
RESEARCH Open Access

Robot indoor location modeling and
simulation based on Kalman filtering
Jian Yin Lu* and Xinjie Li

Abstract

Wireless signal fingerprint positioning technology has been widely used in indoor positioning. In view of the
influence of a large number of interference noise in indoor, the error of receive signal strength indicator is large,
the more complex and chaotic indoor environment, the location accuracy deviation of the system will be very
large; an algorithm based on Kalman filter is proposed to filter the velocity and direction of motion of indoor
robots. The position coordinates of the robot are estimated by RSSI-based positioning method, and the indoor
robot positioning model and Kalman filter model are established. Kalman filter autoregressive algorithm is used to
optimize the estimated position coordinates of the robot. Mathematical reasoning and simulation results show that
the probability of positioning error is 80% when Kalman filter is not used, and the location error is controlled within
1.2 m after Kalman filter, which effectively improves the location accuracy of indoor robots.
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1 Introduction
China’s demographic dividend is fading, the trend of ma-
chine replacement is accelerating, and mobile robots pro-
mote the advent of the era of intellectualization [1]. With
the decline of the birth rate and the increase of the pro-
portion of the elderly population in China, the demo-
graphic dividend has gradually disappeared, “labor
shortage” is frequent, and the cost of labor has risen. On
the other hand, with the improvement of living standards,
workers have higher requirements for the quality of work,
and their willingness to engage in indoor boring, harsh en-
vironment and dangerous work is reduced. Robots can
work continuously for a long time, with higher efficiency
and accuracy than human beings, and the pace of “ma-
chine replacement” is accelerated. Obviously, the robot
market will flourish day by day, but the difficulty of locat-
ing mobile robots in an indoor environment is a problem.
Satellite positioning can be used and the following are
mainly commercial and some of the most successful:
American Global Positioning System [2, 3], Russia’s GLO-
NASS satellite positioning system, Europe’s Galileo satel-
lite positioning system, and Chinese BeiDou Navigation
Satellite System [4, 5] in our country. GPS is used to lo-
cate the personnel, but the indoor GPS signal cannot be

used properly due to the occlusion of the building, the
interference of the reinforced concrete to the signal, and
the low positioning accuracy. Many scientific research in-
stitutions and scholars at home and abroad have been
making unremitting efforts in this regard.
The application of radio frequency identification [6, 7]

technology to intelligent robots is also developing such
as robots for monitoring kindergarten children, vacuum
cleaner robots, and shopping guide robots. In the
process of motion, the robot has the problem of
self-localization. Airborne sensors are mostly used for
localization. RFID [8] technology is a technology which
uses an electromagnetic induction principle to generate
information reading by wireless excitation. Radio fre-
quency identification ranges from a few centimeters to a
dozen meters. When RFID [9] is used for robot
localization, mainly for personnel whether exists in the
identification of a region, it cannot achieve real-time
tracking, and the standard network system of location
application is not yet mature. Ultra-wideband [10] is a
non-carrier communication technology; by laying a cer-
tain number of UWB positioning base stations indoors,
the robot carries positioning labels and finally realizes
the precise positioning and navigation of the robot. Base
stations are usually set up as square according to a need,
and one is laid every 50–200 m. The principle is to
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ensure that the pulses emitted by the target to be located
can be received by any three base stations at the same
time, so as to determine the location of the location tag.
On the other hand, its technology could realize cm-level
positioning level, but positioning the cost is very high,
suitable for locating the area which is small, has high
value-added industries and the field of plant at big mil-
lions of investment, and to the person’s cm-level posi-
tioning, it is a little bit “big small”.
Kalman filter is widely used in mobile robot localization

[11, 12]. In view of the unstable transmission and poor posi-
tioning accuracy of indoor wireless sensor network commu-
nication, an autonomous dynamic positioning system for
mobile robots is proposed, by real-time selection of adjacent
beacon nodes, determination of boundaries, and drawing of
local grid space; the dynamic positioning of the robot is real-
ized [13, 14]. Ranging is achieved by using received signal
strength index. Then, the improved approximate triangle in-
terior point test (APIT) algorithm based on ranging is used
to complete the positioning, and the Kalman algorithm is
used to correct the positioning error. This method is suit-
able for the actual situation of unstable transmission in an
indoor network [15, 16]. Kalman filter is used to obtain the
optimal data, so that the indoor robot positioning has better
accuracy and adaptability [17, 18]. In order to solve the
problem that the positioning accuracy of mobile robots de-
creases sharply due to the sensor measurement error and
the pose error caused by the robot model in the positioning
process, a filtering algorithm is proposed [19, 20]. Based on
the standard Kalman filter, when the sensor measurement
error exists, the positioning accuracy is improved by adjust-
ing the size of the state covariance matrix to resist the filter-
ing divergence caused by the pose error.
In this text, the Kalman filtering algorithm is put forward

to select the appropriate state error matrix and observation
error array and optimize the positioning accuracy, so as to
improve the location performance of the robot room.
Mathematical reasoning and simulation results show that
the probability of positioning error is 80% when Kalman fil-
ter is not used, and the positioning error is controlled
within 1.2m after Kalman filter, which effectively improves
the positioning effect of indoor robots.

2 Kalman filtering algorithm
Suppose the equation of the stochastic linear discrete
system (without considering the control action first) is

X kð Þ ¼ ΦX k−1ð Þ þ ΓW k−1ð Þ ð1Þ
Z kð Þ ¼ HX kð Þ þ V kð Þ ð2Þ

In the formula, X(k) is the n-dimensional state vector of
the system, and W(k) is the process noise vector of the
p-dimensional system. Z(k) is the m-dimensional observa-
tion vector of the system, and V(k) is the m-dimensional

observation noise vector. Φ is the n × n-dimensional trans-
fer matrix of the system, Γ is n × p-dimensional noise input
matrix, and H is the m × n-dimensional observation matrix.
The statistic characteristics of system observation

noise and process noise are assumed as below:

E W kð Þ½ � ¼ 0; E W kð ÞWT
j

h i
¼ Q kð Þδkj

E V kð Þ½ � ¼ 0; E V kð ÞVT
j

h i
¼ R kð Þδkj

E W Kð ÞVT
j

h i
¼ 0

8>>><
>>>:

ð3Þ

Q(k) is the p by p dimension symmetric non-negative
definite variance matrix of system process noise W(k),
and R(k) is the m by m dimension symmetric positive
definite variance matrix of system observation noise
V(k), and δkj is the function Kronecker-δ.
The calculation process of Kalman filtering of the

above discrete system is as follows:
The calculation state is further predicted:

X̂ kjk−1ð Þ ¼ ΦX̂ k−1jk−1ð Þ ð4Þ
State estimation:

X̂ kð Þ ¼ X̂ kjk−1ð Þ þ K kð Þ Z kð Þ−HX̂ kjk−1ð Þ� � ð5Þ
Filter gain matrix:

K kð Þ ¼ P kjk−1ð ÞHT HP kjk−1ð ÞHT þ R kð Þ� �−1 ð6Þ
One-step prediction error variance matrix:

P kjk−1ð Þ ¼ ΦP k−1ð ÞΦT þ ΓQ k−1ð ÞΓT ð7Þ
Estimation error variance matrix:

P kð Þ ¼ I−K kð ÞH½ �P kjk−1ð Þ ð8Þ
The above five equations are the fundamental equations

of Kalman filtering for stochastic linear discrete systems
[9]. In a filtering cycle, from the Kalman filtering in the
use of information and observation of order, the Kalman
filtering has two obvious information update processes:
time update observation and process update process. In
this calculation, only information related to the dynamic
characteristics of the system is used, such as state-step
transfer matrix, noise input array, and process noise vari-
ance matrix. As shown in Fig. 1, the Kalman filtering algo-
rithm has two computing loops: gain calculation loop and
filter calculation loop. The filter calculation loop relies on
the gain calculation loop, and the gain calculation loop is
calculated independently.

2.1 Kalman filtering
Kalman filtering is a digital signal filter based on Kalman fil-
tering. The observed value of the system state is the input of
the filter, and the estimated value of the system state is the
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output. The flow diagram of Kalman filtering is shown in
Fig. 2.
Mobile robot localization is to ensure the mobile robot

working in a two-dimensional working condition relative to
the global coordinates and its attitude, is the use of a priori
map information environment, the robot position of the
current estimated and observed value of the sensor input in-
formation, through certain processing and transformation, to
produce more accurate estimate of the current robot position.
For most mobile robot applications, the system is nonlinear.
So we need to apply the Kalman filtering after linearization.

2.2 Kalman filtering indoor location algorithm
2.2.1 System schematic diagram
System schematic diagram is shown in Fig. 3.

2.2.2 Building an indoor positioning model
In this paper, RSSI [10] values of locating nodes are col-
lected by various reference nodes, and the mathematical
model of RSSI value and distance is built on the basis of

the particular relation between RSSI measured value and
distance value:

RSSI ¼ − 10n lgd þ Að Þ ð9Þ
In Eq. (9), n is the signal propagation constant, d is

the distance from the transmitter, and A is the RSSI
measured value when the distance is 1 m.
Assuming the space position of the reference node is (xi, yi,

zi), the space position of the locating node is (xu, yu, zu), the
distance between the locating node and the reference node is
di, and the equation is obtained the matrix form is as follows:

Δd1

Δd2

:
:
:
Δdn

2
6666664

3
7777775
¼

ax1 ay1 az1
ax2 ay2 az2
: : :
: : :
: : :

axn ayn azn

2
6666664

3
7777775
þ

Δxu
Δyu
:
:
:

Δzu

2
6666664

3
7777775

ð10Þ

In the formula r̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi−x̂uÞ2 þ ðyi−ŷuÞ2 þ ðzi−ẑuÞ2

q
,

axi ¼ ðxi−x̂uÞ=r̂i , ayi ¼ ðyi−ŷuÞ=r̂i , and azi ¼ ðzi−ẑuÞ=r̂i ,

Fig. 1 The chart of Kalman filtering algorithm. Given the initial value, the state estimation at k time can be obtained by recursive calculation
according to the observed value Z (k) at K time

Fig. 2 Structure diagram of Kalman filtering of random linear discrete system
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make Δd = [Δd1 Δd2 . . . Δdn]
T and Δx ¼

Δxu Δyu Δzu½ �T .
Formula (10) can be written as follows:

Δd ¼ HΔx; namely Δx ¼ H−1Δd ð11Þ

When the reference node is more than 4, Eq. (4) is the
contradictory equation. Another calculation method is

Δx ¼ HTH
� �−1

HTΔd ð12Þ

The above equation to solve the least squares method
can be used for iteration calculation, namely from the
first position the nodes and transmission distance error
values probably start, and gradually to the calculation re-
sults that meet the requirements of measurement and
the value as a result of positioning. The advantage of this
method is that when the computer is solved, it can
utilize all kinds of valuable information as much as pos-
sible to reduce the error imported in the solution.

2.2.3 Establish the model of Kalman filter
RSSI-based localization focuses on distance measurement,
while RSSI ranging is easily affected by interference noise,
and the above method cannot meet the requirements of
the robot for positioning accuracy. Kalman filtering is a
valid algorithm for the best filtering of Gaussian process.
When the objective model is sufficiently accurate and the
system state and parameters are not mutated, the

performance is better. Therefore, the Kalman filtering is
combined with the above method to reduce the influence
of noise on the system by using the filter function of Kal-
man filtering, so as to improve the positioning accuracy.
Firstly, the state equation of displacement and velocity

of the system is established according to the above posi-
tioning information and discretization. The state equa-
tion of the positioning system is:

X k þ 1ð Þ ¼ AX kð Þ þW kð Þ ð13Þ
S kð Þ ¼ CX kð Þ þ V kð Þ ð14Þ

In the formula, the state vector X(k) is the positioning
information of the robot to be optimized.

XðkÞ ¼ xk yk zk V k
x V k

y V k
z½ �T , Xk, Yk, Zk,

and Vk
x, Vk

y, Vk
z are the displacement and velocity esti-

mates of the three directions of the robot at the time of
k. A is the system matrix; the positioning information of

the robot is the observation vector S(k). SðkÞ
¼ skx sk y sk z½ �T and sk

x, sk
y, sk

z are the observed
values of the displacement of the robot in three direc-
tions in the coordinate system; C is the output matrix;
V(k) and W(k) are observation noise and state noise and
meet E[W(k)] = E[V(k)] = 0, E[W(k)W(k)T] =Q, and
E[V(k)V(k)T] = R, that is, W(k) and V(k) are separate
white noise sequences with zero mean values.
The initial value of the state vector X(0)’ statistical fea-

tures are defined as E[X(0)] = μ0, Var[X(0)] = E[[X(0)
− μ0][X(0) − μ0]

T] = P0. The calculation of Kalman filter-
ing is divided into the following equations:
The forecast process of Kalman filtering equation:

X kjk−1ð Þ ¼ AX̂ k−1jk−1ð Þ ð15Þ

P kjk−1ð Þ ¼ AP k−1jk−1ð ÞAT þ Q ð16Þ
The correction process of the Kalman filtering

equation:

K kð Þ ¼ P kjk−1ð ÞCT CP kjk−1ð ÞCT þ R
� �−1 ð17Þ

X̂ kjkð Þ ¼ X k−1jk−1ð Þ þ Kk S kð Þ−CX̂ kjk−1ð Þ� � ð18Þ

The simulation 
results in two 
Dimensional 
path, namely the 
two-dimensional 
position 
information  

According to the 
system node 
location, obtain 
the distance 
information 

According to system 
node and distance 
information, location  
information is solved 
by locating model 

Random 
sequence 
noise 

Obtain position 
information with 
noise 

The location 
information is 
processed through the 
Kalman filter

Fig. 3 System schematic diagram

Table 1 Reference node addresses and coordinates

Reference node address Coordinates/m

0X0001 (0,0,2)

0X0010 (0,3.5,2)

0X0011 (0,6,2)

0X0100 (8,6,2)

0X0101 (16,6,2)

0X0110 (16,3.5,2)

0X0111 (16,0,2)

0X1000 (8,0,2)
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P kjkð Þ ¼ I−K kð ÞC½ �P kjk−1ð Þ ð19Þ
The initial value selection is X(0) = 0,

P 0j0ð Þ ¼

20 0 0 0 0 0
0 20 0 0 0 0
0 0 20 0 0 0
0 0 0 20 0 0
0 0 0 0 20 0
0 0 0 0 0 20

2
6666664

3
7777775

ð20Þ

The advantage of the Kalman filtering algorithm is that
it is only related to the value of the previous moment,
and the value of the latter time is estimated by the

previous moment, and the variance is considered to be
optimized in the feedback system. The computer mem-
ory is not piled with redundant data, and the computa-
tional efficiency is improved.

3 Experimental simulation and result analysis
3.1 The simulation environment
MATLAB platform is used in the simulation experi-
ment, and the emulation test is set in a square plane
district of 20 m × 20 m. The robot’s angle is θ, the
X-axis is going to be 0°, and it is going counter-
clockwise. The working process of the positioning
system is first through locating node gathers the

0 2 4 6 8 10 12 14
2.5

3

3.5

x/m

y
/m

 the real position information
 the observation position information

Fig. 4 The uniform motion of the robot is true. The robot moves from the point (0, 3) to the point (14, 3) along the line, and the movement azimuth θ=
0°. Without Kalman filter, the probability of positioning error is 80% within 2m, while after Kalman filter, the positioning error is controlled within 1m
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X Observation position information
Y Observation position information

The sampling point 

y/
m

 

Fig. 5 Observation position information. It can be clearly observed that the initial state is not good for the actual target state, and the error is
large. However, as the number of sampling increases, the error decreases
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signal intensity of 8 beacon nodes, according to the
radio signal strength and the related theory for posi-
tioning the distance between the nodes and 8 beacon
nodes. Then, the location model is established by
using the location of distance information and bea-
con nodes to determine the location of the locating
node. Furthermore, the Kalman filtering model is
established to filter the location message of the lo-
cating node. See Table 1 for reference node ad-
dresses and coordinates.

3.2 The emulation results
3.2.1 Emulation results of uniform motion of the robot
Robot positioning includes robot position and direction
of movement. Figure 4 shows that the uniform motion
of the robot is true. Kalman filtering is close to the real
orbit, and it can reduce noise interference. In Fig. 4, the
acceleration value processed by the Kalman filter algo-
rithm is obviously different from the acceleration acqui-
sition value, and the data obtained is more stable than
the measured data. Because the attitude of moving

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

The sampling point

x/
m

X's Karlman filtering position information
X's the real position information
X's observation position information

Fig. 6 Uniform motion X direction effect
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0
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1.5
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4

The sampling point

y/
m

y's Karlman filtering position information   
y's real position information 
y's observation position information 

Fig. 7 Uniform motion Y direction effect
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objects is different, the acceleration is affected by gravity,
so the measured value is a gravity acceleration g.
Figure 5 is the observation position information of X

and Y direction generated by simulation. The
two-dimensional indoor road map of the robot shown in
Fig. 5 shows the real position and observed the position
of the robot in uniform motion. Taking the cement
ground covered with pebbles as the experimental plat-
form, the global coordinates are set and the starting

heading angle of the robot is recorded as 0. Then, the
straight and turning walking of the robot is realized by
the encoder. In the process of robot motion, due to the
influence of noise and odometer error, the actual trajec-
tory of the robot deviates from the set trajectory.
Figures 6 and 7 show that the tracking effect is very

good in the effective detection range. The estimated mo-
tion curve is accurate for the actual position, which can
reflect the actual state of the robot at the moment. In

0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

7

x/m

y/
m

the real position information
the observation position information

Fig. 8 The real and observation position information
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2

4

6

8

10

12
X's observation position information 
Y's observation position information 

Fig. 9 Movement X and Y observation
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addition, it can be seen that because of the velocity com-
ponent in the Y direction; therefore, the estimation error
in the Y direction is larger than that in the X direction.
Later, near the real motion trajectory error levels near
constant; thus, it can be found that the Kalman filtering
estimates of robot target motion trajectory prediction can
achieve a better effect. Specific functions of the Kalman
filter are as follows: The velocity and starting point

coordinates of the robot have a great error noise, and the
label measurement value also has a great error noise. Kal-
man filter can get the optimal coordinates, i.e., the optimal
state, by fusing the above two noisy measurements to-
gether. This is a noise reduction process. The filtered co-
ordinates are noisy, but very small. When the optimal
coordinates and noise arrive at the next time t + 1, the
label observations and noise of t + 1 are deduced again as

0 10 20 30 40 50 60
0

2

4

6

8

10

12

The sampling poin

x/
m

X's Karlman filtering position information
X's real position information
X's observation position information

Fig. 10 X orientation effect. It can be found from this figure the orientation effect of X direction. Estimated curve for actual location estimation is
more accurate and basically could reflect the actual status of robot at the moment, using Kalman filtering algorithm, and is used for the
observation location information filtering

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

7

The sampling point

y/
m

Y's Karlman filtering position information
Y's real position information
Y's observation position information

Fig. 11 Y orientation effect. It can be found from this figure the orientation effect of Y direction. Estimated curve for actual location estimation is
more accurate and basically could reflect the actual status of robot at the moment, using Kalman filtering algorithm, and is used for the
observation location information filtering
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the input of filtering combined with the label observations
of t + 1. The optimal trajectory of the robot is deduced by
the continuous autoregressive filtering of the algorithm.
The smaller the interval Δt, the higher the accuracy of fil-
tering and the more accurate the trajectory is estimated.

3.2.2 Simulation results of robot uniform acceleration
motion
The 2D road map of the robot produced by simulation is
shown in Fig. 8. The position of the corresponding X direc-
tion and Y direction is shown in Fig. 9. From Figs. 8 and 9,
it can be clearly seen that the mean error of the Y direction
is larger than that of the X direction because of the velocity
component in the Y direction. Kalman filter is close to the
real trajectory. After reaching the real trajectory, the error
level remains near zero, so it can be seen that the Kalman
filter can really achieve good results in estimating and pre-
dicting the trajectory of maneuvering target.
It can be found from Figs. 10 and 11 the orientation

effect of X direction and Y direction. In Figs. 10 and 11,
multi-sensor information fusion technology is adopted.
The main advantage is that it can provide better per-
formance in the repeatability and complementarity of in-
door robot motion observation information. The
distance of obstacles around the robot is measured by
uniformly spaced sonar, and multi-sensor information
fusion is carried out. Based on the data of multi-sensor
fusion, the navigation map of the robot can be estab-
lished to achieve accurate positioning of indoor robot
motion.
The partial correctness of the algorithm is proved by

Floyd invariant assertion method. The termination of the
algorithm is proved by a well-ordered set method. The al-
gorithm is completely correct, which can be illustrated by
the conclusion which is that the algorithm is partially cor-
rect and can be terminated. The time complexity of the al-
gorithm is O(n3), and the space complexity is O(n).

4 Results and discussion
Through simulation, it is shown that without using Kal-
man filtering to make system optimization, the effects of
indoor environment have a lot of interference noise, the
error of RSSI values will be very big, there is more com-
plex indoor environment confusion, and deviation sys-
tem positioning precision is very large. Given an indoor
environment, the proper selection of state error matrix
and observation error array, an indoor robot positioning
model and Kalman filter model are established, and
Kalman filter autoregressive algorithm is used to
optimize the estimated position coordinates of the
robot. The simulation results show that when the
Kalman filter is not used, the probability of robot
positioning error is less than 1.8 m, and after the
Kalman filter, the positioning error is less than 1.2

m. The positioning effect of the indoor robot is im-
proved obviously.
In conclusion, the Kalman filtering algorithm can

improve the positioning accuracy of the robot indoor.
But there are other shortcomings that need to be fur-
ther improved, such as that this article’s main re-
search is limited in the two-dimensional space,
cannot carry on the omnidirectional location meas-
urement of carrier, and a further work that needs to
be done is to study the robot positioning in this re-
gard and the multidimensional space of carrier in
order to realize the all-round position measurement.
The main work in the future includes the integration
and conversion of various indoor positioning modes,
the perfect realization of the docking and conversion
of indoor and outdoor mobile object positioning, the
realization of a wide range of multi-choice positioning
system, and the further improvement of positioning
speed and accuracy, as well as the application in mo-
bile terminals.
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