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Abstract

We propose CSIApx, a very fast and lightweight method to compress the channel state information (CSI) of Wi-Fi
networks. CSIApx approximates the CSI vector as the linear combination of a small number of base sinusoids on
constant frequencies and uses the complex coefficients of the base sinusoids as the compressed CSI. While it is
well-known that the CSI vector can be represented as the linear combination of sinusoids, fixing the frequencies of
the sinusoids is the key novelty of CSIApx, which is guided by our mathematical finding that almost any sinusoid can
be approximated by a set of base sinusoids on constant frequencies. CSIApx enjoys very low computation complexity,
because key steps in the compression can be pre-computed due to the constant frequencies of the base sinusoids.
We extensively test CSIApx with both experimental and synthesized Wi-Fi channel data, and the results confirm that
CSIApx can achieve very good compression ratio with little loss of accuracy.
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1 Introduction
In Wi-Fi, the channel state information (CSI) for an
antenna pair is a vector of complex numbers, represent-
ing the channel coefficients of the orthogonal frequency
division multiplexing (OFDM) subcarriers. The CSI is
needed to calculate the modulation parameters for tech-
niques such as multi-user multiple-input-multiple-output
(MU-MIMO). In Wi-Fi, the CSI is typically measured at
the receiver and is transmitted back to the sender, which
requires significant overhead. For example, on a 20-MHz
channel with 64 subcarriers, the full CSI for a single
antenna pair has 64 complex numbers, and for 9 antenna
pairs, 576. Although Wi-Fi does not use all subcarriers,
the feedback for 9 antenna pairs still may exceed 1000
bytes. TheWi-Fi standard [1] defines options to compress
the CSI, such as reducing the quantization accuracy or
the number of subcarriers in the feedback or using the
Given’s rotation on the V matrix after the singular value
decomposition (SVD) of the CSI matrix. However, these
methods either reduce the accuracy of the CSI or only
achieve modest compression ratios. For example, a 3 by

*Correspondence: zzhang@cs.fsu.edu
Department of Computer Science, Florida State University, Tallahassee, FL, USA

3 complex V matrix can only be compressed into 6 real
numbers, at a compression ratio of 3.
In this paper, we propose CSIApx, a novel CSI compres-

sion method for Wi-Fi networks with the following key
features: (a) high compression ratio, e.g., capable of com-
pressing the CSI of 40 subcarriers in most of our Wi-Fi
experiments into just 6 or less complex numbers; (b) little
loss of accuracy, e.g., the decompressed CSI is very close to
the measured CSI; and (c) very low computation complex-
ity, suitable for hardware implementation. Compared to
the Givens rotation, CSIApx achieves higher compression
ratio, e.g., more than 2.5 times higher with our experi-
mental data. Compared to other recent solutions in the
literature [2–4], CSIApx has much lower computation
complexity, because its main computation is simply the
dot products between the CSI and a small number of
constant vectors.
CSIApx is based on the well-known fact that the CSI

is the linear combination of sinusoids [3, 4], where each
sinusoid is the result of a physical path in the channel.
Previous approaches solve complex optimization prob-
lems to find the parameters of the physical paths, i.e.,
the frequencies, the phases, and the amplitudes of the
sinusoids. Radically different from such solutions, CSIApx
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does not attempt to find the parameters of the physi-
cal paths. Instead, CSIApx uses the linear combination
of a set of base sinusoids, which are on fixed frequen-
cies, to approximate the CSI, and our results show that
the approximation usually achieves very high accuracy.
This approach is guided by our mathematical finding that
the linear combination of sinusoids on constant frequen-
cies can approximate any given sinusoid very well, which is
explained in more details in Section 3. Roughly speaking,
as each individual sinusoid can be approximated by just
a small number of base sinusoids, the entire CSI, which
is the summation of the individual sinusoids, can also be
approximated, regardless of the number and characteris-
tics of actual paths in the channel.Working with base sinu-
soids on fixed frequencies has two major benefits. First,
it avoids solving complex optimization problems and dra-
matically reduces the computation complexity. Second, as
the frequency values of the base sinusoids are constants,
they do not need to be transmitted, further improving the
compression ratio. While CSIApx is primarily designed
for compressing the CSI of Wi-Fi channels, it will theo-
retically work on any OFDM-based system that measures
the channel state information, as long as the delay spread
is not too large.
The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 explains the theoreti-
cal foundations. Section 4 describes CSIApx. Section 5
describes the evaluation. Section 6 concludes the paper.

2 Related work
CSI compression has been a major topic of interest due to
its practical importance in wireless networks. The differ-
ences between CSIApx and the existing methods in Wi-Fi
have been discussed in Section 1. Some early approaches
[5–7] use quantization and general purpose compression
techniques like the Huffman coding, with typical com-
pression ratios around 3:1, lower than that with CSIApx.
Another popular approach is to reduce the frequency or
the amount of CSI feedback in slow-varying channels sim-
ilar to those in [8, 9], which complements compression
techniques such as CSIApx. AFC [10] chooses from exist-
ing compression options for the least degradation of link
throughput, which can be complemented by CSIApx as an
additional compression option. The problem of consoli-
dating CSI from a small number of settings to predict the
CSI under other settings has been studied in [11], which is
different from CSI compression.
Sparsity in certain wireless channels has been well-

known [3, 4, 12–14] and has been exploited in applications
such as CSI compression and CSI estimation. Unlike exist-
ing work that usually still attempts to find the actual paths
by solving optimization problems, CSIApx focuses on
approximating the CSI with constant frequency sinusoids,
which leads to much lower computation complexity than

the existing algorithms such as CTDP [3, 4]. CSIApx also
has much lower complexity than CSIFit [2], which uses
the Levenberg-Marquardt (LM) algorithm to compress
the CSI of MIMO channels, because the LM algorithm
needs to solve a set of linear equations in each itera-
tion. R2-F2 [15] uses the CSI measured on one direction
of the wireless link to predict that of the other, which
requires much more computation than CSIApx; in addi-
tion, R2-F2 depends on channel reciprocity, which may
not be true depending on the hardware circuitry, and may
also need periodical calibrations [16], which is why Wi-Fi
defines explicit CSI feedback and does not solely depend
on channel reciprocity to obtain the CSI.
We have presented an initial version of CSIApx in [17]

and have obtained a patent [18]. Compared to the con-
ference version, this paper contains significant improve-
ments in the theoretical foundation and the compression
ratio in practice.

3 Theoretical foundation
We prove that a target sinusoid on frequency g can be
approximated as the linear combination of P base sinu-
soids and the approximation error decays exponentially
fast as the number of base sinusoids increases, where the
frequencies of the base sinusoids are constants. Therefore,
the summation of many sinusoids, such as the CSI vector,
can still be approximated as the linear combination of only
P base sinusoids.

3.1 Approximating real sinusoids
We begin with a theorem on the approximation of real
sinusoids.

Theorem 1 Consider P base sinusoids on evenly spaced
frequencies: {cos(0x), cos(δx), ..., cos[ (P− 1)δx] }. Suppose
cos(gx) is to be approximated as the linear combination of
the base sinusoids for x ∈[ 0,X], where 0 ≤ g ≤ (P − 1)δ. If
Xδ < 1, there exists an approximation with error decaying
exponentially fast as P increases.

Proof Consider any fixed time instant x0 ∈[ 0,X] and the
function G(g) = cos(x0g) where g is the variable. Let

F(g) =
P∑

k=1
γk cos[ x0(k − 1)δ] ,

where

γk =
P∏

h=1,h�=k

(h − 1)δ − g
(h − k)δ

.

and is called the coefficient of base sinusoid k. F(g) is
the Lagrange interpolation of function G() at g based
on the values of G() at 0, δ, . . . , (P − 1)δ. As function
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G() is infinitely differentiable, the Lagrange interpolation
guarantees that

|F(g) − G(g)| ≤
∣∣∣∣∣
GP+1(ξ)

∏P
k=1[ (k − 1)δ − g]
(P + 1)!

∣∣∣∣∣ ,

for some ξ within [ 0,X]. Clearly,

|GP+1(ξ)| ≤ XP+1,

and we claim that
∣∣∣∣∣

P∏

k=1
[ (k − 1)δ − g]

∣∣∣∣∣ ≤ δP(P − 1)!

To see this, suppose g ∈[ (k − 1)δ, kδ] for some k. Clearly,
∣∣∣∣∣

P∏

k=1
[(k−1)δ−g]

∣∣∣∣∣≤
k∏

h=1
[kδ−(h−1)δ]

P∏

h=k+1
[(h−1)δ−(k−1)δ]

≤ δPk! (P − k)!
≤ δP(P − 1)!

Therefore,

|F(g) − G(g)| ≤ XP+1δP

P2 + P
.

Clearly, if Xδ < 1, the interpolation error decays exponen-
tially fast as P increases. Finally, note that the argument is
true for any point in [ 0,X].

3.2 Extensions
We now discuss a few extensions.
Extension to sin(gx) : With exactly the same argu-

ments, it can be proved that sin(gx) can be approxi-
mated as the linear combination of the base sinusoids.
Clearly, for the approximation of sin(gx), exactly the
same coefficients as the coefficients for the approxima-
tion of cos(gx) can be used, because the coefficients are
determined only by g and the frequencies of the base
sinusoids.
Extension to [−X, X] : The extension to [−X,X] is

immediate. That is, if the approximation matches cos(gx)
in [ 0,X], multiplying the base sinusoids by the same coef-
ficients for x in [−X, 0] should also result in a match,
because the target sinusoid and the base sinusoids have
the same parity.
Extension to eigx : The extension to complex wave eigx is

clearly
P∑

k=1
γk cos(fkx) + i

P∑

k=1
γk sin(fkx) =

P∑

k=1
γkeifkx.

3.3 The summation of many sinusoids
So far, we considered approximating one target sinu-
soid. The CSI vector, on the other hand, may be the

summation of many sinusoids. However, if the base sinu-
soids are selected correctly, any individual sinusoid in
the CSI vector can be approximated, and therefore, the
summation can also be approximated with the same set
of base sinusoids. The deterministic maximum approx-
imation error will be the summation of all individual
approximation errors and may be large. However, in prac-
tice, the sinusoids in the CSI have random phases and
the errors almost never add up constructively. A prob-
abilistic bound therefore is more suitable; however, it
depends on the assumptions of the path delay and power
distribution. We instead choose to use both the real-
world data and synthesized data to evaluate CSIApx and
the results show that CSIApx approximates the CSI very
well.

4 CSIApx
CSIApx is a fast compression method based on our theo-
retical findings. We begin with an overview.

4.1 Overview
According to our theoretical findings, the CSI can be
approximated as the linear combination of the base sinu-
soids. The coefficients of the base sinusoids in the lin-
ear combination can be found by minimizing the fit
residual, defined as the total squared error between the
CSI vector and the approximation. The approximation
is therefore called an MSE Fit and requires very low
computation complexity, mainly because the linear sys-
tem to be solved in the optimization problem is defined
by a constant matrix. As any sinusoid can be approxi-
mated in this manner, the simplest approach would be
to select just one set of base sinusoids to be used for
all CSI. However, different types of channels have dif-
ferent delay spreads, which translate to different fre-
quency ranges of the sinusoids in the CSI, the larger
the delay spread, the higher the frequency. As sinu-
soids on lower frequencies can be approximated with
fewer base sinusoids, to further improve the compression
ratio, a small number of configurations are used in CSI-
Apx which have different orders, where the order refers
to the number of the base sinusoids. CSIApx finds the
MSE Fit coefficients for all configurations and selects
a configuration, considering both the compression ratio
and the fit residual. The computation complexity is also
reduced by sharing certain base sinusoids among multiple
configurations.

4.2 The MSE Fit
4.2.1 Finding theMSE Fit
The core of CSIApx is to find the coefficients of the MSE
Fit, denoted as a vector �.
To minimize the squared error is to select coefficients to

minimize
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J =
N∑

j=1

∣∣∣∣∣

( P∑

k=1
γkeijfk

)
− yj

∣∣∣∣∣

2

,

where P is the order; γk and fk are the coefficient and fre-
quency of base sinusoid k, respectively; yj is element j in
the CSI vector Y ; and N is the length of the CSI vector. By
taking the derivatives of J with respect to the coefficients
and setting them to 0, � that minimizes J is the solution to
a linear system Q� = S, where:

• Q is a P by P matrix, in which qk,h = ∑N
j=1 ei(fh−fk)j,

• S is a P by 1 vector, in which sk = ∑N
j=1 e−ifk jyj.

It can be seen that S is determined by the CSI vector, but
is just the dot products of the CSI vector and the conjugate
of the base sinusoids. On the other hand, as the frequency
values are constants, Q−1 is a constant matrix and can
be pre-computed. Therefore, after S is obtained, � can
be found by simply multiplying the constant matrix Q−1

with S.

4.3 The compression process of CSIApx
CSIApx has U configurations. Configuration u is defined
by the frequencies of its Pu base sinusoids, denoted as fu,k
for k = 1, 2, ...,Pu, where the frequency is the amount of
angular rotation between neighboring points in the CSI
vector. For each configuration, CSIApx solves the constant
linear system in Section 4 to get the coefficients of the
MSE Fit. To evaluate the quality of the fits, for each config-
uration, CSIApx evaluates the MSE Fit on L evenly spaced
sample points, where L = N

4 , and finds the total fit resid-
ual on the sampled points, denoted as ηu for configuration
u. The MSE Fit is not evaluated on all points to reduce
the computation complexity. CSIApx selects the fit coeffi-
cients of configuration u as the compressed CSI, if u is the
smallest index satisfying ηu < ζ min{η1, η2, ..., ηU}, where
ζ is a constant, empirically chosen as 1.75 and 4 for CSI
with 64 and 40 subcarriers, respectively.

4.4 The configurations and the base sinusoids
The configurations and base sinusoids should be selected
considering compression ratio, accuracy, implementation
cost, and the range of the fit coefficients. As Wi-Fi has
a fixed number of subcarriers and well-studied types of
channels [19], we select a configuration for each type of
channel.

4.4.1 Finding parameters for a given channel type
For a given type of channel, the parameters to be deter-
mined include the number of base sinusoids, denoted here
as P, and the frequencies of each base sinusoid, denoted
here as f1, f2, ..., fP . Note that f1 is actually always 0 to be
able to cover the lowest frequency. Our approach is to first
solve the problem of determining the frequencies of the

base sinusoids for a given P, then conduct a linear scan on
P to find the best P. As the linear scan is straightforward,
in the following, we focus on the first problem.
As a channel has multiple paths, while paths of differ-

ent delays may not have equal power, the selection of the
base sinusoids will have to be based on the power profile
of the channel. For example, if 90% of the power is con-
centrated within a certain small delay range, more base
sinusoids should be allocated to the corresponding range
of frequencies. The power profile is generated using the
delay taps and relative power values for the given chan-
nel model. It also takes into account possible imperfect
symbol-level synchronization, which is assumed to be uni-
formly within 0 to 50 ns, because such synchronization
error will increase the frequencies of the sinusoids.
The problem of finding the base sinusoid frequencies for

given P is solved using a standard solver like Levenberg-
Marquardt. First, from 0 to themaximum frequency in the
power profile, H evenly spaced frequencies are selected,
denoted as g1 to gH . The objective function passed to the
solver basically minimizes the total fit residual of all sinu-
soid on such frequencies, which are weighted according
to the power profile. By doing so, the solver should find a
set of base sinusoids that is expected to minimize the fit
residual of this type of channel. To be more specific, the
objective function is defined as follows with f2, f3, ..., fP as
parameters:

H∑

s=1
Ff2,f3,...,fP (gs)W (gs),

where Ff2,f3,...,fP (gs) is the MSE Fit residual of a pure sinu-
soid of frequency gs when the base sinusoid frequencies
are 0, f2, f3, ..., fP , and W (gs) is the power profile weight of
frequency gs. It should be noted that some noise is added
to the pure sinusoids such that the signal-to-noise ratio
(SNR) is 20 dB, to emulate a real-world scenario.

4.4.2 Results
Figure 1 shows, in log scale, the output of the solver for dif-
ferent numbers of base sinusoids of Wi-Fi channel model
B to E, when the number of subcarriers is 64. It can be seen
that the fit residual decreases exponentially as the number
of bases increases up to a point, after which there is very
little change to the final fit residual. In fact in some cases,
the fit residual increases slightly with more bases. This is
due to over-fitting, i.e., the MSE Fit trying to follow the
noise in the data. Based on this result, the selected num-
bers of bases for each configuration are 5, 7, 11, and 17,
respectively.

4.4.3 Manual tuning
It should be noted that two types of channel models,
namely model A and model F, are excluded from this
study. Channel model A is an ideal case, i.e., modeling a
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Fig. 1 Results of the base selection process. The output of the solver
is shown for different numbers of base sinusoids of Wi-Fi channel
model B to E, when the number of subcarriers is 64

channel with a single path, which we have covered with
an additional simple configuration with three base sinu-
soids. Channel model F is excluded because it requires a
large number of base sinusoids to approximate and as such
does not bring in much in terms of compression. More-
over, based on our experience, model F rarely occurs in
indoor Wi-Fi networks.
Figure 2 shows, in log scale, a comparison of the cumu-

lative density function (CDF) of the fit residual per point
when running MSE Fit using these optimized base sinu-
soids as opposed to using uniformly spaced base sinu-
soids. These tests were performed on 1000 CSI vectors
with 20-dB SNR for each channel model. It can be seen
that the optimized base sinusoids often resulted in an

order of magnitude or greater reduction in the approxi-
mation error.
We note that the main computation cost in CSIApx

is actually finding the dot products between the base
sinusoids and the CSI. If a base sinusoid used in one con-
figuration can be used by another, the computation cost
can be reduced.
Therefore, we slightly modified the optimized base sinu-

soid frequencies, to allow one base sinusoid to be used
for more than one configuration when possible. For 64
subcarriers, the selected base frequencies for the five con-
figurations are {0, 0.06, 0.12}, {0, 0.05, 0.1, 0.15, 0.25}, {0,
0.06, 0.12, 0.18, 0.24, 0.3, 0.42}, {0, 0.06, 0.12, 0.18, 0.24,
0.3, 0.36, 0.42, 0.525, 0.6375, 0.75}, and {0, 0.075, 0.15,
0.225, 0.3, 0.375, 0.45, 0.525, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3}, respectively. In total, there are 27 unique base
sinusoids. Figure 1 also shows the CDF of the fit residual
when runningMSE Fit with this modified set of base sinu-
soids. It can be seen that there is a small difference under
10% when compared against the optimized base frequen-
cies. However, these modified configurations cut down
the complexity of CSIApx considerably. It should also be
noted that for channel model E, the number of base sinu-
soids was reduced from 17 to 16, as there is very little loss
in accuracy at 20 dB, but leads to a higher compression
ratio.
We repeated the same process also for CSI vectors of

40 subcarriers, which is used in our experiments. The
five configurations are {0, 0.05, 0.10}, {0, 0.06, 0.12, 0.2},
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Fig. 2 Fit residual as a function of the number of base sinusoids. A comparison of the cumulative density function (CDF) of the fit residual per point
is shown when running MSE Fit using optimized base sinusoids versus uniformly spaced base sinusoids
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{0, 0.075, 0.15, 0.225, 0.3, 0.45}, {0, 0.075, 0.15, 0.225, 0.3,
0.375, 0.525, 0.675, 0.825, 0.975}, and {0, 0.09, 0.18, 0.27,
0.36, 0.45, 0.575, 0.7, 0.825, 0.95, 1.075, 1.2, 1.325, 1.45},
respectively. In total, there are 27 unique base sinusoids.

4.5 Complexity of CSIApx
Overall, let W be the total number of unique base sinu-
soids in all configurations; the complexity of CSIApx,
measured by the number of complex multiplications,
includes only:

• WN : for computing the dot products between the
base sinusoids and the CSI

• ∑U
u=1 P2u: for finding the fit coefficients of all

configurations
• ∑U

u=1(Pu + 1)L: for computing the fits at sampled
points and the sampled fit residuals

4.6 Coping with shift frequency
In practice, the raw measured CSI often has a shift fre-
quency, which is a frequency value added to the frequen-
cies of all sinusoids, caused by the sample timing offset to
theOFDM symbol boundary. The shift frequency needs to
be removed before running CSIApx, because it may force
CSIApx to choose higher configurations to approximate
sinusoids on higher frequencies and reduce the compres-
sion ratio. This can easily be achieved by multiplying the
CSI with a sinusoid on the negative of the shift frequency,
a process we call rotation. The value of the shift frequency
is known to the wireless receiver, because it selects the
OFDM symbol boundary. The frequency used in the rota-
tion can also be slightly adjusted to make sure that the
sinusoids in the CSI are still on positive frequencies after
the rotation.

5 Results and discussion
We report our evaluation of CSIApx on both real-world
and synthesized CSI data in this section.

5.1 Evaluation with the experimental CSI data
We first discuss our evaluation of CSIApx with the real-
world experimental CSI data.

5.1.1 Data collection and preprocessing
CSI data was collected using the Atheros CSITool [20]
installed on two laptops with the Atheros AR9462 wire-
less card with two antennas on 20-MHz channels. A total
of 100 experiments in various location settings were con-
ducted, which include typical environments like office
buildings, apartment complexes, and large hallways. The
experiments include both line of sight and non-line of
sight cases as well as varying channel conditions due
to human movements near the machines. Some of the
experiment locations are shown in Fig. 3.
The CSITool reports the CSI on 56 selected subcarriers

for four antenna pairs. Figure 4 shows the absolute values
of some raw CSI vectors, where it can be seen that the data
has some level of noise. A few preprocessing steps were
taken before passing the data for compression. Firstly, as
the signal always seems to be attenuated at both ends of
the spectrum, caused most likely by additional filtering
in hardware, not representing the characteristics of the
actual channel, 8 subcarriers on both ends are removed,
with only the middle 40 subcarriers kept. Secondly, as
some of the experiments have very weak signals, measure-
ments with RSSI lower than 30 dB were not used. Thirdly,
the CSI data of all antenna pairs is normalized by a com-
mon factor such that the maximum amplitude is 1. Lastly,
as explained before, each CSI vector is rotated to remove
the shift frequency. As the shift frequency value is not
reported by our current device to the driver level, a simple
estimation method is used, which basically keeps rotating
the CSI from the same transmitting antenna incremen-
tally, until most energy appears to occupy only a spectrum
starting from 0 up to some frequency for both receiving
antennas. As it may over-rotate the CSI and lead to neg-
ative frequencies, when running CSIApx, the CSI for all

Fig. 3 Some experiment locations. Typical experimental locations are shown
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Fig. 4 Absolute values of some measured CSI. The absolute value of the CSI across 64 subcarriers is shown for the strongest antenna pair in four
experiments

antenna pairs are multiplied by a sinusoid with a positive
frequency of 0.0491 to move most sinusoids in the CSI to
positive frequency.

5.1.2 Comparedmethods
For comparison, we also implement the CTDP extraction
algorithm according to [4], referred to as CTDP, which
iteratively selects a sinusoid that best matches the current
residual signal, until the power of the selected sinusoid is
below a threshold. CTDP is chosen because it is one of
the more recent methods and has a good performance.
As CTDP requires the noise power value, which needs to
be estimated with the experimental data, we use the fit
residual found by CSIApx as the total noise power, which
should be very close. The frequency range of sinusoids
scanned in CTDP is [− 0.785, 1.57], which should cover
all frequencies in the CSI. Another constrained version
of CTDP, referred to as cCTDP, is also evaluated, with
which the fit residuals of CTDP and CSIApx can be com-
pared when using similar number of sinusoids. That is,
with cCTDP, the number of sinusoids used is the small-
est upper bound of the average number of sinusoids used
by CSIApx for the same CSI measurement, noting that
CSIApx may use different configurations for the differ-
ent antenna pairs. It should also be mentioned that as
CTDP has to solve an optimization problem to select the
frequency of a sinusoid in each iteration, it has much
higher implementation complexity than CSIApx, because
CSIApx avoids this problem altogether by using constant
frequencies.
Two other methods were also implemented, but the

results are not shown in the figures in this section, since
their performances are not comparable with CSIApx and
CTDP. One of the methods is CSIFit [2], the median of
fit residual of which, for example, is more than six times

than that with CSIApx for the experimental data, while
the compression ratio is about the same. The other maybe
obvious approach, i.e., keeping only a small number of sig-
nificant FFT coefficients, is also not included, because it
usually has an order of magnitude higher fit residual than
CSIApx even when using twice number of coefficients.

5.1.3 Fit accuracy and compression ratio
As the fit residual and the compression ratio are related,
i.e., improving one is often at the cost of the other, they
are jointly compared. Figure 5 shows the CDF of the total
fit residual of all four antenna pairs in 7923 CSI measure-
ments. Figure 6 shows the compression ratio, which is the
number of real numbers in the CSI vector divided by that
needed by a compression method to describe the sinu-
soids, noting that a complex number consists of two real
numbers.
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Fig. 5 Fit residual with experimental data. A comparison of the
cumulative density function (CDF) of the fit residual per point is
shown when running CSIApx versus CTDP. In addition, a comparison
is also shown when running a constrained version of CTDP (CCTDP)
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Fig. 6 Compression ratio with experimental data. A comparison of
the cumulative density function (CDF) of the compression ratio
achieved when running CSIAPx versus CTDP versus CCTDP

It can be seen that the fit residual of CSIApx in most
cases are very small with a median of 0.0828 for all
antenna pairs, which translates to an error of 0.0005 per
data point. The fit residual of CTDP is better with a
median of 0.0467, however it is at a cost of a much lower
compression ratio, as the average compression ratio of
CSIApx against 40 subcarriers is 7.68, much better than
CTDP, which is 3.59. By closely examining the fits, we
found that CSIApx actually fits the signal very well, and its
fit residual is mainly the quantization noise, such as those
shown in Fig. 4, which cannot be eliminated unless more
sinusoids are introduced to fit the noise. In this sense, CSI-
Apx achieves a better tradeoff between fit residual and
compression. The better performance with CSIApx can
also be seen from the cCTDP results, as cCTDP actu-
ally has higher fit residual, at the same time slightly lower
compression ratio.

5.1.4 MU-MIMO rate
The end result of the compression method can be the
MU-MIMO data rate of the users. We use theMU-MIMO
rate program at [21], which first calculates the modulation
parameters with the supplied imperfect CSI, then finds
the achievable data rate when the selected parameters are
used on the actual channel. We configure the program to
use the greedy method for user selection and run at SNR
of 20 dB. For each subcarrier, we run the program twice,
feeding the compressed and the measured CSI to the pro-
gram to obtain two values, representing total data rates to
all users with imperfect and perfect CSI, respectively. The
difference between the two, divided by the latter, is called
the normalized rate difference and is used as the metric.
A total of 1500 tests are run, where each test has one

sender and two receivers. In each test, we use the CSI
collected from experiments where the sender was at a
fixed location for four receivers, and randomly select two
receivers from the four actual receivers. As the link is 2 by
2 but each MU-MIMO receiver has only one antenna, we

select the first antenna for each receiver. Figure 7 shows
the CDF of the normalized rate difference, where we can
see that the rate difference with CSIApx is usually very
small, e.g., within − 3% and 3% in over 98.3% of the cases.
CTDP performs better reporting 99.0%, but this comes at
the cost of its compression ratio. At similar compression
ratio, cCTDP performs worse than CSIApx at 95.7%. The
rate difference in some very rare cases can also be positive,
since the greedy method sometimes selects different sets
of users when given the compressed and measured CSI.

5.1.5 Parameter distribution
One of the nice features of CSIApx is that the fit coeffi-
cients stay in a small range, making it simple and inex-
pensive to quantize and transmit the coefficients as the
compressed CSI. Figure 8 shows the distribution of the
real and imaginary parts of the coefficients found by CSI-
Apx for the strongest antenna pair in each test case,
because the distributions for other antenna pairs should
just be its scaled versions. We can see that all numbers
resides in a small range with smooth density.

5.2 Evaluation with synthesized CSI data
We test CSIApx with synthesized CSI data, which comple-
ments the experimental evaluation by challenging CSIApx
with more channel types and testing CSIApx under con-
trollable settings like the SNR level.

5.2.1 CSI generation
We use the channel model code at [19] to generate
CSI for all 64 subcarriers in Wi-Fi on 20-MHz chan-
nels for 3 by 3 links with nine antenna pairs. Four cases,
referred to as model B, model C, model D, and model
E, are used, which represent typical indoor environments
with around 100-ns, 200-ns, 400-ns, and 800-ns delay
spread, respectively, and should cover the majority of typ-
ical Wi-Fi channels. The maximum amplitude is again
normalized to 1. White Gaussian noise is added to the

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
Normalized Rate Difference 

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

CSIApx
CTDP
cCTDP

Fig. 7 Normalized rate difference with experimental data. A
comparison of the cumulative density function (CDF) of the
normalized rate difference is shown when running CSIApx versus
CTDP versus CCTDP
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Fig. 8 Coefficient values with experimental data. The distribution of
the real and imaginary parts of the coefficients found by CSIApx is
shown for the strongest antenna pair in the each experimental test
case

CSI vector, and a total of 1000 test cases are performed
for each SNR level. To simulate imperfect rotation, the
CSI is further multiplied by a sinusoid with random fre-
quency, which translates to within 0 to 50 ns of timing
error.

5.2.2 Fit accuracy and compression ratio
As the clean CSI is available, when calculating the final fit
residual, the fit is compared with the clean CSI; all prior
steps are still based on the noisy CSI. Figure 9 shows the
mean of the total fit residual of all antenna pairs in various
settings. The fit residual of CSIApx is usually very small,

such as about 0.0007 or lower per point at 20 dB or above.
In addition, as the noise level reduces by 5 dB, the fit resid-
ual in most cases also reduces by roughly 5 dB, suggesting
that the fit residual is mostly noise. Figure 10 shows the
average compression ratios. It can be seen that CSIApx
achieves very high compression ratios in many cases, i.e.,
above 12.4:1, 7.9:1, 5.5:1, and 4.0:1 against 64 subcarriers
for models B, C, D, E, respectively, when the SNR is 20 dB
or above. More complicated channel conditions do pose a
challenge to CSIApx as it has to use higher configurations.
Also, although CSIApx may have slightly larger fit resid-
ual, it has much higher compression ratios than CTDP
in all cases. In addition, the compression ratio CSIApx is
more stable than CTDP for each model when the SNR is
20 dB or higher, suggesting the CSIApx is better at captur-
ing the actual signal and less susceptible to the influence of
noise. cCTDP has higher fit residual and lower compres-
sion ratios in almost all cases when the SNR is 20 dB or
higher.

5.2.3 MU-MIMO rate
MU-MIMO rate is also tested in a similar manner as
with the experimental data. Figure 11 shows the per-
centage of cases that the normalized rate differences
are above 3% or lower than − 3%, where we can see
that the fraction is very low for CSIApx when the
SNR is 25 dB or higher, and still reasonably small
at 20 dB except for model E which is the most
complicated.

15 20 25 30
SNR (dB)

0

0.5

1

1.5

F
it 

R
es

id
ua

l

Model B

15 20 25 30
SNR (dB)

0

0.5

1

1.5

F
it 

R
es

id
ua

l

Model C

15 20 25 30
SNR (dB)

0

0.5

1

1.5

F
it 

R
es

id
ua

l

Model D

15 20 25 30
SNR (dB)

0

0.5

1

1.5

F
it 

R
es

id
ua

l

Model E

CSIApx
CTDP
cCTDP

Fig. 9 Fit residual with model data. The mean of the fit residual per point is shown when running CSIApx versus CTDP versus CCTDP on the
synthesized CSI data across four channel models B, C, D, and E and four SNR values 15 dB, 20 dB, 25 dB, and 30 dB
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Fig. 10 Compression ratio with model data. The mean of the fit residual per point is shown when running CSIApx versus CTDP versus CCTDP on the
synthesized CSI data across four channel models B, C, D, and E and four SNR values 15 dB, 20 dB, 25 dB, and 30 dB

5.2.4 Parameter distribution
Figure 12 shows the distribution of the fit coefficients by
CSIApx for the strongest antenna pair, which is similar to
that with the experimental data.

5.3 More compression with Huffman coding
Even higher compression ratio can be achieved for CSI-
Apx by running Huffman coding on the coefficients,

taking advantage of the fact that the distribution of the
real and imaginary parts of the coefficients, such as that
in Fig. 13, is spiky and has low entropy. The process
is explained for the experimental data in the follow-
ing. We empirically choose 12 bits for quantization in
range [− 2.56, 2.56], which results in negligible quan-
tization error and includes all coefficients. A training
set with 3962 experiments is randomly chosen from the
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Fig. 11MU-MIMO rate difference with model data. The percentage of cases where the normalized rate differences are above 3% or lower than
− 3% is shown when running CSIApx versus CTDP versus CCTDP on the synthesized CSI data
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Fig. 12 Coefficient values with model data. The distribution of the fit coefficients found by CSIApx for the strongest antenna pair when evaluated on
the synthesized CSI data

data to obtain the dictionary of the Huffman coding,
which is then tested on the remaining data. Figure 13
shows the CDF of the compression ratio achieved by
Huffman coding, where the ratio is calculated by sub-
tracting the size of the raw coefficients by the size of
the compressed coefficients then divided by the former.
The average compression ratio is 22.1%, and the ratio
is positive for over 98% of the cases. Separate Huffman
coding dictionaries can also be built for each configura-
tion; however, our results show that the improvement is
marginal.
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Fig. 13 Improvement with Huffman coding. The improvement in
compression ratio when running Huffman coding after CSIApx is
shown for the experimental data

5.4 Comparing with Givens rotation
The Wi-Fi standard includes an option to use the Givens
rotation to compress CSI. That is, instead of sending the
entire CSI, it calculates a compressed feedback matrix by
zeroing out some elements, which is later reconstituted to
obtain the full CSI. We provide a head-to-head compari-
son between CSIApx and the Givens rotation method and
argue that CSIApx is a better alternative.

5.4.1 Fit accuracy and compression ratio
Givens rotation is lossless in the sense that the other end
of the communication link can exactly reproduce themea-
sured CSI. It therefore appears that Givens rotation will
have higher accuracy than CSIApx, as CSIApx is based
on approximation. However, this is only true when the
measured CSI is clean, i.e., without any noise. With mea-
surement noise and quantization noise, we found that
CSIApx actually achieves better accuracy than the Givens
rotation, i.e., the CSI with CSIApx follows the shape of
the actual CSI more closely than the Givens rotation.
From a high level, this is because when fitting a CSI
curve, CSIApx serves as a filter and filters out most of the
noise, whereas Givens rotation will simply preserve the
noise.
Figure 14 shows this comparison between CSIApx and

Givens rotation on the model data, where we can see that
CSIApx indeed achieves lower fit residual. Themodel data
is used because the clean CSI is available. For a more fair
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Fig. 14 Fit residual comparison with Givens rotation. The comparison between the fit residual achieved by CSIApx and Givens rotation is shown
when running on the synthesized CSI data at four SNR values 15 dB, 20 dB, 25 dB, and 30 dB

comparison, before running the Givens rotation, a low-
pass filter is used in an attempt to filter out some noise, as
it is expected that such filter will be used in practice. Due
to the low-pass filter, only the results of the middle 50 sub-
carriers are used in this comparison. The performance of
CSIApx is better with the middle 50 subcarriers than with
all subcarriers, because the subcarriers near the ends have
less constraints in the fitting and have larger errors.
CSIApx will also enjoy a higher compression ration than

the Givens rotation. Figure 15 shows the compression
ratio for the experimental data. As mentioned earlier the
average compression ratio achieved by CSIAPX for the
2 × 2 system in a real-world setting was 7.68. Because
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Fig. 15 Compression ratio comparison with Givens rotation. The
comparison between compression ratio for CSIAPx versus Givens
Rotation is shown for the experimental data

CSIApx fits each antenna pair individually, hence, it can
remain constant even when the number of pairs increases.
The compression ratio achieved by Givens rotation on
the other hand will keep decreasing as the antenna order
increase is approaching 2.

5.4.2 MU-MIMO rate
We further evaluate the fit accuracy by comparing the
data rate achieved in aMU-MIMO setting from both CSI-
Apx and Givens rotation. Figure 16 shows the percentage
of cases where the normalized rate differences are higher
than 3% or lower than − 3% when compared against the
clean signal. We see that CSIApx outperforms Givens
rotation.

6 Conclusion
We propose CSIApx, a fast and lightweight method for
compressing the CSI of OFDM wireless links. We first
prove that almost any sinusoid can be approximated as the
linear combination of a small number of base sinusoids on
constant frequencies. Exploiting the constant frequencies
of the base sinusoids, CSIApx pre-computes key steps and
finds a minimum square fit of the CSI vector with very
few computations. We evaluate CSIApx with both exper-
imental and synthesized CSI data, and the results show
that CSIApx achieves very good compression ratios and
approximation accuracy.We therefore believe CSIApx can
be a very useful tool to be incorporated into theWi-Fi pro-
tocol and will enable timely and accurate CSI feedback to
improve the network performance.
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Fig. 16MU-MIMO rate difference comparison with Givens rotation. The percentage of cases where the normalized rate differences are above 3% or
lower than − 3% is shown when running CSIApx versus Givens rotation on the synthesized CSI data
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