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Abstract

This paper presents a technique and experimental validation for anonymous outdoor location tracking of all users

residing on a mobile cellular network. The proposed technique does not require any intervention or cooperation on
the mobile side but runs completely on the network side, which is useful to automatically monitor traffic, estimate
population movements, or detect criminal activity. The proposed technique exploits the topology of a mobile cellular
network, enriched open map data, mode of transportation, and advanced route filtering. Current tracking algorithms
for cellular networks are validated in optimal or controlled environments on a small dataset or are merely validated by
simulations. In this work, validation data consisting of millions of parallel location estimations from over a million users
are collected and processed in real time, in cooperation with a major network operator in Belgium. Experiments are
conducted in urban and rural environments near Ghent and Antwerp, with trajectories on foot, by bike, and by car, in

environments with median accuraciesup to 112 m.

Big data, Spark

the months May and September 2017. It is shown that the mode of transportation, smartphone usage, and
environment impact the accuracy and that the proposed AMT location tracking algorithm is more robust and
outperforms existing techniques with relative improvements up to 88%. Best performances were obtained in urban
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1 Introduction

Network-based positioning algorithms locate a mobile
user based on measured radio signals from base stations in
its vicinity. The growing amount of available positioning
data has led to many location-based services (LBS). These
are a collection of applications that use geographical loca-
tion data of mobile devices provided by Wi-Fi, Bluetooth
Low Energy (BLE), Global Positioning System (GPS), or
cellular networks [1]. They provide services for end users,
e.g., wayfinding in large shopping centers or hospitals,
personal navigation, and location-based gaming. This is
also important for businesses and government, e.g., asset
tracking, fleet management, optimizing productivity in
manufacturing or distribution, analyzing traffic patterns,
transportation planning, security, and surveillance [2, 3].
A more specific example is the estimation of population
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movements during disasters or outbreaks. These require
timely and accurate location data which large-scale sur-
veys cannot provide, whereas network operators manage
data which can potentially be used to calculate location
data in real time [4].

The main contribution of this paper is the novel
positioning algorithm: AMT (antenna, map, and tim-
ing information-based tracking) to accurately locate all
mobile users in a cellular network without any required
modifications at the mobile side (client) or network side
(server). The latter is useful for applications where there
is typically no cooperation at the mobile side, e.g., traffic
monitoring, population movement estimation, or criminal
activity detection. The proposed location tracking algo-
rithm exploits enriched open map data [5], a mode of
transportation estimator, and advanced route filtering on
top of the mobile cellular topology and measurements
to track the movement and locations of mobile devices.
Furthermore, it does not depend on additional or cus-
tom software, forced messages, dedicated infrastructures,
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direct communication between mobile users, or prior
training data.

An extensive experimental validation was conducted
that included trajectories on foot, by bike, and by car, in
urban and rural environments while a person was actively
using his or her smartphone, but also in standby mode.
In this mode, all applications that use the mobile net-
work are blocked (e.g., email and messaging services) and
as such, standby mode represents a worst case scenario
in terms of the number of location updates. The latter
shows measurement gaps of up to 6 min while a user
was on the move, i.e., time periods where no measure-
ment data is available, which mainly occur in rural areas.
Current existing location tracking algorithms for mobile
cellular networks are not able to cope with large mea-
surement gaps but instead are deployed in optimal or
controlled environments with a high base station density,
regularly available measurement updates, large training
sets, or are merely validated by simulations with a fixed
location update rate. The novel contributions of this paper
are:

e Animmediately applicable location tracking
algorithm that does not require any modifications to
the client or network side

e The algorithm does not depend upon any prior
training via, e.g., offline fingerprinting, drive-testing,
or crowd-sourced measurement campaigns

e Confirmed to work for a large set of users,
nationwide, and in real time based on an experimental
validation instead of merely relying on simulations

The paper is structured as follows. Section 2 describes
the related work. Section 3 outlines the mobile network
and grid configuration, type of measurements, and tra-
jectories for the experimental validation. Section 4 dis-
cusses the proposed location tracking algorithm in detail,
and Section 5 presents the results. Finally, in Section 6,
conclusions are provided.

2 Related work

2.1 GPS enabled

The Global Positioning System (GPS) is a satellite-
based navigation technique that is ubiquitous due to its
widespread use and worldwide coverage. It can be used
to track mobile devices but only if the GPS receiver is
enabled, the location data is transmitted to a central
server, and there are no GPS outages. The latter refers
to the unavailability of GPS signals from sufficient satel-
lites due to, e.g., mountains, tall buildings, or multi-level
overpasses. Possible solutions are geometry-based loca-
tion techniques [6]. A system that utilizes mathematical
geometry to estimate vehicle location focusing on road
trajectory and vehicle dynamics is presented in [7].
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2.2 Infrastructure enabled

The most widely used approach to locate a mobile device
with telecommunication data from a network infrastruc-
ture is cell-ID based [1]. The mobile user is mapped to the
location of its serving base station, i.e., the cell to which
a mobile device is currently connected. It has a low cost
and a short response time and is easy to implement and
applicable in all places with cellular coverage but has a low
accuracy for high cell ranges.

The most common signal parameters used for network-
based location tracking are angle of arrival (AoA) [8], time
of arrival (ToA) [9], time difference of arrival (TDoA)
[10], and amplitude (signal strength) [11]. AoA techniques
determine the direction of propagation of a radio fre-
quency wave and require an antenna array at the side of
the incoming wave (network side). This technique per-
forms especially well in line-of-sight (LoS) conditions.
ToA techniques measure the time the radio signals travel
between a single transmitter (mobile user) and multiple
receivers (base stations), and requires two-way ranging
or synchronization between transmitter and receiver [12].
In TDoA techniques, time differences between the time
of flight of multiple radio signals are measured at the
receiving base stations; this is used in, e.g., LoRa [13].
Amplitude-based techniques convert the received sig-
nal strength to a distance based upon a path loss (PL)
model for distance conversion; however, it is required
that an accurate PL model is known for the consid-
ered environment. Knowledge of the network topol-
ogy to estimate the distances between a mobile user
and a set of base stations reduces the positioning for
all signal parameters to a triangulation or multilater-
ation problem [14]. Sensor fusion techniques combine
two or more of these signal parameters to estimate the
location [15].

Alternatively for the amplitude-based technique, the
location can be estimated by searching for the closest
match in a fingerprint database or coverage map. This
look-up table maps possible positions with a vector of
associated signal strength values or cell-IDs from a set of
base stations [16]. The signal strength values are collected
in an offline phase and can be measurement-based by test-
driving the area of interest [17-19], simulation-based by
using a propagation model [20-22], ray tracing [23], or
a hybrid approach [24]. Drive-testing is labor intensive
and needs to be redone each time the mobile network
or even the environment undergoes changes. Also, pos-
sible locations for the mobile user are limited to places
where a car can pass, meaning no indoor, pedestrian,
or off-road locations will be estimated. The simulation-
based approach is much faster but will generally lead to
less accurate location estimations. Alternatively, a crowd-
sourced measurement campaign can be used instead of
drive-testing.



Trogh et al. EURASIP Journal on Wireless Communications and Networking

Network-based location tracking poses several prob-
lems due to multipath and non-line-of-sight (NLoS)
conditions, small-scale and large-scale fading, low signal-
to-noise ratios, and interference by other mobile users.
These affect the radio signal parameters used as input
data to location tracking algorithms. To process the noisy
signal parameters and improve the accuracy, location
tracking algorithms use additional intelligence and infor-
mation. NLoS mitigation techniques use more robust
estimators or simply discard the NLoS component [9].
Map-based algorithms use information about the environ-
ment to limit possible locations and transitions between
two location updates; this can be done in combina-
tion with Kalman filters [25], particle filters [18], hidden
Markov models (HMM) [26], data fusion [27], or least
squares estimator [28]. A database correlation technique
over Received Signal Strength Indication (RSSI) data that
is based on advanced map- and mobility-based filter-
ing is presented in [29]. The algorithm is validated in
a field environment with trips by car, a location update
rate forced to 2 Hz, and an electromagnetic field sim-
ulator. A cooperative positioning technique for cellular
systems using RF pattern matching is presented in [30].
It is shown in simulations that leveraging the device-
to-device (D2D) communication protocol can improve
positioning performance if insufficient base stations are
visible to a user entity. A crowd-sourced measurement
campaign to develop radio frequency (RF) coverage maps
and a similarity-based location algorithm is presented in
[31]. A proprietary application, installed on the smart-
phone of a sample set of users in the network, periodically
reports the RF channel measurement along with the GPS
tag to a central server, which are then processed into
the RF coverage map. This resulted in accuracies up to
50 m and 300 m, depending on the cell’s coverage range.
A semi- and unsupervised learning technique that min-
imizes the effort to label signal strength measurements
for the network-side cellular localization problem is pre-
sented in [32]. This technique uses Gaussian mixture
models to model the signal strength vectors and an expec-
tation maximization approach to learn the distributions.
Accuracies up to 30 m are reported as long as enough
training data is available and the base station density is
high. A machine learning technique for indoor-outdoor
classification and particle filter with HMM for cellular
localization is presented in [18]. The trajectory of a mov-
ing user was synthesized and reconstructed based on a
data training set of around 129000 drive test data points
and a fixed location update interval of 10 s, which led to
accuracies up to 20 m in urban environments. Note that
the latter accuracies are only achieved with large (crowd-
sourced) training sets, synthesized data, and high location
update rates, which our approach does not require. Fur-
thermore, the proposed location tracking algorithm is
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confirmed to execute in real time for more than a million
users in parallel and outperforms state-of-the-art particle
filters [18].

A topic which currently attracts a lot of attention is user
anonymity. Mobile network operators ensure anonymity
between their mobile users by providing a temporary
identifier (TMSI) instead of constantly using the long-
term unique identifiers (IMSI). Lately, also anonymized
location data has become a subject of concern [33, 34].
Countermeasures to tackle these exposed vulnerabili-
ties are proposed in [35, 36]. In [37], simulations are
used to calculate the number of devices necessary to
locate non-participant individuals in urban environments.
They prove that it is possible to track the movement
of a significant portion of the population with a high
granularity over long periods of time when a small
part of the population is part of a (malicious) sensor
network.

3 Methods

3.1 Network

The mobile network, which is used in the experi-
mental validation, consists of more than 2500 NodeBs
(September 2017), distributed over Belgium’s territory
(30528 km?). In a 3G network, the base stations are
referred to as NodeBs. Figure 1 shows the NodeB loca-
tions in a representative urban and rural environment on
the same scale (i.e., Ghent and Melsele respectively). It
is clear that the environment will have a major influence
on the positioning accuracy, because of the difference in
NodeB density on the one hand and in urban planning on
the other: a sparser road network can limit plausible loca-
tions, and the type and height of buildings can affect the
signal parameters used as input to location tracking algo-
rithms (e.g., apartments vs. stand-alone houses vs. office
buildings). There are more than 50 NodeBs in an area of
approximately 45 km? for the experiments in an urban
environment, whereas for the rural environment there are
roughly 10 NodeBs in an area of the same size. The com-
parison and influence on the performance are discussed
in Section 5.

A NodeB has multiple antennas with unique cell-IDs,
oriented towards different directions (Fig. 2). Antenna
configurations with one up to six distinct orientations
occur in the mobile network, which is used in the experi-
mental validation, the most common ones are with three
(92%), one (4%), and two (3%) different antenna direc-
tions. Usually, a mobile user will connect to the NodeB
antenna that is directed towards him. Likewise, a user for
which measurements are available from antennas with dif-
ferent orientations but from the same NodeB has a large
chance to be located between both zones. The aforemen-
tioned observations provide information that is exploited
in the proposed location tracking algorithm (Section 4).
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Fig. 1 NodeB density in a urban and b rural environments (NodeBs
are indicated by blue triangles)

3.2 Grid

The grid represents a collection of points in the area of
interest where a mobile user can be located. In a regular
Cartesian grid, all elements are unit squares. It is a sim-
plistic approach where all areas are equally important and
take the same resources in both database size and pro-
cessing time. Alternatively, a map-based grid can be used
to limit possible points along the major (motorway, free-
way, primary, secondary, and tertiary) and minor (local
and residential) roads from the area of interest. The grid

180°

(b)

Fig. 2 Antenna configuration. a Three directions. b Four directions

(a)

size determines the number and density of these points.
Our grid is based on OpenStreetMap data, which consists
of straight line segments enriched with metadata about
the type of road, information about one-way traffic, rela-
tive layering, street name, and maximum allowed speed.
Every start point and endpoint of a straight road segment
is automatically included in the grid, and road segments
are further divided into pieces equal to the grid size. The
dots in Fig. 3 represent such a grid with grid size 50 m. For
Belgium, this results in 3.2 million grid points for the map-
based technique instead of 12.2 million for a Cartesian
grid.

3.3 Experiments

Experimental data is collected in cooperation with a major
network operator in Belgium. The experiments are con-
ducted in and around the city center of Ghent and in a
smaller town near Antwerp (Melsele), to represent urban
and rural environments, and on the highway between both
cities. The mobile network collects 3G data for more than
a million mobile subscribers but to quantify the location
errors (accuracy), the real position or ground truth needs
to be known, for which permission and cooperation of
a mobile user are needed. The experimental validation
encompasses trajectories on foot, by bike, and by car. A
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Fig. 3 Grid based on OpenStreetMap data with grid size 50 m
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smartphone with a GPS logging application is carried in
all scenarios by a mobile user. It was put in the dash-
board holder for the car rides and carried in the pocket
for the trajectories on foot and by bike. The smartphone
was forced on 3G to make the experiments independent
of having 4G coverage and to ensure a fair comparison
between urban and rural environments. Figures 4 and 5
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show the GPS trajectories as black lines, and the sample
rate of the GPS logging application was set to 1 location
per second. The NodeB locations are indicated with gray
triangles. The GPS trajectories are post-processed with
a map matching algorithm [38] to increase the accuracy;
this is especially useful in urban areas near tall build-
ings (urban canyoning). Section 4 describes the location

(e

®

Fig. 4 GPS trajectories in and around the city center of Ghent (black lines), estimated positions (blue dots), error between estimation and ground
truth (blue lines), and NodeBs (gray triangles). a Trajectory on foot (urban + standby). b Trajectory on foot (urban + streaming). € Trajectory by bike
(urban + standby). d Trajectory by bike (urban + streaming). e Trajectory by car (urban + standby). f Trajectory by car (urban + streaming)
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Fig. 5 GPS trajectories in a rural area and on the highway between Antwerp

estimation and ground truth (blue lines), and NodeBs (gray triangles). a Trajectory on foot (rural + standby). b Trajectory by bike (rural + standby).

c Trajectory by car (rural + standby). d Trajectory by car (highway + standby)

(d)

and Ghent (black lines), estimated positions (blue dots), error between

tracking algorithm, and Section 5 discusses the perfor-
mance and accuracy for all trajectories in detail. The total
distance, duration, and average speed for all trajectories
are summarized in Table 1.

3.4 Measurement data format

3G measurements are made by the mobile network, i.e.,
by the radio network controller that controls the NodeBs.

Table 1 Trajectory details

Scenario Distance [km] Duration [min] Average speed [km/h]
Walk (urban) 8 84 6

Bicycle tour (urban) 8 25 19

Car ride (urban) 39 25 47

Walk (rural) 8 101 5

Bicycle tour (rural) 8 22 22

Car ride (rural) 19 28 41

Carride (highway) 48 36 80

The input data for our location tracking algorithm are tim-
ing information and received signal strength values from a
set of NodeBs. Both are reported on regular time periods
but independently from each other. The timing informa-
tion comes in the form of a propagation delay and is
reported only by the serving NodeB. The signal strength
values originate from the measurement reports and are
reported for all NodeBs that a mobile device currently sees
(i.e., from which it receives a broadcast message). Timing
information to these other NodeBs would require network
changes and increases the load in the mobile network and,
hence, is not used in our approach.

3.4.1 Propagation delay

The propagation delay parameter can be used to estimate
the distance between a mobile device and its serving cell.
This delay is used by the radio network controller to make
communication possible. It checks and adjusts this delay
to allow transmission and reception synchronization. The
propagation delay has a time granularity of 780 ns, which
corresponds to 234 m [39]. A value of 1 means the mobile
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user is located in the interval between 234 and 468 m from
the NodeB, from which we derive the following formula to
convert propagation delays to distances:

1)

Figure 6 shows a plot of the real distance (between
mobile user and NodeBs) as a function of the observed
propagation delay parameter, during a walk of 8 km in
the city center of Ghent, Belgium (Fig. 3b). For this test,
a radio application was installed on the mobile device
and was permanently streaming audio to ensure regular
network updates and measurement data. The walk took
84 min during which 234 propagation delay measure-
ments with 49 different cell-IDs from 15 NodeBs were
recorded (one physical NodeB can have multiple cell-
IDs depending on the number of supported frequencies
and different orientations of its antennas). The maximum
measured propagation delay during this walk in the city
center of Ghent was 6, which corresponds to 1521 m.
In rural areas, propagation delays up to 22 (= 5 km)
were recorded with the same mobile device, which is to
be expected due to the sparser base station density. The
measured propagation delays fall in the correct interval
in 69% of the observations. They are one, two, and three
units apart in 27%, 3%, and 0.4% of the cases, respectively.
The mean and standard deviation of the absolute differ-
ences between the real and calculated distance are 94 m
and 82 m. These values are to be expected with a distance
granularity of 234 m (i.e., the calculated distances, based
on the 3G propagation delays, are in steps of 234 m). Note
that the proposed technique can also be applied on 4G and
5G measurements, which have a higher base station den-
sity and more accurate timing information, and therefore,
will yield a higher location precision (e.g., 4G has a time
granularity of 260 ns, corresponding to 78 m).

distance = 234 - (propagation_delay + 0.5)

3.4.2 Measurement report
Measurement reports contain information about channel
quality and are reported by a user entity (mobile device)

2000

1500 +

1000 +

Real distance [m]

500

0 1 2 3 4 5 6 7 8 9
Propagation delay [-]

Fig. 6 Propagation delay granularity and accuracy
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to a NodeB. They assist the network in making handover
and power control decisions. The received signal code
power (RSCP) denotes the power measured by a mobile
user on a particular physical communication channel, also
known as common pilot channel. It continuously broad-
casts the scrambling code from the NodeBs and carries no
other information. These broadcast messages are trans-
mitted with a constant transmit power and gain but can
differ per NodeB (information available in network topol-
ogy). The measurement reports contain measured signal
strength values from all NodeBs the mobile user currently
sees. As such, the RSCP values can be converted to a path
loss value:

PL = Prx 4+ G7x — RSCP (2)

where PL [dB] denotes the total path loss, Prx [dB] and
Grx [dB] are the transmit power and gain of a NodeB,
respectively, and RSCP is the received signal strength code
power measured by a mobile device.

Figure 7 shows these path loss values on the y-axis and
associated distances between mobile user and NodeBs
on the x-axis (the measurement reports are collected
in the same experiment as the propagation delays from
Section 3.4.1). During the experiment, 578 measurement
reports were collected with 4106 RSCP values to 136 dif-
ferent cell-IDs from 32 NodeBs. The fitted one-slope path
loss model (red line) has the following form:

d
PL = PLo + 10y logyy [ — | + X, 3)

do
where PL [dB] denotes the total path loss, PLy [dB] is
the path loss at a reference distance dy [m], y [-] is
the path loss exponent, d [m] is the distance along the
path between transmitter and receiver, and X, [dB] is
a log-normally distributed variable with zero mean and
standard deviation o, corresponding to the large-scale
shadow fading. The measurement data from this exper-
iment yields a PLy of 118 dB at a reference distance of

160

140 +

Path loss [dB]

Distance [m]

Fig. 7 Measured path loss as a function of distance between mobile
user and NodeBs (blue dots). A fitted path loss model is plotted as a
red line
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10 m with a y of 1.40, resulting in an R-squared of 23%
and a standard deviation of 9.8 dB. Low R-squared values
indicate that the data is not close to the fitted line, which
results in bad estimations. Also, deviations in measured
path loss will result in larger errors at greater distances
to the NodeBs, e.g., for a deviation of 5 dB: a value of
135 dB (164 m) instead of 140 dB (372 m) results in a loca-
tion error of 209 m and a value of 145 dB (848 m) instead
of 150 dB (1931 m) results in an error of 1082 m. These
larger errors occur rather often, and 26% of the measure-
ments have a user to NodeB distance that is greater than
1 km. As such, the mean and median absolute errors for
all 4106 measured values are 1143 m and 473 m, respec-
tively. These location errors are much higher compared
to those derived from the propagation delay, suggesting
that many received path loss measurements contain no
additional information and can worsen the accuracy when
used together with the timing information as input to
a location tracking algorithm. Note that these path loss
measurements can be useful in combination with fin-
gerprint maps based on test-driving or crowd-sourced
measurement campaigns but these are labor intensive
or require modifications on the client side [16, 18, 19].
Also, these crowd-sourced measurement campaigns will
be heavily influenced by, e.g., passing cars, new buildings,
or other infrastructure changes.

3.5 Cellular network data

The problem with cellular network data is the limited
amount of available data, which determines the number
of possible updates. Mobile devices can support a range
of different wireless technologies, e.g., infrared, Bluetooth,
Wi-Fi, GPS, Universal Mobile Telecommunications Sys-
tem (UMTS) in 3G networks, and Long-Term Evolution
(LTE) in 4G systems, but not all data are available to the
network operator and this also depends on the usage of a
mobile user.

Figure 8 shows the average number of measurement
reports and propagation delays, per user, per hour, during
one week, measured on a 3G mobile network in Belgium
for more than a million distinct active users. It is immedi-
ately clear that every day exhibits a similar pattern for both
the measurement reports and propagation delays with the
difference that there are about twice as many measure-
ment reports. The least and most active hours are 3 a.m.
and 6 p.m. respectively (x-axis ticks are set every 12 h and
the labels are set at 12 p.m.). Saturdays and Sundays show
a flatter and lower curve than weekdays because more
people are staying at home, which translates into fewer
measurements per user on the mobile network during
the day. On Friday and Saturday between 11 p.m. and
5 a.m,, there is an average increase of 20% in number of
measurements for a similar amount of people compared
to weekdays, indicating that there is more movement or
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Fig. 8 Average number of measurement reports (solid blue line) and
propagation delays (dotted red line) per user, per hour for more than
a million distinct active users during 1 week in Belgium

usage of mobile devices (whether or not outdoors). There
are more than a million distinct active users during the
whole week, but the maximum number of active users in
1 his only 700k. This is because not all users send updates
to their mobile network when he or she is not moving,
has WiFi coverage, or is on a different mobile network
(2G or 4G). Current time-series or map-based tracking
algorithms assume regular measurement updates to filter
outliers and improve the accuracy [25, 29]. This assump-
tion does not hold for many mobile users, making the
aforementioned algorithms not generally applicable. The
proposed location tracking algorithm can cope with this
and consists of multiple phases, depending on the amount
of available measurements. Also, it is successfully vali-
dated, in cooperation with a major network operator in
Belgium, to work in real time on more than a million sub-
scribers with an Apache Spark implementation to support
fast cluster computing. The used cluster consists of nine
nodes with a total memory of 1.58 TB and 408 physical
cores.

4 Location tracking algorithms

The performance of the proposed location tracking algo-
rithm will be compared with two reference algorithms:
cell-ID (Section 4.1) and centroid based (Section 4.2). The
new tracking algorithm is presented in Section 4.3.

4.1 Cell-ID

The first reference algorithm is the most simplistic, where
a mobile user is mapped to the NodeB to which it is cur-
rently connected (also known as serving NodeB or serving
cell-ID). This approach is easy to implement and has a low
cost and short response time but usually has the lowest
accuracy [40].
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4.2 Centroid Algorithm 1: Calculating the temporary estimation.
The second reference algorithm takes all different NodeBs

from the measurement reports into account and calcu-
lates the centroid. In case there is only one NodeB with
measurements, this approach results in the same loca-
tion as the cell-ID technique. Alternatively, a weighted
centroid algorithm can be used, where NodeBs get a
weight assigned based on their measurement frequency or
received signal strength information [41].

Data: measurements reported by radio network
controller

Result: temporary estimation (TE)

cellg, < cell-id of the serving cell

locg. < location of cell,,

o5 < antenna orientation of cell,

Bsc < opening angle of cell,

pd < reported propagation delay

CAs. < area bounded by circular arcs based on locy,

Ase, Bse» and pd

circleSectors < empty list

JoinedMeasReport <— measurement reports where o

4.3 AMT: antenna, map, and timing information-based
tracking

Figure 9 shows a flow graph of our proposed location

tracking algorithm, w‘hi§h uses the o.rientat‘ion of NodeB en B are joined if same cell location

antennas, map, and timing information as input ({\MT). // explained in text

Phase I processes the data measured by the ra.dlo ‘net— for MR € JoinedMeasReport do

work controllers and calculates the temporary estimations cell,, <« cell-id of NodeB that reported MR

(TEs). Phase II further refines these estimated locations

with a route mapping filter that uses OpenStreetMap

(meta)data, measurements from a recent past (user his-

tory), and an estimated mode of transportation as input.

loc,,;, < location of cell,;,

o, < antenna orientation of cell,,,

Bup < opening angle of cell,;,

CS,p <« circle sector based on loc,y, o, and B,
add grid points within CS,;;, to circleSectors

end

GPMO <« grid points within CA,, with maximum
occurrences in circleSectors

TE < median location of GPMO

4.3.1 Phase I: temporary estimation
The pseudo-code to calculate the temporary estimation of
a user, residing on the mobile cellular network, is shown
in Algorithm 1 and the variables and steps are discussed
with an example in the text below.

Consider the example in Fig. 10: a mobile user is located
in the center (yellow square), its serving NodeB (cells.)
is indicated with a green star (Jocs), and there are three
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propagation delay measurement report

NodeB configuration
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1
1
1
1
1
1
1
|

circle sectors !
1
1
1
1
1
1
1
|
|
1

assign score to each grid point
[ temporary estimation ]
PHASE I
L S s B B e B Y e A s e e Y e ...
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. reconstruct most likely trajectory user history ] X
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Fig. 9 Flow graph of the proposed location tracking algorithm: phase | (red) and phase Il (blue)
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Fig. 10 Working principle of the proposed location tracking
algorithm: phase I. a Overview. b Detail

other NodeBs (cell,;) for which there are signal strength
measurements (loc,, indicated with red triangles). The
antenna orientations (as and «,,;) of cell-IDs with mea-
surements are indicated with a red line. The other NodeBs
in this area (without measurements at this time instance)
are shown as gray triangles, and the grid points are shown
as regular dots on top of the road network. The radio net-
work controller reports a propagation delay of 4 from the
serving NodeB, which triggers a new location update. This
propagation delay corresponds to 1053 m, which limits
the possible locations to an area (CAy:) bounded by two
circular arcs with an opening angle (8;.) of 120 °and radii
of 936 m and 1170 m (indicated in transparent green on
the left). The distance between both arcs is based on the
time granularity of 3G (780 ns corresponds to 234 m).
A window of 5 s is used to link measurement reports
with propagation delays since they are not reported at
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the exact same time instances. Because the calculated dis-
tances based on the reported signal strengths from the
measurement reports are not reliable (Section 3.4.2), only
the orientation («,;,) and opening angle (8,,;) of the anten-
nas corresponding to these measurements are used. These
are retrieved by looking up the reported cell-ID in the net-
work topology, resulting in three additional circle sectors
(CS,1p), indicated in transparent blue.

The opening angle of the sectors depends on the num-
ber of antennas and different orientations the NodeBs
have and is equally divided between all orientations. The
most common case of three distinct and equally spread
antenna orientations corresponds to an opening angle of
120 °(similar to the different gray zones in Fig. 2a). If
there are multiple measurements to one NodeB and the
reported cell-IDs correspond to antennas with different
orientation, then both measurements are merged (Joined-
MeasReport) and a new circle sector is used instead, i.e.,
the smallest area between both orientations. For example,
if there are measurements received on the antennas with
directions 0°and 90°, then the new circle sector would be
the first quadrant (0 to 90°) instead of the area from — 45
to 135°(see Fig. 2)b. Because users that are located just
outside a circle sector could be picked up by the antenna,
as is visible in Fig. 10 for the antenna on the bottom cen-
ter, a margin of 10° is added to the left and right side of a
sector.

The coloring of the grid points corresponds to the num-
ber of NodeBs (cell-IDs) that are visible from this grid
point (it is visible if a grid point falls within the sector areas
defined above). In this case, there are only 6 locations that
satisfy all measurements, i.e., inside the propagation delay
area and in all three circle sectors (green and blue areas).
The median location of this set (GPMO) is the temporary
estimation, indicated with a black plus sign (+) in Fig. 10.

If there is no overlap between the propagation delay area
and the circle sectors (green and blue areas respectively),
then the median location of the propagation delay area
is used as temporary estimation. The latter happens in
only 2% of all location updates in our experimental val-
idation (Section 5). Using this approach results, for the
depicted example, in an error of 132 m, whereas the cell-
ID approach would map the mobile user to the serving
NodeB (indicated with a green star), resulting in an error
of 1103 m, and the centroid approach results in an error
of 490 m (indicated with a black cross x).

4.3.2 Phase lI: route mapping filter

These temporary estimations can be improved with a
route mapping filter if there are location updates available
from a recent past (user history). For example, a user on
foot will travel far less than a user by bike or by car, given
a certain time interval. Furthermore, the most likely tra-
jectory over a certain time period can be reconstructed
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by making use of OpenStreetMap (meta)data: road infras-
tructure (ways); maximum speed limits; one-way street
information; type of road, e.g., sidewalk, bike path, or
highway; and the user’s measurement history. To take into
account cars that are speeding and to avoid that location
estimations are lagging behind, the allowed speed limit
(for the reconstructed trajectory) can be increased by, e.g.,
10% for each road segment. The proposed route mapping
filter is based on the Viterbi path, a technique related to
hidden Markov models [21, 22]. By processing all avail-
able data at once, previous estimated locations can be
corrected by future measurements (similar to backward
belief propagation). Naturally, this is only possible if the
intended application tolerates a certain delay. A differenti-
ation between real time and non-time critical will be made
in the route mapping filter’s output. Figure 11 shows a flow
graph of our proposed route mapping filter which ensures
realistic and physically possible paths.

The pseudo-code of the route mapping filter is shown
in Algorithm 2, and the variables and steps are discussed
in the text below. For the first positioning update or if
there is no location history available from a recent past,
the temporary estimation is taken as the current posi-
tion (TEp). Then, a predefined number of other locations
are selected around this position and their cost is initial-
ized to 0, e.g., the 1000 closest grid points to the current
position (MP). This ensures that the route mapping fil-
ter can recover from faulty first estimations, i.e., 1000 grid
points and a grid size of 50 m result in a covered surface
of roughly 2.5 km? (the exact area depends on the road
density). The initialization forms the starting point of all
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possible paths that are kept in the memory of the loca-
tion tracking algorithm (pathsinMem). Next, when the
mobile network reports new measurements, a new TE is
calculated as described in Section 4.3.1. After that, for all
paths in memory, all reachable positions (RGP) starting
from the path’s current last grid point (PGP: parent grid
point) are determined by making use of the surrounding
road network, the time elapsed since last location update
(At), estimated mode of transportation (MoT'), and Open-
StreetMap metadata (maximum speed, type of road, and
one-way information). These reachable positions, which
are also grid points, are the candidate positions for the
next location update. Each candidate position (CP) retains
a link to the parent grid point (PGP) and a cost that
represents this new branch along the road network (path-
sTemp). For time-critical applications, the path which cur-
rently has the lowest cost is used as real-time location
estimation (AMT-RT). In this case, previous estimated
locations will not be corrected by future measurements,
only the user’s current history is taken into account. Lastly,
the MP paths with lowest cost are retained to serve as
input for the next iteration when the mobile network
reports new measurements. At the end of an experiment
or measurement interval, all parent grid points from the
path with lowest cost are visited in backwards order; this
results in the final estimated trajectory: AMT-NTC (non-
time critical). Figure 12 shows a detail of the locations
before and after the route mapping filter for the trajec-
tory on foot in Ghent (Fig. 3b). The temporary estimations
are indicated with green crosses, and the final estimated
trajectory with blue dots.

[ initialization

]%[ temporary estimation (TE) ]

paths in memory

—

endpoints + associated costs

[ road infrastructure ]

[determine next reachable positions %

mode of transportation ]

candidate positions

[ update costs based on TE

—

sort costs in ascending order

new endpoints

update and retain most likely paths

—

Fig. 11 Flow graph of our route mapping filter

[ time elapsed since last update ]
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Algorithm 2: Route mapping filter.

Data: temporary estimations (TE)

Result: most likely trajectory mapped on roads:
AMT-RT (real-time) and AMT-NTC
(non-time-critical)

TE, < first temporary estimation

tprey < first timestamp with measurements

MP <1000 // maximum paths in memory

pathsinMem < list with MP grid points closest to

TEj initialized with cost 0

while new measurements do

¢ < current timestamp

AL <t — tyrey

TE < current temporary estimation

MoT < estimated mode of transportation

pathsTemp < empty list

for path € pathslnMem do

cost < cost of path

PGP <« endpoint of path (parent grid point)

RGP < reachable grid points (along roads with

MoT within time span At starting from PGP)

// calculate new path cost for

each candidate position (CP)
for CP € RGP do

dist < \/ (CP, — TE,)? + (CP, — TE,)?
pathye, < path + CP
COStyeyw <— cost + dist

add (pathyew, costyew) to pathsTemp
end

end

pathsinMem <« retain MP paths from pathsTemp

based on lowest cost

// current most likely position at
time t

AMT-RT; < endpoint of path with lowest cost

Lprev <= ¢

end

// most likely trajectory given all
measurements

AMT-NTC < path with lowest cost in pathslnMem

The maximum allowed speed used by the route map-
ping filter can be refined if the mode of transportation
is correctly estimated, e.g., pedestrians or cyclists will
usually not move faster than 6 km/h or 30 km/h respec-
tively. In our approach, the mode of transportation is
estimated based on the rate and distance between serv-
ing cell handover zones, i.e., when a new NodeB becomes
the serving cell. When a handover takes place, the mid-
dle between both NodeBs (estimated handover location)
is saved together with the timestamp the handover took
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place. The average speed between all estimated handover
locations that took place during a certain moving window
is used to label the mode of transportation. A moving win-
dow of 10 min (5 min before and after the location update)
could be used for the non-time-critical route mapping
filter, but this is not possible for real-time applications
(as no future measurements are available). For this rea-
son, only the last 5 min (counting backwards from the
location update that is being calculated) is considered
to estimate the average speed. It is labeled as walking if
it is below 10 km/h, as cycling if it is between 10 and
25 km/h, and otherwise as driving a motorized vehicle. In
the latter case, the route mapping filter will continue to
use the maximum allowed road speed for each segment.
Although, the location updates (TEs) are more frequent
and accurate than the estimated handover locations, they
show more fluctuations which results in an overestima-
tion of the average speed (see Fig. 12). For example, during
the walk in the city center of Ghent (Fig. 3b), there are
232 location updates whereas there are only 48 handovers,
which result in an average estimated speed of 25 km/h
based on the location updates and 7 km/h based on the
estimated handover locations with a moving window of
5 min.

5 Results and discussion

5.1 General

Figures 4 and 5 show the estimated positions with the pro-
posed location tracking algorithm as blue dots. The errors
between the GPS ground truth and estimated positions
are indicated with a blue line. The ground truth is defined
as the GPS position which is closest in time to the times-
tamp from when the network received measurements that
initiated the location update. The GPS logging applica-
tion takes 1 sample per second and is mapped to the road
network (which includes footpaths, paths for cycling, and
service roads), ensuring a sufficient time synchronization
and accuracy between the estimated positions and their
ground truth.

Table 2 summarizes the mean, standard deviation,
median, and 95th percentile value of the accuracy for all
scenarios (walking, cycling, and driving in urban and rural
environments with a user’s smartphone in standby and
streaming mode).

The two basic algorithms are referred to as cell-ID
(Section 4.1) and centroid (Section 4.2). The first phase
of the proposed location tracking algorithm (without the
route mapping filter) is referred to as TE (temporary
estimation). The location tracking algorithm with route
mapping filter, road speed limits, and mode of transporta-
tion estimation is referred to as AMT, named after the
used inputs: antenna orientation, map, and timing infor-
mation (phase II). To differentiate between the estimated
locations that are available in real time and those that are
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Table 2 Accuracy, number of positioning updates, and average time and distance between two consecutive location updates, per
scenario and algorithm

Scenario Algorithm w[m] o [m] 50th 95th #Updates  Update time [s] Update distance [m]
[m] [m] (-]
1. Urban, on foot, 8 km, 5 km/h, standby Cell-ID 410 287 342 1006 96 51 76
Centroid 333 226 276 767
TE 270 338 150 744
AMT-RT 150 95 125 351
AMT- 126 76 119 262
NTC
PF 165 112 139 391
2. Urban, on foot, 8 km, 5 km/h, streaming Cell-ID 453 324 390 1042 234 21 32
Centroid 349 240 292 791
TE 205 208 151 517
AMT-RT 141 82 130 325
AMT- 128 82 115 303
NTC
PF 158 110 137 367
3. Urban, by bike, 8 km, 18 km/h, standby Cell-ID 586 346 540 1127 48 32 150
Centroid 426 270 407 923
TE 246 223 172 611
AMT-RT 189 139 158 452
AMT- 132 83 119 296
NTC
PF 193 122 160 486
4. Urban, by bike, 8 km, 18 km/h, streaming ~ Cell-ID 380 238 305 880 55 26 127
Centroid 277 169 226 644
TE 187 254 150 384
AMT-RT 136 78 131 317
AMT- 122 80 112 301
NTC
PF 147 103 131 331
5. Urban, by car, 39 km, 47 km/h, standby Cell-ID 982 587 1030 2013 58 46 600
Centroid 808 629 661 2013
TE 441 486 290 1589
AMT-RT 370 485 243 1311
AMT- 306 291 220 1012
NTC
PF 471 425 372 1322
6. Urban, by car, 39 km, 47 km/h, streaming ~ Cell-ID 955 630 901 1989 91 33 411
Centroid 780 549 645 1966
TE 382 398 257 1093
AMT-RT 336 431 241 844
AMT- 217 141 200 467
NTC
PF 427 439 273 1181
7.Rural, on foot, 8 km, 5 km/h, standby Cell-ID 1937 1388 1764 4096 92 66 81
Centroid 1269 983 1056 3389
TE 559 577 433 1469
AMT-RT 336 268 276 955
AMT- 294 222 275 821
NTC
PF 385 313 344 1176
8. Rural, by bike, 8 km, 22 km/h, standby Cell-ID 2393 1310 2578 4096 37 36 196

Centroid 1175 659 1100 2443
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Table 2 Accuracy, number of positioning updates, and average time and distance between two consecutive location updates, per

scenario and algorithm (Continued)

Scenario Algorithm @ [m] o [m] 50th 95th #Updates  Updatetime[s]  Update distance [m]
[m] [m] [
TE 522 326 430 1309
AMT-RT 305 166 311 709
AMT- 268 127 243 491
NTC
PF 391 208 389 778
9.Rural, by car, 19 km, 41 km/h, standby Cell-ID 1297 1131 972 3630 43 39 380
Centroid 746 490 670 1803
TE 488 594 308 1385
AMT-RT 280 224 188 733
AMT- 188 186 129 589
NTC
PF 401 357 280 904
10. Highway, by car, 48 km, 80 km/h, standby  Cell-ID 1059 702 1021 3096 59 35 775
Centroid 833 537 790 1851
TE 352 454 231 1224
AMT-RT 235 232 167 826
AMT- 138 92 122 277
NTC
PF 395 341 283 1253
Average over all scenarios Cell-ID 1045 694 984 2298
Centroid 700 475 612 1659
TE 365 386 257 1032 81 38 283
AMT-RT 248 220 197 682
AMT- 192 138 165 482
NTC
PF 313 253 251 819

TE temporary estimation (phase 1), AMT-RT real-time route mapping filter (phase Il), AMT-NTC non-time-critical route mapping filter (phase Il), PF particle filter

corrected by future measurements, AMT-RT (real time)
and AMT-NTC (non-time critical) are used. An existing
location tracking algorithm [18] based on a particle fil-
ter and map information was implemented to validate our
proposed route mapping filter. These results are included
in Table 2 and referred to as PF. They used regression
on drive test data to estimate the probability distribu-
tion of an observation. Since drive test data is generally
not available for a nationwide mobile network, the like-
lihood function for the particles is modified to work
with the temporary estimations as input (similar to the
proposed route mapping filter, ensuring a fair compari-
son). This particle filter is configured with 2000 particles,
and the mean 1 and variance o2 of the initial speed dis-
tribution are based on the mode of transportation and
the maximum allowed speed of the road segments under
consideration. Likewise, at each time step with measure-
ments, our proposed route mapping filter retains the 1000
paths with the lowest associated costs in memory (MP in

Algorithm 2). The latitude and longitude coordinates from
all NodeBs in the mobile network, data from the GPS log-
ging application, and OpenStreetMap data are projected
to the Belgian Lambert 72 coordinate system. Hence, the
grid points and estimated locations are in the same plane
coordinate reference system. This enables the use of the
Euclidean distance between the estimated and actual posi-
tion to define the accuracy. The total number of location
updates and the average time and distance between two
consecutive location updates are also included in Table 2.
Figure 13 shows the median accuracy per scenario with
the TE, PF, AMT-RT, and AMT-NTC techniques. The cell-
ID and centroid approach are omitted to enhance clarity.

5.2 Comparison with other algorithms

It is immediately clear that the proposed location track-
ing algorithms outperform the classic cell-ID and centroid
approach in all ten scenarios. The particle filter [18] per-
forms slightly worse than our proposed route mapping
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Fig. 12 Detail of the estimated locations before and after the route
mapping filter: temporary estimations (green crosses), final estimated
trajectory (blue dots), and GPS trajectory (black line)

filter (real-time and non-time-critical version) in scenar-
ios 1-4 and is outperformed in scenarios 5-10. The main
reason for this is that the time between two location
updates is variable and can be rather large (it ranges from
5 s to 6 min). In the update step of the particle filter, a
new state is sampled for all particles, based on the previ-
ous state, current time, and a new random sample, and is
then mapped on the road network. This can cause large
deviations if the user’s real speed or direction changes in
this time period, which can happen multiple times during
a sizeable measurement gap. The trajectories done by car
and the ones in rural areas are most affected by this. In our
approach, all possible locations that can be reached along
the road network in this time period are considered as
candidate positions for the next location update (given the
previous states, i.e., user measurement history and paths
in memory, estimated mode of transportation, maximum

[ -
T P

400 / \
-® - AVT-RT / \\
—e— AMT-NTC / \

3

Accuracy [m]

Scenario

Fig. 13 Median accuracy per scenario with the TE, PF, AMT-RT, and
AMT-NTC techniques
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speed limits, type of roads, and one-way street informa-
tion.) The median TE accuracy varies between 150 and
433 m and has an average improvement, over all scenar-
ios, of 68% and 55% compared to the cell-ID and centroid
approach, respectively. The median PF accuracy varies
between 131 and 389 m and has an average improve-
ment, over all scenarios, of 69%, 56%, and 2% compared
to the cell-ID, centroid, and TE approach respectively.
The median AMT-RT accuracy varies between 125 and
311 m and has an average improvement, over all scenar-
ios, of 74%, 64%, 20%, and 18% compared to the cell-ID,
centroid, TE, and PF approach, respectively. The median
AMT-NTC accuracy varies between 112 and 275 m and
has an average improvement, over all scenarios, of 78%,
69%, 33%, 31%, and 16% compared to the cell-ID, cen-
troid, TE, PF, and AMT-RT approach, respectively. The
mean accuracies, standard deviations, and 95th percentile
values show similar improvements.

The largest relative improvements compared to the ref-
erence algorithms are achieved with the trajectory on the
highway (scenario 10). The median accuracy improves
with 88% (from 1021 to 122 m) compared to the cell-ID
approach, with 85% (from 790 to 122 m) compared to
the centroid approach and with 57% (from 283 to 122 m)
compared to the PF approach.

The most accurate results reported in the state-
of-the-art processing techniques from Section 2 are
higher than our results (accuracies up to 20 m [18],
30 m [32], and 50 m ([31]), but these are achieved
with synthesized data, large training sets, optimal
environments, crowd-sourced measurement campaigns,
and forced location update rates. However, applying
the same processing technique [18] on our validation
data resulted in worse accuracies but gives a realis-
tic idea of the achievable performance without crowd-
sourcing or modifications on the network or mobile side
(PF in Table 2).

5.3 Non-time critical vs. real time

The non-time-critical version of the route mapping filter
(AMT-NTC), which takes into account all measurements
at once, can also work with a smaller delay (instead of at
the end of a trajectory). Previously predicted locations can
be corrected by multiple future measurements, but the
impact tends to decrease as more time has passed between
the previous update and those future measurements. For
our experimental validation, this time period is 8 min; tak-
ing into account additional future measurements does not
further improve the overall accuracy. Even with only 2 min
of future measurement data, the mean and median over-
all accuracy are already 200 m and 174 m (compared to
192 m and 165 m if all future measurements are taken
into account). This means that if a time delay of 2 min
is allowed for the intended application, the overall mean
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accuracy can already be improved by 19% compared to the
real-time algorithm (AMT-RT).

5.4 Impact of environment

The highest accuracies are achieved for the scenarios in
an urban environment with trajectories on foot or by bike
(scenarios 1-4). For example, the trajectory by bike in the
city center of Ghent with a smartphone in streaming mode
(scenario 4) has a mean, standard deviation, median, and
95th percentile value of 122 m, 80 m, 112 m, and 301 m,
respectively. These higher accuracies are mainly due to
the higher base station density, which is typical in urban
environments. This ensures that the serving base sta-
tions have smaller separations, and hence, this limits the
possible grid points because of the lower propagation
delays, i.e., the green sector in Fig. 10 will cover a smaller
area. When driving a car, the absolute accuracy in urban
environments is worse than that in rural scenarios. For
example, the improvements between two trajectories by
car in an urban (scenario 5) and rural environment (sce-
nario 9) are 63% (306 to 188 m), 56% (291 to 186 m),
71% (220 to 129 m), and 72% (1012 to 589 m), for the
mean, standard deviation, median, and 95th percentile
value, respectively. This is due to the sparser road net-
work in rural areas, which increases the chance that the
route mapping filter selects the correct road segments as
most likely. The trajectory on the highway (scenario 10) is
accurately reconstructed because the roads surrounding
the highway have lower speed limits which causes these
(incorrect) candidate paths to lag behind and eventually
be discarded in the route mapping algorithm. Note that
this is only true if there is no traffic congestion.

5.5 Impact of smartphone usage

The shortest location update time or highest update rate
happens when a user is walking in an urban environment
while actively using his or her smartphone, i.e., through
an application that sends or receives data over the mobile
network on a regular basis (scenario 2). In this case, there
are 234 updates during the entire trajectory, which cor-
responds to a location update every 21 s or every 32 m
on average. Note that the update rate for this best case
scenario is not as high as most localization algorithms
for cellular networks are validated on. Location update
rates of 0.5 s [29] and 10 s [18] are reported in related
work, by using forced messages or synthesized validation
data. Three trajectories are done for both smartphone
usage modes (scenarios 1-6). The trajectories in an urban
environment on foot and by bike are identical and yield
similar performances for the streaming and standby mode
(scenarios 1-4). The higher location update rate has a neg-
ligible impact due to the limited speed for these modes of
transportation. The trajectory by car shows a significant
improvement for higher location update rates (standby
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vs. streaming). The accuracy increases with 41% (306 to
217 m), 106% (291 to 141 m), 10% (220 to 200 m), and
117% (1012 to 467 m), for the mean, standard deviation,
median, and 95th percentile value, respectively.

5.6 Impactof MoT

The trajectories done on foot and by bike yield similar
accuracies as long as the environment is the same. The
trajectories done by car perform worse in urban envi-
ronments but better in rural environment as discussed
in Section 5.4. It is to be noted that the proposed MoT
estimator achieved an accuracy of 78% when a moving
window of the last 5 min was used. Although this accu-
racy could be improved on our validation data by using a
longer window, this will not always be the case, e.g., if the
MoT changes during a scenario from walking to biking,
a shorter window is recommended to detect the changes
more quickly. Furthermore, the overall mean and median
accuracy remained similar (192 m and 165 m vs. 183 m
and 164 m) if the route mapping filter was provided with
the correct MoT at each location update. This is because
a wrong MoT estimation for a location update does not
automatically result in a worse accuracy, e.g., when it is
erroneously labeled as cycling while the user was actually
driving at a slow speed due to traffic congestion.

6 Conclusions

In this paper, a technique for outdoor location tracking
of all users residing on a mobile cellular network is pre-
sented. The proposed approach does not depend on prior
training data and does not require any cooperation on the
mobile side or changes on the network side. The topol-
ogy and available measurements of a mobile cellular net-
work are used as input for the proposed AMT algorithm
(named after antenna, map, and timing information). An
additional route mapping filter is applied to ensure real-
istic, physically possible, trajectories. The inputs for this
route mapping filter are the user’s measurement history,
enriched open map data (road infrastructure, maximum
speed limits, type of road, and one-way street informa-
tion), and a mode of transportation estimator to improve
the corresponding maximum speed. The novel AMT loca-
tion tracking algorithm is implemented in Apache Spark
to support fast cluster computing, runs completely on the
network side, is confirmed to execute in real time for
more than a million users in parallel, and outperforms
state-of-the-art particle filters. The experimental valida-
tion is done in urban and rural environments, near Ghent
and Antwerp, with experiments on foot, by bike, and by
car, while a user’s smartphone was used in standby and
streaming mode. Improvements of up to 88%, 85%, and
57% were achieved compared to a cell-ID, a centroid, and a
particle filter with map information-based location track-
ing technique, respectively. Future work will adapt and
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apply the proposed algorithm to a 4G LTE mobile net-
work, where further improvements are expected thanks
to the more accurate timing information and the higher
eNodeB density. Furthermore, the proposed algorithm
will be validated on a larger test set with multiple users,
different mobile devices, changes in mode of transporta-
tion, and indoor usage.

Abbreviations

AMT: Antenna, map, and timing information-based tracking; AoA: Angle of
arrival; BLE: Bluetooth Low Energy; GPS: Global Positioning System; IMSI:
International mobile subscriber identity; LBS: Location-based services; LoS:
Line-of-sight; LTE: Long-term evolution; MoT: Mode of transportation; NLoS:
Non-line-of-sight; PL: Path loss; RF: Radio frequency; RSCP: Received signal
code power; RSSI: Received signal strength indication; TDoA: Time difference of
arrival; TE: Temporary estimation; TMSI: Temporary mobile subscriber identity;
ToA: Time of arrival; UMTS: Universal mobile telecommunications system

Funding

This research was supported by the VLAIO project ADORABLE: Anonymous
Displacement and residence behaviOR based on Accurate moBile Location
data from tElco.

Availability of data and materials
Data sharing is not possible for this article due to company policy of the
mobile network operator.

Authors’ contributions

JT and DP developed the novel algorithms and conducted the data analysis
and interpretation. ES, MS, and MV participated in the mobile cellular data
processing for the experimental validation. LM and WJ reviewed and edited
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
! Department of Information Technology, IMEC - Ghent University, Ghent
Belgium. “Telenet Group, Brussels, Belgium. >RetailSonar, Ghent, Belgium.

Received: 15 November 2018 Accepted: 25 April 2019
Published online: 08 May 2019

References

1. F.Gustafsson, F. Gunnarsson, Mobile positioning using wireless networks:
possibilities and fundamental limitations based on available wireless
network measurements. IEEE Signal Proc. Mag. 22(4), 41-53 (2005)

2. R.Becker, R. Caceres, K. Hanson, S. Isaacman, J. M. Loh, M. Martonosi, J.
Rowland, S. Urbanek, A. Varshavsky, C. Volinsky, Human mobility
characterization from cellular network data. Commun. ACM. 56(1), 74-82
(2013)

3. S.Colak, L. P. Alexander, B. G. Alvim, S. R. Mehndiratta, M. C. Gonzalez,
Analyzing cell phone location data for urban travel: current methods,
limitations, and opportunities. Transp. Res. Rec. J. Transp. Res. Board,
126-135 (2015)

4. L.Bengtsson, X. Lu, A. Thorson, R. Garfield, J. Von Schreeb, Improved
response to disasters and outbreaks by tracking population movements
with mobile phone network data: a post-earthquake geospatial study in
Haiti. PLoS Med. 8(8), 1001083 (2011)

5. OpenStreetMap contributors, Planet dump retrieved from https.//planet.
osm.org, (2017). https://www.openstreetmap.org

6. A.N.Hassan, O. Kaiwartya, A. H. Abdullah, D. K. Sheet, S. Prakash, in
Proceedings of the Second International Conference on Information and
Communication Technology for Competitive Strategies. Geometry based

22.

23.

24.

25.

26.

27.

28.

(2019) 2019:115 Page 17 of 18

inter vehicle distance estimation for instantaneous GPS failure in VANETS
(ACM, 2016), p. 72

O. Kaiwartya, Y. Cao, J. Lloret, S. Kumar, N. Aslam, R. Kharel, A. H. Abdullah,
R. R. Shah, Geometry-based localization for GPS outage in vehicular cyber
physical systems. IEEE Trans. Veh. Technol. 67(5), 3800-3812 (2018)

L. Gazzah, L. Najjar, H. Besbes, in 2014 IEEE Wireless Communications and
Networking Conference (WCNC). Selective hybrid RSS/AOA weighting
algorithm for NLOS intra cell localization (IEEE, 2014), pp. 2546-2551

|. Guvenc, C-C. Chong, A survey on TOA based wireless localization and
NLOS mitigation techniques. [EEE Commun. Surv. Tutor. 11(3), 107-124
(2009)

Y. M. Chen, C-L. Tsai, R-W. Fang, in 2017 International Conference on
Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO).
TDOA/FDOA mobile target localization and tracking with adaptive
extended Kalman filter (IEEE, 2017), pp. 202-206

. A H.Sayed, A. Tarighat, N. Khajehnouri, Network-based wireless location:

challenges faced in developing techniques for accurate wireless location
information. IEEE Signal Proc. Mag. 22(4), 24-40 (2005)

E. Xu, Z. Ding, S. Dasgupta, Source localization in wireless sensor networks
from signal time-of-arrival measurements. IEEE Trans. Signal Proc. 59(6),
2887-2897 (2011)

F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, T.
Watteyne, Understanding the limits of LoRaWAN. IEEE Commun. Mag.
55(9), 34-40 (2017)

V. Osa, J. Matamales, J. F. Monserrat, J. Loépez, Localization in wireless
networks: the potential of triangulation techniques. Wirel. Pers. Commun.
68(4), 1-14 (2013)

J. Borkowski, J. Lempidinen, Practical network-based techniques for
mobile positioning in UMTS. EURASIP J. Appl. Signal Proc. 2006, 149-149
(2006)

T. Wigren, Adaptive enhanced cell-id fingerprinting localization by
clustering of precise position measurements. IEEE Trans. Veh. Technol.
56(5), 3199-3209 (2007)

M. Chen, T. Sohn, D. Chmelev, D. Haehnel, J. Hightower, J. Hughes, A.
LaMarca, F. Potter, I. Smith, A. Varshavsky, Practical metropolitan-scale
positioning for GSM phones. UbiComp 2006: Ubiquitous Computing.
UbiComp 2006. Lecture Notes in Computer Science, vol 4206. (Springer,
Berlin, Heidelberg, 2006), pp. 225-242

A.Ray, S. Deb, P. Monogioudis, in Computer Communications, IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference On.
Localization of Ite measurement records with missing information (IEEE,
2016), pp. 1-9

M. Ibrahim, M. Youssef, Cellsense: An accurate energy-efficient GSM
positioning system. IEEE Trans. Veh. Technol. 61(1), 286-296 (2012)

D. Plets, W. Joseph, K. Vanhecke, E. Tanghe, L. Martens, Coverage
prediction and optimization algorithms for indoor environments.
EURASIP J. Wirel. Commun. Netw. 2012(1), 123 (2012)

. J.Trogh, D. Plets, L. Martens, W. Joseph, Advanced real-time indoor
tracking based on the viterbi algorithm and semantic data. Int. J. Distrib.
Sens. Netw. 11(10), 271818 (2015)

J. Trogh, D. Plets, A. Thielens, L. Martens, W. Joseph, Enhanced indoor
location tracking through body shadowing compensation. IEEE Sens. J.
16(7),2105-2114 (2016)

V. Savic, H. Wymeersch, E. G. Larsson, Target tracking in confined
environments with uncertain sensor positions. IEEE Trans. Veh. Technol.
65(2), 870-882 (2016)

A. Hatami, K. Pahlavan, in Consumer Communications and Networking
Conference, 2006. CCNC 2006. 3rd IEEE. Comparative statistical analysis of
indoor positioning using empirical data and indoor radio channel
models, vol. 2 (IEEE, 2006), pp. 1018-1022

P-H.Tseng, K-T. Feng, Y.-C. Lin, C-L. Chen, Wireless location tracking
algorithms for environments with insufficient signal sources. IEEE Trans.
Mob. Comput. 8(12), 1676-1689 (2009)

M. Bshara, U. Orguner, F. Gustafsson, L. Van Biesen, Robust tracking in
cellular networks using HMM filters and Cell-ID measurements. [EEE Trans.
Veh.Technol. 60(3), 1016-1024 (2011)

M. McGuire, K. N. Plataniotis, A. N. Venetsanopoulos, Data fusion of power
and time measurements for mobile terminal location. IEEE Trans. Mob.
Comput. 4(2), 142-153 (2005)

Y.Feng, Y. Liu, M. Batty, Modeling urban growth with GIS based cellular
automata and least squares SVM rules: a case study in Qingpu-Songjiang
area of Shanghai, China. Stoch. Env. Res. Risk A. 30(5), 1387-1400 (2016)


https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org

Trogh et al. EURASIP Journal on Wireless Communications and Networking

29.

30.

31.

32

33

34.

35.

36.

37.

38.

39.

40.

41.

M. Anisetti, C. A. Ardagna, V. Bellandi, E. Damiani, S. Reale, Map-based
location and tracking in multipath outdoor mobile networks. [EEE Trans.
Wirel. Commun. 10(3), 814-824 (2011)

R. M. Vaghefi, R. M. Buehrer, in Personal, Indoor, and Mobile Radio
Communication (PIMRC), 2014 IEEE 25th Annual International Symposium
On. Cooperative RF pattern matching positioning for LTE cellular systems
(IEEE, 2014), pp. 264-269

R. Margolies, R. Becker, S. Byers, S. Deb, R. Jana, S. Urbanek, C. Volinsky, in
INFOCOM 2017-IEEE Conference on Computer Communications, IEEE. Can
you find me now? evaluation of network-based localization in a 4G LTE
network (IEEE, 2017), pp. 1-9

A. Chakraborty, L. E. Ortiz, S. R. Das, in Computer Communications
(INFOCOM), 2015 IEEE Conference On. Network-side positioning of
cellular-band devices with minimal effort (IEEE, 2015), pp. 2767-2775

H. Zang, J. Bolot, in Proceedings of the 17th Annual International Conference
on Mobile Computing and Networking. Anonymization of location data
does not work: a large-scale measurement study (ACM, 2011), pp. 145-156
M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, R.
Borgaonkar, in Proceedings of the 2012 ACM Conference on Computer and
Communications Security. New privacy issues in mobile telephony: fix and
verification (ACM, 2012), pp. 205-216

M. Arapinis, L. I. Mancini, E. Ritter, M. Ryan, in NDSS. Privacy through
pseudonymity in mobile telephony systems, (2014)

A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, J.-P. Seifert, Practical attacks
against privacy and availability in 4G/LTE mobile communication systems
(2015). arXiv preprint arXiv:1510.07563

N. Husted, S. Myers, in Proceedings of the 17th ACM Conference on
Computer and Communications Security. Mobile location tracking in metro
areas: malnets and others (ACM, 2010), pp. 85-96

P.Newson, J. Krumm, in Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems.
Hidden Markov map matching through noise and sparseness (ACM,
2009), pp. 336-343

Propagation Delay. http://www.telecomhall.com/analyzing-coverage-
with-propagation-delay-pd-and-timing-advance-ta-gsm-wcdma-Ite.
aspx. Accessed 9 Aug 2010

E. Trevisani, A. Vitaletti, in Mobile Computing Systems and Applications,
2004. WMCSA 2004. Sixth IEEE Workshop On. Cell-ID location technique,
limits and benefits: an experimental study (IEEE, 2004), pp. 51-60
J.Wang, P. Urriza, Y. Han, D. Cabric, Weighted centroid localization
algorithm: theoretical analysis and distributed implementation. IEEE
Trans. Wirel. Commun. 10(10), 3403-3413 (2011)

(2019) 2019:115 Page 18 of 18

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.telecomhall.com/analyzing-coverage-with-propagation-delay-pd-and-timing-advance-ta-gsm-wcdma-lte.aspx
http://www.telecomhall.com/analyzing-coverage-with-propagation-delay-pd-and-timing-advance-ta-gsm-wcdma-lte.aspx
http://www.telecomhall.com/analyzing-coverage-with-propagation-delay-pd-and-timing-advance-ta-gsm-wcdma-lte.aspx

	Abstract
	Keywords

	Introduction
	Related work
	GPS enabled
	Infrastructure enabled

	Methods
	Network
	Grid
	Experiments
	Measurement data format
	Propagation delay
	Measurement report

	Cellular network data

	Location tracking algorithms
	Cell-ID
	Centroid
	AMT: antenna, map, and timing information-based tracking
	Phase I: temporary estimation
	Phase II: route mapping filter


	Results and discussion
	General
	Comparison with other algorithms
	Non-time critical vs. real time
	Impact of environment
	Impact of smartphone usage
	Impact of MoT

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

