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On performance analysis for optimum
combining of DF relaying with fast-fading
multiple correlated CCIs, correlated source-
relay, and thermal noise
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Abstract

This paper analyzes the outage probability (OP) and the average symbol error rate (SER) of decode-and-forward
(DF) relaying. The paper derives closed-form expressions for the OP and the average SER with optimum combining
(OC) considering fast-fading multiple correlated CCIs, the correlated source-relay, and thermal noise. It is shown that
the performance of the large distance between the source and the relay is better than that of the small distance,
regardless of interference fading speed at the destination. We also show that given the source-relay distance, the
performance of slow-fading interference is basically better than that of fast fading, except in the low signal-to-noise-
ratio (SNR) regime for the distance being small. In result, the source-relay distance is generally a more dominating
factor for the performance than fading CCIs.

Keywords: Decode-and-forward relaying, Fast-fading correlated multiple CCIs, Correlated source-relay, Optimum
combining, Rayleigh fading, Thermal noise, Outage probability, Symbol error rate

1 Introduction
Cooperative communications have been prominent because
of diversity gain [1]. In cooperative networks, there are
mainly two methods, such as the amplify-and-forward (AF)
relay network and the decode-and-forward (DF) relay
network [2]. Then with multiple copies, the destination can
achieve cooperative diversity. In order to do so, we can use
maximal-ratio combining (MRC) [3] (p., 316) or optimum
combining (OC) [4]. MRC maximizes the signal-to-
noise-ratio (SNR), while OC maximizes the signal-to-inter-
ference-plus-noise ratio (SINR). When co-channel inter-
ferers (CCIs) are present at the destination, OC reduces
CCIs’ power and increases diversity [5]. Since the analytical
expressions for the outage probability (OP) and the average
symbol error rate (SER) are complex for derivation, some
simplified models have been used [6, 7]. Usually, thermal
noise is ignored for the tractability of analytical expressions,
assuming CCIs being dense, and the system models are sim-
plified. In this case, when the effect of thermal noise is

greater than that of CCIs, the analysis of the simplified
model might be incorrect [8]. Therefore thermal noise is
considered, but fading is still assumed to be slow so that fad-
ing in phase 1 and 2 is unchanged and constant. In this case,
the analysis is limited for slow fading with MRC [8] or with
OC [9]. In addition, it has been assumed that the source and
the relay are always far enough to be uncorrelated, which is
not always true. Sometimes they become so close that the
correlation between them occurs, with which the perform-
ance degrades to some extent.
Recently, there have been many research advances in the

DF relay network: the opportunistic relaying (OR) in the
presence of CCIs is investigated in [10]; a new transmission
scheme for selective DF relaying networks is presented, con-
sidering the employment of different modulation levels at
the transmitting nodes [11]; and a joint scheme (JS) has
been proposed for a multiple-relay multiple-input
multiple-output (MIMO) network with a DF relaying strat-
egy [12]. In [13], a novel distributed space-time coding
(DSTC) transmission scheme for a two-path successive DF
relay network is proposed. The average SER is analyzed for
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a wireless-powered three-node DF relaying system in Naka-
gami-m fading environment [14].
In this paper, a DF protocol is considered. It is assumed

that at the relay symbol-by-symbol decoding is executed,
and at the destination, full decoding is carried out [2]. We
also assume that multiple correlated CCIs are fast faded, the
source and relay are correlated, and thermal noise is present.
To the best of our knowledge, the performance analysis for
this system has not been reported. First, we derive
closed-form expressions for the OP and the average SER
with OC considering fast-fading multiple correlated CCIs,
the correlated source-relay, and thermal noise. Second, we
investigate the effects of the source-relay distance and fast/
slow-fading CCIs on the performance.
The paper is organized as follows: Section 2 defines the

system and channel model. In Section 3, the exact analytical
expressions are derived for the OP and the average SER.
Section 4 presents the analytical and simulation results,
which we discuss in detail. The paper is concluded in Sec-
tion 5.

2 System and channel model
We define the full cooperative case as relaying with no
symbol errors and the non-cooperative case as relaying with
the symbol error probability being one. Let the probability
of symbol errors at the relay be PðRÞ

e . For the full cooperative

case, PðRÞ
e ¼ 0, and for the non-cooperative case, PðRÞ

e ¼ 1.

For 0 < PðRÞ
e < 1, we say simply the cooperative case. We

assume that the destination knows whether or not the relay
sends the symbol with the probability one. We suppose a
time division duplex (TDD) mode [1, 8]. The DF protocol is

composed of two time slots, t1 and t2. One time interval t1
is for phase 1 and the other t2 is for phase 2. Therefore, a
single transmission duration (STD) tSTD becomes t1 + t2.
Note that under fast fading assumption, channel states
change and are not constant over tSTD. The relay system
consists of a source (S), a relay (R), a destination (D), inter-

ferers (Ið jÞR , j ¼ 1; 2;⋯;NIR) at the relay, and interferers (IðiÞD ,
i ¼ 1; 2;⋯;NID) at the destination. We model thermal noise
as circularly symmetric additive white Gaussian noise
(AWGN). Each channel is affected by AWGN. The system
and channel model is depicted in Fig. 1. (The source-relay
channel correlation coefficient rSR and the destination inter-
ferer channel correlation coefficient rID are defined in the fol-
lowing sections.)
Under the above assumptions, for the first time slot t1,

i.e., in phase 1, the source transmits its data symbols.
The received signal at the destination is expressed by:

y S;D;t1ð Þ ¼
ffiffiffiffiffiffi
Et1
S

q
g S;D;t1ð Þ
0 b0 þ

XNID

i¼1

ffiffiffiffiffiffiffi
Et1
ID

q
g ID;D;t1ð Þ
i bi þ n S;D;t1ð Þ ð1Þ

where Et1
S , E

t1
ID , b0, and bi are the power transmitted by the

source over the time slot t1, the power transmitted by each
interferer over the time slot t1, the source data symbol with
unit average power, and each interferer data symbol with unit
average power for i ¼ 1;⋯;NID , respectively, and NID is the
number of interferers. Furthermore, the channel propagation

parameters gðS;D;t1Þ0 and gðID;D;t1Þi , i ¼ 1; 2;⋯;NID , ∼CN ð0;
12Þ are Rayleigh faded, and thermal noise nðS;DÞ∼CN ð0;N0Þ
is complex AWGN, where the notation CN ðμ;ΣÞ denotes
the complex circularly symmetric normal distribution with

Fig. 1 System and channel model
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mean μ and variance Σ. The received signal at the relay is
expressed by:

y S;R;t1ð Þ ¼
ffiffiffiffiffiffi
Et1
S

q
g S;R;t1ð Þ
0 b0 þ

XNIR

j¼1

ffiffiffiffiffiffiffi
Et1
IR

q
g IR;R;t1ð Þ
i ri þ n S;R;t1ð Þ ð2Þ

where Et1
IR is each interferer power over the time slot t1

and ri, and j ¼ 1;⋯;NIR are the interferer data symbols
each with unit average power. The channel parameters

gðIR;R;t1Þi , i ¼ 1; 2;⋯;NIR , ∼CN ð0; 12Þ are Rayleigh faded,

and nðS;R;t1Þ∼CN ð0;N0Þ is complex AWGN.
For the second time slot t2, i.e., in phase 2, if the relay

correctly decodes the symbol, then it forwards the
symbol to the destination. In this case, the signal at the
destination is expressed by:

y R;D;t2ð Þ ¼
ffiffiffiffiffiffi
Et2
R

q
g R;D;t2ð Þ
0 b0 þ

XNID

i¼1

ffiffiffiffiffiffiffi
Et2
ID

q
g ID;D;t2ð Þ
i bi þ n R;D;t2ð Þ ð3Þ

where Et2
R is the transmitter power and Et2

ID is each inter-

ferer power. The channel parameters gðR;D;t2Þ0 and gðI;D;t2Þi ,
i ¼ 1; 2⋯;NID; , ∼CN ð0; 12Þ are Rayleigh faded, and

nðR;D;t2Þ∼CN ð0;N0Þ is complex AWGN.
Thus, assuming ES ¼ Et1

S ¼ Et2
R and EID ¼ Et1

ID ¼ Et2
ID ,

for PðRÞ
e ¼ 0 , the received signal at the destination is

expressed by:

yfull‐co ¼ y S;D;t1ð Þ

y R;D;t2ð Þ

� �
¼

ffiffiffiffiffi
ES

p g S;D;t1ð Þ
0

g R;D;t2ð Þ
0

" #
b0 þ

XN I

i¼1

ffiffiffiffiffiffiffi
EID

p g ID;D;t1ð Þ
i

g ID;D;t2ð Þ
i

" #
bi

þ n S;D;t1ð Þ

n R;D;t2ð Þ

� �
¼

ffiffiffiffiffi
ES

p
g0b0 þ

XN I

i¼1

ffiffiffiffiffiffiffi
EID

p
g ibi þ n

ð4Þ

where yfull‐co≜
yðS;D;t1Þ

yðR;D;t2Þ

� �
, g0≜

g0
ðS;D;t1Þ

g0
ðR;D;t2Þ

� �
, g i≜

gi
ðID;D;t1Þ

gi
ðID;D;t2Þ

� �
,

i ¼ 1; 2;⋯;NID , and n≜½nðS;D;t1Þ
nðR;D;t2Þ� . Here, we assume g0, gi,

i ¼ 1; 2⋯;NID , and n are (2 × 1) zero-mean complex
symmetric Gaussian random vectors. For PðRÞ

e ¼ 1 , the
received signal at the destination is expressed by:

ynon‐co ¼ y S;D;t1ð Þ

0

� �
¼

ffiffiffiffiffi
ES

p g S;D;t1ð Þ
0
0

� �
b0

þ
XN I

i¼1

ffiffiffiffiffiffiffi
EID

p g ID;D;t1ð Þ
i
0

� �
bi þ n S;D;t1ð Þ

0

� �
ð5Þ

3 OP and SER derivation

We first derive the OP, Pðfull‐coÞ
out ðγðfull‐coÞTh Þ , and the average

SER, SERfull−∞, for PðRÞ
e ¼ 0 and later derive the OP,

Pðnon‐coÞ
out ðγðnon‐coÞTh Þ, and the average SER, SERnon‐∞ , for PðRÞ

e

¼ 1. In order to obtain the decision xfull‐co ¼ w†
full‐co yfull‐co,

the weight vector wfull ‐ co is expressed by wfull ‐ co =R−1g0
with the interference-plus-noise correlation matrix R =
N0I2 + EIGG

† and G ¼ ½g1g2⋯gNID
� [4]. The notation I2 is

the (2 × 2) identity matrix, and the notation (•)† is the con-
jugation and transposition. The instantaneous maximum
output SINR at the destination is expressed as

γfull‐co ¼ ESg
†
0R

−1g0 ð6Þ
The moment-generating function (MGF) of γfull ‐ co is

given by:

Mγ full‐co sð Þ ¼ Eγfull‐co e
γfull‐cos½ � ¼ Eγ full‐co eESg†0R

−1g0s
h i

¼ Eγfull‐co eESg†0 N0I2þEIGG†ð Þ−1g0s
h i

¼ EGG† Eγfull‐cojGG† eESg†0 N0I2þEIGG†ð Þ−1g0s
h ih i

¼ EGG†
1

I2−ESE g0g
†
0½ � N0I2 þ EIGG†ð Þ−1s

��� ���
2
64

3
75

¼ EGG†
1

I2−Γ0ΣSR I2 þ Γ1GG†ð Þ−1s
��� ���

2
64

3
75

ð7Þ

where on the fifth line in the above equation, we use
the general central quadratic form [15] of the MGF,
the notation jAj is the determinant of a matrix A ,
the source-relay channel parameter (2 × 2) correlation
matrix E½g0g†0� is denoted as ΣSR, the power ratio Γ0
≜ ES/N0 is the SNR over each time slot, i.e., t1 or t2,
and the power ratio Γ1≜EID=N0 is the
interference-to-noise ratio (INR) over each time slot,
i.e., t1 or t2. We express the (2 × 2) Hermitian matrix
GG† as the eigenvalue decomposition [16].

GG† ¼ UΒU†; Β ¼ β1 0
0 β2

� �
ð8Þ

where β1 and β2 with β1 ≥ β2 are the non-zero ordered
real eigenvalues of GG† and U is the (2 × 2) unitary
matrix. The MGF Mγfull‐coðsÞ is given by:

Mγfull‐co sð Þ ¼ EGG†
1

I2−Γ0ΣSR I2 þ Γ1GG†ð Þ−1 s
��� ���

2
64

3
75 ¼ EΒ;U

1

I2−Γ0ΣSR I2 þ Γ1GG†ð Þ−1 s
��� ���

2
64

3
75

¼ EΒ EUjΒ
1

I2−Γ0ΣSR I2 þ Γ1GG†ð Þ−1s
��� ���

2
64

3
75

2
64

3
75 ¼ EΒ EUjΒ

1þ Γ1β1ð Þ 1þ Γ1β2ð Þ
1þ Γ1β1−Γ0σ1sð Þ 1þ Γ1β2−Γ0σ2sð Þ þ Γ0σ1s−Γ0σ2sð Þ Γ1β2−Γ1β1ð Þ sin2θ

� �� �
ð9Þ
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where on the fourth line in the above equation, we use
the fact that the random variable (RV) θ is uniformly
distributed in the interval [−π, π) [17]. The MGF MγcoðsÞ
is simplified by the integration over the RV θ as:

Mγfull‐co sð Þ

¼ EΒ EUjΒ
1þ Γ1β1ð Þ 1þ Γ1β2ð Þ

1þ Γ1β1−Γ0σ1sð Þ 1þ Γ1β2−Γ0σ2sð Þ þ Γ0σ1s−Γ0σ2sð Þ Γ1β2−Γ1β1ð Þ sin2θ
� �� �

¼ EΒ
1
2π

Z π

−π

1þ Γ1β1ð Þ 1þ Γ1β2ð Þ
1þ Γ1β1−Γ0σ1sð Þ 1þ Γ1β2−Γ0σ2sð Þ þ Γ0σ1s−Γ0σ2sð Þ Γ1β2−Γ1β1ð Þ sin2θ dθ

� �

¼ EΒ
1þ Γ1β1ð Þ 1þ Γ1β2ð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Γ1β1−Γ0σ1sð Þ 1þ Γ1β1−Γ0σ2sð Þ 1þ Γ1β2−Γ0σ2sð Þ 1þ Γ1β2−Γ0σ1sð Þp
" #

:

ð10Þ

where the notation |a| is the absolute value of a scalar a.
The expectation over Β is obtained using the probability
density function (PDF) fΒ(Β) [18] as:

Mγfull‐co sð Þ ¼ K
Z ∞

0

xNIDþ j−3e−x=αi 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

" #2

i; j¼1

������
������

ð11Þ

where ½ai; j�2i; j¼1 is a (2 × 2) matrix with elements ai, j, i,

j = 1, 2, and the constant K is given by:

K ¼ 1

Γ NIDð ÞΓ NID−1ð Þ ΣDj jNID −α−1j
� �i−1

� �2
i; j¼1

�����
�����
:

ð12Þ
The function Γ(·) is the gamma function. The values α1

and α2 with α1 ≥ α2 are the eigenvalues of the destination
interferer channel parameter (2 × 2) correlation matrix ΣID

≜E½g ig i†� , i ¼ 1; 2;⋯;NID . Using the (2 × 2) determinant
formula, the MGF Mγ full‐coðsÞ is given by:

With some algebraic manipulations, the MGF Mγ full‐coðsÞ
is expressed as:

The MGF Mγ full‐coðsÞ is further simplified as:

Mγ full‐co sð Þ ¼ K
Z ∞

0
g x; α1ð Þdx

Z ∞

0
xgðx; 2−α1Þdx

�

−
Z ∞

0
xgðx; α1Þdx

Z ∞

0
gðx; 2−α1Þdx

	 ð15Þ

where

g x; αð Þ ¼ xNID−2e−x=α 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp ð16Þ

and we use the fact that ΣID ¼ E½g ig i†� , i ¼ 1; 2;⋯;NID ,
has unit diagonal elements because the channel parame-

ters gðID;D;t1Þi and gðID;D;t2Þi , i ¼ 1; 2;⋯;NID , are distributed
according to CN ð0; 12Þ, so that the trace of ΣID is trðΣID

Þ ¼ 2 ¼ α1 þ α2 . The result in Eq. (15) is valid for the
multiple correlated CCIs with NID ≥2. For the single inter-
ferer case with NID ¼ 1 , we obtain the simpler MGF
Mγfull‐coðsÞ . Let the conditional MGF Mγfull‐cojλ1ðsÞ be the
MGF Mγfull‐coðsÞ conditioned on λ1 [19] and the RV λ1 be
the random eigenvalue of R (the other eigenvalue of R is
the constant N0). (Note that λ1 and N0 are the eigenvalues
of R =N0I2 + EIGG

†, and β1 and β2 are the eigenvalues of
GG†.) Then the MGF Mγfull‐coðsÞ of γfull ‐ co is derived as:

Mγ full‐co sð Þ ¼
Z ∞

N0

Mγcojλ1 sð Þ f λ1 λ1ð Þdλ1

¼
Z ∞

N0

1

1−
ES

N0
s

� 	
1−

ES

λ1
s

� 	 f λ1 λ1ð Þdλ1

¼
Z ∞

N0

1

1−
ES

N0
s

� 	
1−

ES

λ1
s

� 	 1

E2
ID

λ1−N0ð Þe− λ1−N0ð Þ=EID dλ1

¼
Z ∞

N0

λ1−N0ð Þe− λ1−N0ð Þ=EID

E2
ID 1−Γ0sð Þ 1−

ES

λ1
s

� 	 dλ1

ð17Þ

Mγ full‐co sð Þ ¼ K

Z ∞

0

xNID−2e−x=α1 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

Z ∞

0

xNID−1e−x=α2 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

−
Z ∞

0

xNID−1e−x=α1 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

Z ∞

0

xNID−2e−x=α2 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

0
BBB@

1
CCCA ð13Þ

Mγ full‐co sð Þ ¼ K

Z ∞

0

xNID−2e−x=α1 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

Z ∞

0
x

xNID−2e−x=α2 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

−
Z ∞

0

xNID−2e−x=α2 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

Z ∞

0
x

xNID−2e−x=α1 1þ Γ1xj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ1x−sΓ0σ1ð Þ 1þ Γ1x−sΓ0σ2ð Þp dx

0
BBB@

1
CCCA ð14Þ
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In the derivation of Eq. (17), we use λ1∼χ21 , where the
notation χ21 denotes a complex chi-squared distribution

with one complex degree of freedom; f λ1ðλ1Þ ¼ ðλ1−N0Þ
e−ðλ1−N0Þ=EID =E2

ID , λ1 ≥N0. Now we have derived Mγ full‐coðsÞ
for all NID ≥1. From Mγfull‐coðsÞ, we obtain the characteris-

tic function (CF) ϕγfull‐co
ðtÞ ¼ Mγfull‐coð

ffiffiffiffiffiffi
−1

p
tÞ . The PDF

f γ full‐coðγ full‐coÞ of γfull ‐ co is obtained from ϕγfull‐co
ðtÞ by the

Fourier transform, which is easily calculated using the
fast Fourier transform (FFT). Then, SERfull‐co with the
coherent binary phase shift keying (BPSK) is calculated
as [19]:

SERfull‐co ¼
Z ∞

0
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ full‐co

p
 �
f full‐co γ full‐co


 �
dγ full‐co

ð18Þ

where QðxÞ≜1= ffiffiffiffiffiffi
2π

p R∞
x e−y

2=2dy . For NID ¼ 1, SERfull ‐ co

can be alternatively calculated by Eq. (10.20) in [19]. For

a given threshold γðfull‐coÞTh , the OP Pðfull‐coÞ
out ðγðfull‐coÞTh Þ is de-

fined and is calculated as:

P full‐coð Þ
out γ full‐coð Þ

Th

� �
≜p γ full‐co≤γ

full‐coð Þ
Th

� �
¼

Z γ full‐coð Þ
Th

0
f full‐co γ full‐co


 �
dγ full‐co ð19Þ

Next, we derive Pðnon‐coÞ
out ðγðnon‐coÞTh Þ and SERnon ‐ co for

PðRÞ
e ¼ 1 . To obtain the decision xnon‐co ¼ w†

non‐coy
ðS;D;t1Þ ,

the weight wnon ‐ co is expressed by wnon‐co ¼ R−1
non‐cog

ðS;D;t1Þ
0

with Rnon‐co ¼ N0 þ EIhgðID;D;t1Þi iNID

i¼1 ðhgðID;D;t1Þi iNID

i¼1 Þ
†

. The

notation haiiNi¼1 is a (1 ×N) matrix with elements ai, i ¼ 1; 2
;⋯;NID . The maximum instantaneous output SINR at the
destination can be expressed as:

γnon‐co ¼ ESg
S;D;t1ð Þ
0

†
R−1
non‐cog

S;D;t1ð Þ
0

¼ ES g S;D;t1ð Þ
0

��� ���2R−1
non‐co

¼
ES g S;D;t1ð Þ

0

��� ���2
N0 þ EID g ID;D;t1ð Þ

i

D ENID

i¼1
g ID;D;t1ð Þ
i

D ENID

i¼1

� 	†

¼ X
1=Γ0 þ Γ1=Γ0W

:

ð20Þ

The RV X≜jgðS;D;t1Þ0 j2 is exponentially distributed with
the PDF fX(x) ≜ e−x, x ≥ 0. The chi-squared-distributed

RV W≜hgðID;D;t1Þi iNID

i¼1 ðhgðID;D;t1Þi iNID

i¼1 Þ
†

∼χ2NID
has the PDF

f W ðwÞ≜1=ðNID−1Þ! � wNID−1e−w , w ≥ 0, with NID com-
plex degree of freedom. The RV Y ≜ 1/Γ0 + Γ1/Γ0W has
the PDF

f Y yð Þ≜ Γ0
Γ1

Γ0y−1ð Þ=Γ1ð ÞNID−1e− Γ0y−1ð Þ=Γ1ð Þ= NID−1ð Þ!
ð21Þ

with y ≥ 1/Γ0. Then, the RV γnon ‐ co = X/Y is ratio distrib-
uted, and the f γnon‐coðγnon‐coÞ is derived as:

f γnon‐co γnon‐co

 � ¼ Z ∞

1=Γ0

yf X γnon‐coy

 �

f Y yð Þdy

¼
Z ∞

1=Γ0

ye−γnon‐coy
Γ0
Γ1

1
NID−1ð Þ! Γ0y−1ð Þ=Γ1ð ÞNID−1e− Γ0y−1ð Þ=Γ1ð Þdy:

ð22Þ
Similarly as in the PðRÞ

e ¼ 0 case, with f γnon‐coðγnon‐coÞ, we
calculate Pðnon‐coÞ

out ðγðnon‐coÞTh Þ and SERnon ‐ co for PðRÞ
e ¼ 1.

Now based on the total probability theorem, finally,
we obtain a closed-form expression for the OP Pout(γTh)
at the destination as:

Pout γTh

 � ¼ P full‐coð Þ

out γTh

 �

1−P Rð Þ
e

� �
þ P non‐coð Þ

out γTh

 �

P Rð Þ
e ð23Þ

and the average SER at the destination is derived as:

SER ¼
Z ∞

0
Q

ffiffiffiffiffi
2γ

p� �
f γ γð Þdγ

¼ SERfull‐co 1−P Rð Þ
e

� �
þSERnon‐coP

Rð Þ
e : ð24Þ

With these exact analytical expressions, we can inves-
tigate the effects of the distance between the source and
the relay, i.e., ΣSR and fast/slow-fading interference at
the destination, i.e., ΣID .

4 Results and discussion
We assume that the signals have the exponential correl-
ation [20]. Thus, with the source-relay channel correl-
ation coefficient rSR ∈ [0, 1):

ΣSR ¼ 1 rSR
rSR 1

� �
ð25Þ

and with the destination interferer channel correlation
coefficient rID∈½0; 1Þ:

ΣID ¼ 1 rID
rID 1

� �
: ð26Þ

We define the total SNR as Γtotal0 ≜Etotal
S =N0 and the

total INR Γtotal1 ≜Etotal
ID =N0 , where Etotal

S ¼ Et1
S þ Et2

R ¼ 2ES

and Etotal
ID ¼ ð2NIDÞEID , where the factor 2 represents

two time slots. The correlation coefficients are explained
as follows: the smaller the rSR is, the larger the distance
between the source node and the relay node is. On the
other hand, the smaller the rID is, the more independent,
i.e., the less correlated, the two channel coefficients
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gðID;D;t1Þi and gðID;D;t2Þi are, for a given i among i ¼ 1; 2;⋯;

NID . This means that the maximum Doppler spread is
larger so that the coherence time is smaller, i.e., fast fad-
ing [21]. Thinking in the opposite direction, i.e., slow
fading, is also true.
First, we investigate the effect of the probability of

symbol errors PðRÞ
e at the relay on the OP Pout(γTh) at the

destination. We assume that with NID ¼ 2, Γtotal1 ¼ ð2NIDÞ
Γ1 ¼ 3 dBþ 3 dBþ 4 dB ¼ 10 dB is fixed. We also as-
sume that there are almost uncorrelated users (rSR = 0.01)
and slow-fading multiple correlated CCIs ( rID ¼ 0:99 ),
which are the assumptions of the previous researches, i.e.,
independent users and flat-fading interference over tSTD.
In Fig. 2, the OP performance is shown for various PðRÞ

e

values. We observe in Fig. 2 that the OP performance with
PðRÞ
e ≤0:001 reaches that with the full cooperative case PðRÞ

e

¼ 0. Since this paper focuses on the performance analysis
for the source-relay distance and fast/slow fading CCIs,
from now on, we set PðRÞ

e ¼ 0:001. In Fig. 2, we also show
the analytical and simulation results, which are in good
agreement, so that the following analyses are based on the
analytical expressions.
Next, we analyze the OP Pout(γTh) at the destination

for various rSR and rID values. In Fig. 3, for the fixed rID

¼ 0:99, i.e., slow fading CCIs (which is the previous re-
search assumption), the OP Pout(γTh) at the destination
is shown for various rSR. We observe in Fig. 3 that as the
correlation between the source and the relay becomes
larger, the OP performance degrades severely and co-
operative diversity decreases. It is shown in Fig. 4 that
for the fixed rID ¼ 0:01 , i.e., fast fading CCIs (which is
considered in this paper), the OP Pout(γTh) at the destin-
ation is shown for various rSR. The results in Fig. 4 are
similar with those in Fig. 3, but the patterns of the OP
performance degradation are different. In order to inves-
tigate the difference, we plot the combination of Fig. 3
and Fig. 4 in Fig. 5. It is investigated in Fig. 5 that the
performance of the large distance between the source
and the relay is better than that of the small distance, re-
gardless of interference fading speed at the destination.
We define the impact of fast-fading CCIs on the per-
formance as the SNR Γ0 loss in decibel compared with
slow-fading CCIs. We observe in Fig. 5 that given the
distance between the source and the relay (rSR = 0.01 or
0.99), the performance of fast-fading interference at the
destination is basically worse than that of slow fading,
except in the low SNR regime for the distance being
small (rSR = 0.99). The exception is explained as follows:
since the small distance results in lost diversity, in the

Fig. 2 The outage probability, Pout(γTh), for various PðRÞe values in the presence of almost uncorrelated users (rSR = 0.01), and slow-fading multiple

correlated CCIs (rID ¼ 0:99), and thermal noise, with NID ¼ 2, Γtotal1 ¼ 10 dB, and γTh = 3 dB
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low SNR regime, the weak power correlated signals
transmitted by the source and the relay are more vulner-
able to highly correlated CCIs (rID ¼ 0:99) than almost
uncorrelated CCIs (rID ¼ 0:01). (Note that if we ignored
thermal noise, we could not observe the exception in the
low SNR regimes.) In other words, besides the exception,
DF-relaying OC more easily cancels out almost
flat-fading CCIs ( rID ¼ 0:99) than fast-fading CCIs ( rID
¼ 0:01 ). Slow-fading CCIs represent highly correlated
CCIs, and fast-fading CCIs represent weakly correlated
CCIs. In result, the source-relay distance (rSR) is gener-
ally a more dominating factor than the fading CCIs (rID )
at the destination, when the performance of OC for
these systems is analyzed. It is also shown in Fig. 5
that the previous research assumption (rID ¼ 0:01, rID
¼ 0:99) is the most optimistic. In order to further in-
vestigate the effects of various rSR and rID on the
average SER for the DF-relaying OC system, Fig. 6
shows the SER of the BPSK modulation versus the
SNR Γ0. It is clearly shown in Fig. 6 that there is the
gap between the most optimistic case (rID ¼ 0:01, rID
¼ 0:99) and the most conservative case (rSR = 0.99, rID
¼ 0:01). The gap is about 8 dB in the SNR Γ0 at the
SER of 10−4. We also observe that the results in Fig. 6
are consistent with those in Fig. 5.

Now, we discuss the difference between OC and
non-OC. In order to achieve cooperative diversity, OC
maximizes the SINR, reduces CCIs’ power, and increases
diversity. On the other hand, non-OC, such as MRC,
maximizes only the SNR so that a smaller output SINR
is produced and the performance is degraded severely in
the presence of CCIs.

5 Conclusion
In this paper, we investigated the effects of the
source-relay distance and fast/slow-fading CCIs on
the performance of the DF-relaying OC system. Con-
ditioned on the probability of symbol errors at the
relay, we first developed the MGF of the instantan-
eous maximum output SINR. Using the total prob-
ability theorem, we then derived closed-form
expressions for the OP and the average SER at the
destination. With these analytical expressions, it was
shown that the performance of the large distance be-
tween the source and the relay is better than that of
the small distance, regardless of interference fading
speed at the destination. Furthermore, we also showed
that given the distance, the performance of
slow-fading interference is basically better than that
of fast fading, except in the low SNR regime for the

Fig. 3 The outage probability, Pout(γTh), for various rSR values in the presence of slow-fading multiple correlated CCIs (rID ¼ 0:99), and thermal noise,

with NID ¼ 2, Γtotal1 ¼ 10 dB, γTh= 3 dB, and PðRÞe ¼ 0:001

Chung EURASIP Journal on Wireless Communications and Networking         (2019) 2019:96 Page 7 of 10



Fig. 5 The outage probability, Pout(γTh), for various rSR and rID values in the presence of fading multiple correlated CCIs, and thermal noise, with

NID ¼ 2, Γtotal1 ¼ 10 dB, γTh = 3 dB, and PðRÞe ¼ 0:001

Fig. 4 The outage probability, Pout(γTh), for various rSR values in the presence of fast-fading multiple correlated CCIs (rID ¼ 0:01), and thermal noise, with NID ¼ 2,

Γtotal1 ¼ 10 dB, γTh=3 dB, and PðRÞe ¼ 0:001
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distance being small. In result, the source-relay dis-
tance is generally a more dominating factor than the
fading CCIs. Finally, we presented the average SER
performance, which showed the gap between the most
optimistic case and the most conservative case.
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