the force and the X ‐ axis, where δ is the steer-
ing angle of the robot.

Fx ¼ FAx X;XDð Þ þ FRx X;XOBð Þ ð26Þ

Fy ¼ FAy X;XDð Þ þ FRy X;XOBð Þ ð27Þ
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Fig. 9 The energy amount of repulsion and attraction and their yields according to the number of steps in the artificial potential field algorithm
for circular obstacles with radius R = 0.18

Fig. 10 Mesh plot of the potential energy of attraction and repulsion in the artificial potential field algorithm for circular obstacles with radius R = 0.18
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δ ¼ arctan
Fy

Fx
; Fx > 0

δ ¼ π þ arctan
Fy

Fx
; Fx≤0

8><
>: ð28Þ

X f ¼ xþ L� cosδ
Y f ¼ yþ L� sinδ

�
ð29Þ

where L represents the step size and Xf and Yf repre-
sent the next position of the robot. The regulative
factor RA

M is added to the modified model of this
article. The function of this regulative factor is that if
the robot cannot reach the target and M is in the
interval (0, 1), FR1 when the robot is close to the tar-
get, it tends to be infinite and the path of conver-
gence is created only with FR2 and FA. If M = 1, Frep2
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Fig. 11 The simulation result of the modified artificial potential field algorithm for circular obstacles with radius R = 0.18
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Fig. 12 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for circular obstacles with radius R = 0.18
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tends to be constant and FR1 will be zero, and the
path of convergence will be created only with FR2 and
FA. If M = 0, FR1 and FR2 will all tend to be zero, and
the path of convergence will be created only by at-
traction. In the final state, generally, if M is a real
positive number, the robot does not face the local
minimum cases or the inaccessibility of the target.

4 Simulation results and analysis
In this section, a comparison is firstly done between the
simulation results of the artificial potential field algo-
rithm and the modified artificial potential field, then the
obstacle avoidance of the mobile robot is displayed
against a variety of obstacles that are simulated using the
modified artificial potential field algorithm.

Fig. 13 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for circular obstacles with
radius R = 0.18
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Fig. 14 The simulation result of the modified artificial potential field algorithm for circular obstacles with radius R = 40
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In the artificial potential field algorithm in which its
relation was said in Section 2, if the value to the param-
eter be considered as Z = 100, M = 2, kS = 1.1, G0 = 0.11,
and L = 0.1 and obstacles on a circle of the radius R =
0.18, the result is as shown in Fig. 8; the robot is trapped
and stands at the local minimum. Figure 9 shows that
the repulsive force is more than the attraction at all
stages, which means the robot is trapped at the local

minimum. If these parameters are changed to any de-
sired extent other than these values, there will be no
change to the status of the robot at the local minimum.
The mesh plot of this simulation as shown in Fig. 10. It
describes the obstacles like summit, target act cavity and
absorb the robot inside itself.
In the modified artificial potential field algorithm in

which its relation was said in Section 3, if the value to the
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Fig. 15 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for circular obstacle with radius R = 30

Fig. 16 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for circular obstacles with
radius R = 30
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parameter be considered as Z = 100, M = 2, kS = 1.1, G0 =
0.11, and L = 0.1 and obstacles on a circle of the radius R
= 0.18, the result is as shown in Fig. 11. By comparing
Figs. 8 and 11, it can be seen that in the artificial potential
field algorithm, the robot cannot reach the target and is
trapped in a local minimum, but with the same condi-
tions, in the modified artificial potential field algorithm, it
achieves the target by avoiding obstacles.

Figure 12 shows that with the number of steps of
nearly 200 rounds, the attraction force is zeroed; that
means, with this number of steps, the robot reaches the
target. The mesh plot of this simulation in Fig. 13 shows
that the obstacles like the summit and the target act like
the cavity and absorb the robot into itself.
In the modified artificial potential field algorithm in

which its relation was said in Section 3, if the value to
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Fig. 17 The result of simulating circular obstacles with radius R = 7 in the modified artificial potential field algorithm
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Fig. 18 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for circular obstacles with radius R = 7
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the parameter be considered as Z = 100, M = 2, kS = 1.1,
G0 = 5, and L = 0.1 and obstacles on a circle of the radius
R = 40, the result is as shown in Fig. 14. It shows that
the robot achieves the target by avoiding obstacles.
Figure 15 shows that with the number of steps of

nearly 400 rounds, the attraction force is zeroed; that
means, with this number of steps, the robot reaches the
target. The mesh plot of this simulation in Fig. 16 shows

that the obstacles like the summit and the target act like
the cavity and absorb the robot into itself.
In the modified artificial potential field algorithm in

which its relation was said in Section 3, if the value to
the parameter be considered as Z = 100, M = 2, kS = 1.1,
G0 = 2.1, and L = 0.5 and obstacles on a circle of the ra-
dius R = 7, the result is as shown in Fig. 17. It shows that
the robot achieves the target by avoiding obstacles.

Fig. 19 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for circular obstacles with
radius R = 7

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X

Y

start point

target point
Simulation result of modified APF

Fig. 20 The result of the curve-shaped obstacle simulation in the modified artificial potential field algorithm

Rostami et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:70 Page 13 of 19



Figure 18 shows that with the number of steps of
nearly 700 rounds, the attraction force is zeroed; that
means, with this number of steps, the robot reaches
the target. The mesh plot of this simulation in Fig. 19
shows that the obstacles like the summit and the tar-
get act like the cavity and absorb the robot into
itself.

In the modified artificial potential field algorithm
in which its relation was said in Section 3, if the
value to the parameter be. considered as Z = 100, M
= 2, kS = 1.1, G0 = 0.2, and L = 0.03 and the obstacle

is considered as Y ¼ ð1XÞ
2 þ 0:5;X∈ð0:7; 3:5Þ , the

result is as shown in Fig. 20. It shows that the robot
achieves the target by avoiding obstacles.
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Fig. 21 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for the curve-shaped obstacle

Fig. 22 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for the
curve-shaped obstacle
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Figure 21 shows that with the number of steps of
nearly 1000 rounds, the attraction force is zeroed; that
means, with this number of steps, the robot reaches the
target. The mesh plot of this simulation in Fig. 22 shows
that the obstacles like the summit and the target act like
the cavity and absorb the robot into itself.
In the modified artificial potential field algorithm in

which its relation was said in Section 3, if the value to

the parameter be considered as Z = 100, M = 2, kS = 1.1,
G0 = 0.3, and L = 0.1 and the obstacle is considered as X
= 4; 4 ≤ Y ≤ 7, the result is as shown in Fig. 23. It shows
that the robot achieves the target by avoiding obstacles.
Figure 24 shows that with the number of steps of

nearly 900 rounds, the attraction force is zeroed;
that means, with this number of steps, the robot
reaches the target. The mesh plot of this simulation
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Fig. 23 The result of the straight line obstacle simulation in the modified artificial potential field algorithm
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Fig. 24 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for the straight line obstacle
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in Fig. 25 shows that the obstacles like the summit
and the target act like the cavity and absorb the
robot into itself.
In the modified artificial potential field algorithm in

which its relation was said in Section 3, if the value to
the parameter be considered as Z = 100, M = 2, kS = 1.1,
G0 = 0.2, and L = 0.03 and the obstacle is considered as
Y = 4; 4 ≤ X ≤ 6 and x = 4; 3 ≤ y ≤ 4, the result is as shown

in Fig. 26. It shows that the robot achieves the target by
avoiding obstacles.
Figure 27 shows that with the number of steps of

nearly 700 rounds, the attraction force is zeroed; that
means, with this number of steps, the robot reaches the
target. The mesh plot of this simulation in Fig. 28 shows
that the obstacles like the summit and the target act like
the cavity and absorb the robot into itself.

Fig. 25 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for the straight
line obstacle
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Fig. 26 The result of the broken line obstacle simulation in the modified artificial potential field algorithm

Rostami et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:70 Page 16 of 19



5 Conclusion
In this paper, improvement of the artificial potential field
algorithm has been evaluated. If any obstacles are
around the target, it allows the robot to find a safe path,
move without collision with the obstacle, and not
trapped at the local minimum then reach the target

point. The artificial potential field is a relatively mature
algorithm that is widely used for its math calculations.
However, due to the local minimum problem in this al-
gorithm, the robot cannot achieve the target, so in order
to solve this problem, a new method is proposed in this
paper to remedy this algorithm. The proposed method is
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Fig. 27 The energy amount of repulsion and attraction and their yields according to the number of steps in the modified artificial potential field
algorithm for the broken line obstacle

Fig. 28 Mesh plot of the potential energy of attraction and repulsion in the modified artificial potential field algorithm for the broken
line obstacle
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simulated in the MATLAB environment. The results of
simulation evaluations show that in the modified artifi-
cial potential field algorithm, the robot can pass obsta-
cles around the target without collision and reach the
target.

Abbreviations
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