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Abstract

Internet of Things (IoT) is rapidly developed and widely deployed in recent years, which makes the sensory data
generated by IoT systems explode. The huge amount of sensory data generated by some IoT systems has already
exceeded the storage, transmission, and computation capacities of IoT systems. However, the valuable sensory data
which is highly related to a query in an IoT system is relatively small. The sensory data which is highly related to a
query Q forms the relative kernel dataset of Q. Therefore, retrieving sensory data in the relative kernel dataset of a
query instead of the raw sensory data will reduce the heavy burdens of an IoT system in terms of transmission and
computation and then reduce the energy consumption of the IoT system. In this paper, we investigate the problem of
retrieving relative kernel dataset from big sensory data for continuous queries in IoT systems. Two algorithms, relative
kernel dataset retrieving algorithm and piecewise linear fitting-based relative kernel dataset retrieving algorithm, are
proposed to retrieve the relative kernel dataset for continuous queries. Beside, algorithms for estimating the answers
of continuous queries based on their relative kernel datasets are also proposed. Extensive simulation results are
provided to verify the effectiveness and energy efficiency of the proposed algorithms.
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1 Introduction
The Internet of Things (IoT) system, which refers to the
network with a variety of intelligent things or objects
around us, provides an efficient way to observe the com-
plicated physical world and brings convenience to our life.
With the repaid development of wireless telecommunica-
tions, embedded systems, and sensing techniques, the IoT
systems are widely developed and generate mass sensory
data. Gartner forecasts that there will be 20.8 billion con-
nected things by 2020 and 100 billion by 2030 [1]. Such
a large scale of IoT systems will generate mass sensory
data. According to [2], the global climate data will reach to
100 petabytes in 2020. Other types of sensory data, such
as monitoring data from a large-scale system (e.g., Large
Hadron Collider) and GPS data, also increase rapidly and
have exceeded terabytes or even petabytes currently.
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The mass sensory data generated by IoT systems is
called as big sensory data, which has four V characters.

• Volume. The volume of big sensory data is extremely
huge that has already exceeded the storage,
transmission and computation capacities of IoT
systems.

• Variety. An IoT system always contains a wide variety
of sensors to satisfy the complex applications of the
IoT system.

• Velocity. To improve the accuracy of applications in
an IoT system, the sampling frequency of each sensor
is high. Therefore, the generating velocity of big
sensory data is quite fast.

• Value. The value of big sensory data always
concentrates on a relative small subset of the big
sensory data on account of the existence of noises
and redundancies in big sensory data.

The Volume, Variety, and Velocity characters of big
sensory data make the data processing in IoT systems
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more challenging. The mass sensory data may exceed
the storage, transmission and computation capacities of
IoT systems. Besides, the energy consumption for trans-
mitting and computing big sensory data is quite high.
Therefore, the existing sensory data acquisition, rout-
ing [3–6], data collection [7–9], and data computation
[10, 11] techniques are no longer applicable for the big
sensory data. The authors in [3] design cluster-based rout-
ing protocol for wireless sensor networks with nonuni-
form distribution of sensors. The works of [4–6] focus
on constructing connected dominating sets for wire-
less sensor networks. However, the transmission of mass
sensory data will exceed the communication capacity
of wireless sensor networks and affect the effectiveness
of these methods accordingly. The authors in [7] study
the approximated holistic aggregation algorithms based
on uniform sampling. And the authors in [8] propose
aggregation scheduling algorithms for energy harvest-
ing sensor networks. However, the mass sensory data
will increase the aggregation latency and affect the per-
formances of these algorithms. The work of [9] pro-
poses algorithm to track quantiles and range countings
in wireless sensor networks. The authors in [10] pro-
pose algorithm to support curve query processing in
wireless sensor networks. The work in [11] studies the
application-aware scheduling in wireless networks. When
the amount of sensory data is huge, the computation com-
plexity of these algorithms may exceed the computation
capability of wireless sensor networks. Therefore, a series
of new in-network processing algorithms with much
lighter transmission and computation overloads should be
considered.
The Value character of big sensory data reveals that the

dataset of sensory data that is highly related to a given
query is usually small. Therefore, for a query, only retriev-
ing the dataset of sensory data that is highly related to the
query will greatly reduce the transmission and computa-
tion overhead of an IoT system and then reduce the energy
consumption of the IoT system.
There already exists some data reduction algorithms

which reduce the amount of sensory data transmitted and
computed in an IoT system and then reduce the energy
consumption of the IoT system. Firstly, the simplest data
reduction technique is based on sampling [12–16]. How-
ever, the sampling technique is only applicable to some
simple statistic queries. Some valuable data in other types
of queries may be missed by sampling technique on
account of the limitation of sampling frequency. Besides,
the sampled data may not be necessary for all queries.
Secondly, another classical technique for in-network data
reduction is compressed sensing [17–22]. However, com-
pressed sensing only considers the temporal and spatial
correlation between sensory data while neglecting the
correlation between the queries conducted by users and

the sensory data generated by different sensors. As a
consequence, the data reduction for a given query is
not enough in compressed sensing. Thirdly, the work
proposed by Cheng et. al. is the first one to investigate
data processing problem in big sensory data [23, 24].
The work can reduce sensory data by drawing domi-
nant dataset from Big Sensory Data. Nevertheless, the
dominant dataset defined in [23, 24] is irrelevant to any
given query. As with the sampling technique and com-
pressed sensing technique, the sensory data in the domi-
nant dataset defined in [23, 24] may not be necessary for
all queries.
All existing algorithms above are not energy efficient

enough since they ignore the correlation between a given
query and the sensory data. As a consequence, we concen-
trate on retrieving the relative kernel dataset for continu-
ous queries from big sensory data in IoT systems in this
paper. The relative kernel dataset of a query is the sensory
data that is highly related to the query. The amount of sen-
sory data in the relative kernel dataset of a query is usually
small according to the Value character of big sensory data.
Therefore, only transmitting and computing these sen-
sory data will highly reduce the energy consumption of an
IoT system. Besides, many applications in the IoT systems
provide users to have access to temporal variation infor-
mation of the monitored environment. That is, users can
conduct continuous queries in IoT systems to monitor the
physical world in real time, where a continuous query is a
query which is conducted by a user continuously and fre-
quently. Since continuous queries are frequent in an IoT
system, reducing the energy consumption of continuous
queries will highly reduce the energy consumption of an
IoT system.
On account of the above reasons, we study the problem

of retrieving the relative kernel dataset from big sen-
sory data for continuous queries in IoT systems in this
paper. Two algorithms, the relative kernel dataset retriev-
ing (RKDR) algorithm and the piecewise linear fitting-
based relative kernel dataset retrieving (PLF-RKDR) algo-
rithm, are proposed firstly to retrieve the relative kernel
dataset for continuous queries. Besides, two algorithms,
the piecewise linear fitting-based answer estimating (PLF-
AE) algorithm and temporal correlation-based answer
estimating (TC-AE) algorithm, are proposed to estimate
the answers of continuous queries based on their relative
kernel datasets. The major contributions of this paper are
as follows.

1 The definition of the relative kernel dataset of a
continuous query is proposed firstly. Besides, the
relative kernel dataset retrieving problem is formally
defined in this paper.

2 Two algorithms, the RKDR algorithm and the
PLF-RKDR algorithm, are proposed to retrieve the
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relative kernel dataset from big sensory data for
continuous queries in IoT systems.

3 Two algorithms, the PLF-AE algorithm and the
TC-AE algorithm, are proposed to estimate the
answers of continuous queries in an IoT system
based on their relative kernel datasets.

4 Extensive simulations on both simulation dataset and
real dataset are carried out to verify the accuracy of
the proposed algorithms.

The rest of this paper is organized as follows. Section 2
summarizes the methods of this paper. Section 3 presents
the problem definition. Section 4 elaborates the algo-
rithms for the relative kernel dataset retrieving prob-
lem. Section 5 provides the algorithms for estimating the
answers of continuous queries with their relative kernel
datasets. Section 6 analyzes the performances of the pro-
posed algorithms. Section 7 shows the simulation results
and discussion. Section 8 discusses the related work.
Finally, Section 9 concludes the whole paper.

2 Methods
In this paper, we study the problem of retrieving the rel-
ative kernel dataset from big sensory data for continuous
queries in IoT systems. The Pearson correlation coeffi-
cient is applied to measure the linear correlation between
sensory data and the continuous queries. Besides, the
piecewise linear fitting method is applied to approximate
the relationships between sensory data and the continu-
ous queries. Two algorithms are proposed to retrieve the
relative kernel dataset for continuous queries in IoT sys-
tems. Another two algorithms are proposed to estimate
the answers of continuous queries with their relative ker-
nel datasets. The absolute error and relative error are
defined and evaluated on both simulation dataset and real
dataset. The simulation results show that the proposed
algorithms are effective and efficient.

3 Problem definition
3.1 The IoT systemmodel
An IoT system is equipped with n categories of sen-
sors, which can generate n types of sensory data from
the monitored environment. Each type of sensory data
is described as an attribute of the monitored environ-
ment. The attribute set of the monitored environment
is denoted as A = {x1, x2, · · · , xn}. For each continuous
query Q from users at time slot t in an IoT system, the
IoT system returns an answer to users according to the
sensory data collected at time slot t. The answer of query
Q is described as the target value of query Q, denoted as
yq. Apparently, the target value yq is correlated with par-
tial or all n attributes. Taking the healthcare monitoring
IoT system as an example, there are a variety of sensors
collecting data of heart sounds, electrical heart signals,

blood oxygen saturation, respiratory sounds, blood pres-
sure, body temperature, etc., which are attributes of this
IoT system.When the user’s query is the possibility of car-
diac arrest, the IoT system returns a probability. In this
application, the query Q is the possibility of cardiac arrest
and the target value yq is the returned probability.

3.2 The correlation model
To explore the correlations between attributes in A and
queryQ, a training set withm training examples is applied.
Each training example is denoted as a column vector Sl =
[ x1l, · · · , xnl, yql]T , where T denotes the matrix transpose
and xil (1 ≤ i ≤ n) is the value of attribute xi and yql is the
target value of query Q in training example Sl, 1 ≤ l ≤ m.
The training set can be denoted as a (n + 1) × m matrix
S =[ S1, S2, · · · , Sm].
In most applications of IoT systems, the sensory data

can reflect the statement of the monitored physical world
intuitively. That means the simple linear correlation can
reveal the relationship between the sensory data and the
query of an IoT system in most cases. The Pearson cor-
relation coefficient is a common metric to measure the
linear correlation between two variables in correlation
analysis. The value of the Pearson correlation coefficient
is in [−1, 1], where −1 presents the total negative linear
correlation, 0 presents no linear correlation, and 1 is the
total positive linear correlation. Therefore, we apply the
Pearson correlation coefficient to measure the correlation
between attributes and the correlation between attributes
and continuous queries.
Firstly, the Pearson correlation coefficient of any two

attributes xi and xj (1 ≤ i ≤ n, 1 ≤ j ≤ n and i �= j) is
presented by the following formula,

rij =
∑m

l=1(xil − xi)(xjl − xj)
√∑m

l=1(xil − xi)2
√∑m

l=1(xjl − xj)2
(1)

where xil is the value of attribute xi and xjl is the value
of attribute xj in training example Sl. Besides, xi =
1
m

∑m
l=1 xil is the average value of attribute xi and xj =

1
m

∑m
l=1 xjl is the average value of attribute xj in the train-

ing set S .
Secondly, the Pearson correlation coefficient of attribute

xi (1 ≤ i ≤ n) and the target value yq of a continuous
query Q is presented by the following formula,

Rq
i =

∑m
l=1(xil − xi)(yql − yq)

√∑m
l=1(xil − xi)2

√∑m
l=1(yql − yq)2

(2)

where xil denotes the value of attribute xi and yql denotes
the target value of queryQ in training example Sl. Besides,
yq = 1

m
∑m

l=1 yql is the average value of target values of
query Q in the training set S .
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3.3 Problem statement
In this paper, we study the problem of retrieving the rela-
tive kernel dataset for continuous queries in IoT systems
to reduce the transmission and computation overhead and
energy consumption of the IoT systems. The formal def-
inition of the relative kernel dataset Kq for a continuous
query Q is described as follows.

Definition 1 (β-compatible) Given a parameter β ,
where 0 < β < 1, any two attributes xi and xj
are β-compatible if their Pearson correlation coefficient
rij satisfies that |rij| ≤ β , where rij is calculated by
formula (1).

Definition 2 (β-compatible set) Given a parameter β ,
where 0 < β < 1, the subset AS of attribute set A is a β-
compatible set if any two attributes inAS are β-compatible
with each other, i.e.,AS ⊆ A and ∀xi, xj ∈ AS, |rij| ≤ β .

Definition 3 (the weight of a β-compatible set) Given
a β-compatible set AS and a continuous query Q, the
weight of AS is denoted as w(AS). The definition of w(AS)
is w(AS) = ∑

xi∈AS
|Rq

i |, where Rq
i is the correlation

coefficient between attribute xi and query Q.

Definition 4 ((k,β)-relative kernel dataset Kq) Given
the attribute set A, query Q, the compatible parameter β ,
and the required size k of the relative kernel dataset, a
training set S . The (k,β)-relative kernel dataset of query
Q is a subset of A, denoted as Kq, satisfying the following
three conditions.
(1) Kq is a β-compatible subset,
(2) the size of Kq is at most k, and
(3) w(Kq) > w(AS) for any attribute subsetAS satisfying

conditions (1)(2).

Based on the definition of (k,β)-relative kernel dataset
Kq, we define the problem of retrieving the relative
kernel dataset for continuous queries in IoT systems
as follows.

Problem statement The problem of retrieving the rela-
tive kernel dataset for continuous queries in IoT systems
is denoted as relative kernel dataset retrieving (RKDR)
problem. The input and output of the RKDR problem are
presented as follows.
Input:

1. The attribute set of an IoT system,
A = {x1, x2, · · · , xn};

2. The continuous query, Q;
3. The training set, S =[ S1, S2, · · · , Sm];
4. The required size of the relative kernel dataset, k ;
5. The compatible parameter, β .

Output:
The (k,β)-relative kernel dataset Kq of the continuous

query Q;

Theorem 1 The RKDR problem is NP-hard.

Proof 1 The Maximum Weighted Budgeted Indepen-
dent Set (MWBIS) problem is to find a maximum weighted
independent set in a weighted graph G(V ,E) of cardinal-
ity at most k. The MWBIS problem has been proved to be
NP-hard in [25]. The MWBIS problem can be converted to
the RKDR problem in polynomial time. Each vertex i of the
weighted graph G(V ,E) can be regarded as an attribute
xi of an IoT system, where the weight of vertex i can be
regarded as the absolute value of the correlation coefficient
between attribute xi and query Q. For each edge (i, j) ∈ E
in the weighted graph G(V ,E), we regard that attributes xi
and xj are not β-compatible. To find a maximum weighted
independent set of cardinality at most k is to find the
(k,β)-relative kernel dataset of query Q. Then the MWBIS
problem is converted to the RKDR problem. Therefore, the
RKDR problem is NP-hard.

4 Algorithms for the relative kernel dataset
retrieving problem

In this section, we propose two algorithms to retrieve
the relative kernel dataset for continuous queries in IoT
systems, which are the relative kernel dataset retrieving
(RKDR) algorithm and the piecewise linear fitting-based
relative kernel dataset retrieving (PLF-RKDR) algorithm.
The detailed description of the RKDR algorithm is pre-
sented in Algorithm 1 and the detailed description of the
PLF-RKDR algorithm is presented in Algorithm 3. The
RKDR algorithm is suitable for the IoT systemswhere sim-
ple linear correlation can reveal the relationship between
the sensory data and the continuous queries. And the
PLF-RKDR algorithm is more suitable for the IoT sys-
tems where the correlation between an attribute and a
continuous query is not merely linear correlation.

4.1 Relative kernel dataset retrieving algorithm
The relative kernel dataset retrieving (RKDR) algorithm
firstly reduces redundancies in attributes by measuring
the linear correlations between different attributes. Then,
the Pearson correlation coefficient is applied to mea-
sure the correlations between attributes and the given
continuous query. The RKDR algorithm contains the fol-
lowing two steps.
Step 1. Calculate the candidate relative kernel dataset

through reducing the redundancies in attributes.
The candidate relative kernel dataset is denoted as X .

At first, the candidate relative kernel dataset is initialized
as the attribute set, i.e., X = A = {x1, · · · , xn}. Then, X is
updated by the following two sub-steps.
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Step 1.1. For each attribute xi (1 ≤ i ≤ n) inX , the Pear-
son correlation coefficient Rq

i between xi and the target
value yq of query Q is calculated by formula (2).
Step 1.2 For any two attribute xi and xj inX , the Pearson

correlation coefficient rij of them is calculated by formula
(1). If xi and xj are not β-compatible (i.e., |rij| > β), one
of them is redundant in X and should be removed. If xi
has stronger linear correlation with query Q than xj, i.e.,
|Rq

i | > |Rq
j |, remove xj from X . Otherwise, remove xi

from X .
After the above two sub-steps, the candidate relative

kernel dataset X is calculated through reducing redun-
dancies in attributes.
Step 2. Retrieve the (k,β)-relative kernel dataset from

the candidate relative kernel dataset.
Any two attributes in the candidate relative kernel

dataset X are β-compatible according to Step 1.2. The
Pearson correlation coefficient of each attribute in X and
query Q is calculated in Step 1.1. The absolute values
of these Pearson correlation coefficients are calculated.
Therefore, we select the top-k absolute values of these
Pearson correlation coefficients and their corresponding k
attributes. The top-k absolute values of these Pearson cor-
relation coefficients are denoted as |Rq

a1 | ≥ |Rq
a2 | ≥ · · · ≥

|Rq
ak | and the corresponding k attributes are xa1 , · · · , xak .

These k attributes are added to the (k,β)-relative kernel
dataset of query Q, i.e., Kq = {xa1 , · · · , xak }.
After the above two steps, the (k,β)-relative kernel

dataset for query Q is derived. The detailed operations
are formally described in Algorithm 1. Algorithm 1 is
proposed to retrieve the (k,β)-relative kernel dataset for

Algorithm 1: Relative Kernel Dataset Retrieving Algo-
rithm
Input: query Q, the attribute setA, the training set

S =[ S1, · · · , Sm], the compatible parameter β , the
required size k

Output: (k,β)-relative kernel dataset Kq

1 X = A = {x1, x2, · · · , xn};
2 for each attribute xi in X do
3 Rq

i =
∑m

l=1(xil−xi)(yql−yq)√∑m
l=1(xil−xi)2

√∑m
l=1(yql−yq)2

;

4 for each pair of attributes xi and xj in X do
5 rij =

∑m
l=1(xil−xi)(xjl−xj)√∑m

l=1(xil−xi)2
√∑m

l=1(xjl−xj)2
;

6 if |rij| > β then
7 if |Rq

i | > |Rq
j | then

8 remove xj from X ;
9 else

10 Otherwise, remove xi from X ;
11 Obtain the top-k correlations, denoted by {|Rq

a1 |, · · · , |Rq
ak |};

12 Kq = {xa1 , · · · , xak };
13 Return Kq.

continuous query Q in IoT systems by the linear correla-
tion analysis.

4.2 Piecewise linear fitting-based relative kernel dataset
retrieving algorithm

In some scenarios, linear correlation is not enough to
describe the relationship between an attribute and a con-
tinuous query. For example, the correlation between an
attribute and a continuous query could be exponential,
quadric, or logarithmic. In this situation, the RKDR algo-
rithm proposed in the last subsection may be no longer
applicable. As a consequence, the piecewise linear fitting-
based relative kernel dataset retrieving (PLF-RKDR) algo-
rithm is proposed to improve the RKDR algorithm in this
subsection.
Since it is almost impossible to know the actual cor-

relation function between an attribute and a continuous
query, it is difficult to measure the correlation coeffi-
cient between them. The PLF-RKDR algorithm applies the
piecewise linear fitting method to approximate the actual
correlation function between an attribute and a contin-
uous query. Since each segment of the piecewise linear
function is a linear function, the PLF-RKDR algorithm
combines the Pearson correlation coefficients of all seg-
ments in the piecewise linear function to measure the
correlation of each attribute and the continuous query.
The PLF-RKDR algorithm contains the following three
steps.
Step 1. Calculate the Pearson correlation coefficient of

each attribute xi ∈ A and the continuous query Q by
piecewise linear fitting.
We apply the training set S to calculate the piecewise

linear function between each attribute xi ∈ A and the
target value of the continuous query Q.
Firstly, for each training example Sl (1 ≤ l ≤

m), we extract the tuple (xil, yql), where xil is the
value of attribute xi and yql is the target value in
Sl. Then, we sort the extracted tuples by the non-
descending order of the values of attribute xi and
denote the ordered tuples as {(x1i , y1q), · · · , (xmi , ymq )},
where x1i ≤ · · · ≤ xmi .
Secondly, the optimal segment points of the sorted

tuples {(x1i , y1q), · · · , (xmi , ymq )} are calculated recursively
by the method proposed in [26]. For one segment,
{(xsi , ysq), (xs+1

i , ys+1
q ), · · · , (xei , yeq)}, the linear fitting func-

tion of it is derived by the least-squares method and is
denoted as F(s,e)

i (x). The error sum of squares of lin-
ear fitting function F(s,e)

i (x) is E(s, e). The optimal seg-
ment point (xji, y

j
q) of {(xsi , ysq), (xs+1

i , ys+1
q ), · · · , (xei , yeq)}

should satisfy that j = argmins<l<e(E(s, l) + E(l, e)).
This process is conducted recursively until E(s, e) −
(E(s, j) + E(j, e)) ≤ γ . The formal description is pre-
sented in Algorithm 2. Algorithm 2 returns the set
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Algorithm 2: Least-Squares Based Piecewise Linear
Fitting (LS-PLF) Algorithm
Input: Two endpoints s and e, E(s, e), the threshold γ

Output: The set of segment points P
1 if e − s > 1 then
2 j = argmins<l<e(E(s, l) + E(l, e));
3 if E(s, e) − (E(s, j) + E(j, e)) > γ then
4 P = P ∪ {j};
5 LS-PLF(s, j,E(s, j), γ );
6 LS-PLF(j, e,E(j, e), γ );
7 Return P .

of segment points Pi = {s1, s2, · · · , sli} for segment
{(xsi , ysq), (xs+1

i , ys+1
q ), · · · , (xei , yeq)}.

Finally, the sorted tuples {(x1i , y1q), · · · , (xmi , ymq )} are
divided into li − 1 subsets according to the calculated
segment point set Pi. Each subset is denoted as Dj =
{(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )}, where sj, sj+1 ∈ Pi, and 1 ≤

j < li. The Pearson correlation coefficient Rq
ij for subsetDj

is calculated by the following formula,

Rq
ij =

∑sj+1
l=sj(x

l
i − xij)(ylq − yqj)

√∑sj+1
l=sj(x

l
i − xij)2

√∑sj+1
l=sj(y

l
q − yqj)2

(3)

where xij = 1
sj+1−sj+1

∑sj+1
l=sj x

l
i and yqj = 1

sj+1−sj+1
∑sj+1

l=sj y
l
q.

As a consequence, the correlation coefficient of attribute
xi and the continuous query Q is the weighted average of
the absolute values of all calculated Pearson correlation
coefficients {Rq

ij|1 ≤ j < li}, which is presented as the
following formula.

Rq
i =

li−1∑

j=1
|Rq

ij| × sj+1 − sj
xmi − x1i

(4)

Step 2. Calculate the candidate relative kernel dataset X
through reducing the redundancies in attributes.
Initially, all attributes are added to X , i.e., X = A =

{x1, · · · , xn}. Then, for each two attribute xi, xj ∈ X , we
compute the Pearson correlation coefficient rij of them by
formula (1). When |rij| > β , meaning that xi and xj are
not β-compatible, xi and xj are redundant in X and one
of them should be removed. |Rq

i | and |Rq
j | are compared,

where Rq
i and Rq

j are calculated by formula (4). If |Rq
i | >

|Rq
j |, remove xj from X . Otherwise, xi is removed from X .
Step 3. Retrieve the relative kernel dataset from the can-

didate relative kernel dataset for the continuous query
Q.
After Step 2, all attributes in candidate relative kernel

dataset X are β-compatible. Then, we can obtain the top-
k correlation coefficients of all attributes in X calculated
in Step 1 and the corresponding k attributes. The top-k
correlation coefficients are denoted as Rq

a1 ≥ Rq
a2 ≥ · · · ≥

Rq
ak , and the corresponding k attributes are denoted as

xa1 , xa2 , · · · , xak . Finally, the (k,β)-relative kernel dataset
of query Q is Kq = {xa1 , xa2 , · · · , xak }.
After the above three steps, the (k,β)-relative kernel

dataset of query Q is calculated. The detailed operations
are formally described in Algorithm 3. Algorithm 3 is
proposed to retrieve the (k,β)-relative kernel dataset of
continuous queryQ in IoT systems by the piecewise linear
fitting method. And Algorithm 2 is called by Algorithm 3
to return the set of segment points for piecewise linear
fitting.

Algorithm 3: PLF-Relative Kernel Dataset Retrieving
Algorithm
Input: query Q, the attribute setA, the training set

S =[ S1, · · · , Sm], the compatible parameter β , the
required size k, threshold γ

Output: (k,β)-relative kernel dataset Kq

1 X = A = {x1, x2, · · · , xn};
2 for each attribute xi in X do
3 Extract the tuples (xil , yql) from training example Sl

(1 ≤ l ≤ m);
4 Sort the extracted tuples by non-descending order of

the values of attribute xi, i.e., {(x1i , y1q), · · · , (xmi , ymq )},
where x1i ≤ · · · ≤ xmi ;

5 Pi = {1,m}∪LS-PLF(1,m,∞, γ );
6 {(x1i , y1q), · · · , (xmi , ymq )} are divided into li − 1 subsets

D1, · · · ,Dli−1;
7 for each subset Dj = {(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )} do

8 Calculate the Pearson correlation coefficient Rq
ij by

formula (3);
9 Rq

i = ∑li−1
j=1 |Rq

ij| × sj+1−sj
xmi −x1i

;

10 for each pair of attributes xi and xj in X do
11 rij =

∑m
l=1(xil−xi)(xjl−xj)√∑m

l=1(xil−xi)2
√∑m

l=1(xjl−xj)2
;

12 if |rij| > β then
13 if |Rq

i | > |Rq
j | then

14 remove xj from X ;
15 else
16 Otherwise, remove xi from X ;
17 Obtain the top-k correlations, denoted by {|Rq

a1 |, · · · , |Rq
ak |};

18 Kq = {xa1 , · · · , xak };
19 Return Kq.

5 Algorithms for estimating the answer of a
continuous query with its relative kernel
dataset

Once a continuous query Q is issued by users in an
IoT system, sensory data of attributes in (k,β)-relative
kernel dataset of query Q are transmitted to the sink
node of the IoT system. After the (k,β)-relative kernel
dataset of Q is retrieved by the RKDR algorithm (Algo-
rithm 1) or the PLF-RKDR algorithm (Algorithm 3), the
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IoT system should return an answer of Q to the users.
In this section, we propose two algorithms to estimate
the answers of continuous queries with their relative ker-
nel datasets, which are the piecewise linear fitting-based
answer estimating (PLF-AE) algorithm and the temporal
correlation-based answer estimating (TC-AE) algorithm.
The detailed descriptions of the PLF-AE algorithm and
the TC-AE algorithm are presented in Algorithm 4 and
Algorithm 5, respectively. The PLF-AE algorithm is pro-
posed to estimate the answers for continuous queries
with their (k,β)-relative kernel datasets by piecewise lin-
ear fitting method. And the TC-AE algorithm is proposed
to estimate the answers for continuous queries with less
energy consumption by applying the temporal correla-
tions of sensor data.

5.1 Piecewise linear fitting-based answer estimating
algorithm

The piecewise linear fitting-based answer estimating
(PLF-AE) algorithm applies the piecewise linear fitting
method to estimate the answer of a continuous query
with sensory data of attributes in its (k,β)-relative kernel
dataset. Once a continuous query Q is issued by users in
an IoT system at time slot t, only sensory data of attributes
in the (k,β)-relative kernel dataset Kq of Q are transmit-
ted to the sink node. For each attribute, the sensory data
generated at time slot t is denoted as xi(t). That is, the sink
node collects sensory data in {xi(t)|xi ∈ Kq} to estimate
the answer of Q. Firstly, the piecewise linear function of
each attribute inKq and the target value of query Q is cal-
culated by the piecewise linear fitting method. Then, each
piecewise linear function is assigned a weight. Finally, the
target value of Q at time slot t is estimated by the sensory
data of attributes in Kq according to the weighted piece-
wise linear functions. The PLF-AE algorithm consists of
the following three steps.
Step 1. Calculate the piecewise linear functions of query

Q and attributes in Kq.
For each attribute xi ∈ Kq, the piecewise linear func-

tion of xi and query Q is denoted as fi. The process of
calculating fi consists of the following three sub-steps.
Step 1.1. Preprocess the training set S = {S1, · · · , Sm}.
For each training example Sl (1 ≤ l ≤ m), the value

of attribute xi and the target value yql are extracted and
denoted as a tuple (xil, yql). All extracted tuples are sorted
by the non-descending order of the values of attribute xi.
The sorted tuples are denoted as {(x1i , y1q), · · · , (xmi , ymq )},
where x1i ≤ · · · ≤ xmi .
Step 1.2. Calculate the optimal segment points of piece-

wise linear function fi.
The optimal segment points of fi is calculated by Algo-

rithm 2. The returned segment point set is denoted as
Pi = {s1, s2, · · · , sli}. As a consequence, the sorted tuples

{(x1i , y1q), · · · , (xmi , ymq )} are divided into li − 1 subsets,
where each subset Dj (1 ≤ j < li ) is denoted as Dj =
{(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )}.

Step 1.3. Calculate the linear functions for all subsets.
For each subset Dj = {(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )}, the

linear function is calculated by the least-squares method
and is denoted as fi,j. The Pearson correlation coefficient
Rq
ij for subset Dj is calculated by formula (3). As a conse-

quence, the piecewise linear function fi of attribute xi and
the continuous query Q is as follows.

fi =

⎧
⎪⎪⎨

⎪⎪⎩

fi,1, xi ≤ xs2i
fi,2, xs2i < xi ≤ xs3i· · · , · · ·

fi,li−1, xi > x
sli−1
i

(5)

Step 2. Assign weights for the calculated piecewise lin-
ear functions.
For each attribute xi ∈ Kq, the generated sensory data at

time slot t is xi(t). If xi(t) satisfies that x
sj
i < xi(t) ≤ xsj+1

i
(sj, sj+1 ∈ Pi and 1 ≤ j < li), the piecewise linear function
fi is assigned a weight with wi = |Rq

ij|, where Rq
ij is the

Pearson correlation coefficient calculated in Step 1.
Step 3. Estimate the target value of query Q at time slot

t.
Based on the sensory data generated at time slot t, i.e.,

{xi(t)|xi ∈ Kq}, the estimated target value ofQ at time slot
t is calculated by the following formula.

ŷq(t) =
∑

xi∈Kq

wi
∑

xi∈Kq wi
fi (6)

The detailed operations for the PLF-AE algorithm is
described in Algorithm 4. Algorithm 4 is proposed to
estimate the answers of continuous queries with their
(k,β)-relative kernel datasets by piecewise linear fitting
method.

5.2 Temporal correlation-based answer estimating
algorithm

It has been revealed by many research works that the
monitored physical environment always varies continu-
ously [27, 28]. That means the difference between the
sensory data of an attribute in two continuous time slots
may be small. Consequently, the temporal correlation-
based answer estimating (TC-AE) algorithm utilizes the
temporal correlation between sensory data of an attribute
to estimate the answer of a continuous query with less
energy consumption.
In the PLF-AE algorithm, each time a continuous query

Q is issued by users, k sensory data of attributes in the
(k,β)-relative kernel dataset of Q are transmitted and
computed to estimate the answer of Q. The basic idea of
TC-AE algorithm is to further reduce the sensory data
transmitted and computed in the IoT system based on the
temporal correlations of sensory data.
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Algorithm 4: Piecewise Linear Fitting Based Answer
Estimating Algorithm
Input: the training set S =[ S1, · · · , Sm], (k,β)-relative

kernel datasetKq of query Q, the sensory data
collected at time slot t, {xi(t)|xi ∈ Kq}

1 .Output: the estimated answer ŷq(t)
2 for each attribute xi in Kq do
3 Extract the tuples (xil , yql) from training example Sl

(1 ≤ l ≤ m);
4 Sort the extracted tuples by non-descending order of

the values of attribute xi, i.e., {(x1i , y1q), · · · , (xmi , ymq )},
where x1i ≤ · · · ≤ xmi ;

5 Pi = {1,m}∪LS-PLF(1,m,∞, γ );
6 {(x1i , y1q), · · · , (xmi , ymq )} are divided into li − 1 subsets

D1, · · · ,Dli−1;
7 for each subset Dj = {(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )} do

8 Calculate the Pearson correlation coefficient Rq
ij by

formula (3);
9 Calculate piecewise linear function fi,j by the

least-squares method;
10 The piecewise linear function fi is calculated by

formula (5);
11 if xsji < xi(t) ≤ xsj+1

i then
12 wi = |Rq

ij|;
13 ŷq(t) = ∑

xi∈Kq
wi∑

xi∈Kq wi
fi;

14 Return ŷq(t).

The sink node of an IoT system stores the latest received
sensory data of all attributes, denoted as {b1, b1, · · · , bn}.
Besides, for each attribute xi ∈ A, the corresponding sen-
sor also stores its latest transmitted sensory data bi. For
each attribute xi ∈ A, there exists a value range [ pi, qi] for
its sensory data, i.e., ∀t, pi ≤ xi(t) ≤ qi. When a continu-
ous query Q is conducted by users, only sensory data in a
subset of {xi(t)|xi ∈ Kq} are transmitted to the sink node.
For each attribute xi ∈ Kq, xi(t) is transmitted to the sink
node only if xi(t) satisfies that |xi(t) − bi| ≥ α × (qi − pi),
where 0 ≤ α ≤ 1 is a user-defined adjustable constant.
Applying this method, the energy consumption of the IoT
system can be further reduced with a little sacrifice of the
accuracy for estimating the answer of a continuous query.
Through adjusting α, we can balance the tradeoff between
the energy consumption and the estimation accuracy.
If the sensory data xi(t) satisfies that |xi(t) − bi| ≥

α × (qi − pi), the stored sensory data in the correspond-
ing sensor is updated to bi = xi(t). Besides, after the sink
node received xi(t), it also updates its stored sensory data
to bi = xi(t). After the sink node has received all sen-
sory data {xi(t)|xi ∈ Kq, |xi(t) − bi| ≥ α × (qi − pi)}, the
sink node estimates the answer ofQ by the similar method
described in the PLF-AE algorithm.
The detailed operations for the TC-AE algorithm is

described in Algorithm 5. Algorithm 5 is proposed to

Algorithm 5: Temporal Correlation Based Answer
Estimating Algorithm
Input: the training set S =[ S1, · · · , Sm], (k,β)-relative

kernel datasetKq of query Q, the stored sensory
data {bi|xi ∈ A}, the parameter α, the sensory data
generated at time slot t, {xi(t)|xi ∈ Kq}

1 .Output: the estimated answer ŷq(t)
2 for each attribute xi in Kq do
3 if |xi(t) − bi| ≥ α × (qi − pi) then
4 bi = xi(t);
5 Extract the tuples (xil , yql) from training example Sl

(1 ≤ l ≤ m);
6 Sort the extracted tuples by non-descending order of

the values of attribute xi, i.e., {(x1i , y1q), · · · , (xmi , ymq )},
where x1i ≤ · · · ≤ xmi ;

7 Pi = {1,m}∪LS-PLF(1,m,∞, γ );
8 {(x1i , y1q), · · · , (xmi , ymq )} are divided into li − 1 subsets

D1, · · · ,Dli−1;
9 for each subset Dj = {(xsji , y

sj
q ), · · · , (xsj+1

i , ysj+1
q )} do

10 Calculate the Pearson correlation coefficient Rq
ij by

formula (3);
11 Calculate piecewise linear function fi,j by the

least-squares method;
12 The piecewise linear function fi is calculated by

formula (5);
13 if xsji < bi ≤ xsj+1

i then
14 wi = |Rq

ij|;
15 ŷq(t) = ∑

xi∈Kq
wi∑

xi∈Kq wi
fi;

16 Return ŷq(t).

estimate the answers of continuous queries with their
(k,β)-relative kernel datasets by piecewise linear fitting
method. Algorithm 5 can further reduce the sensory data
transmitted and computed in an IoT system by applying
the temporal correlations of sensory data.

6 The performance analysis
6.1 Computation complexity of the RKDR algorithm
The computation complexity of computing the Pearson
correlation coefficients between query Q and n attributes
is O(mn). Then, the computation complexity of calculat-
ing the Pearson correlation coefficients between any two
attributes is O(mn2). Therefore, the computation com-
plexity of Step 1 is O(mn2). The computation complexity
of sorting n Pearson correlation coefficients in Step 2 is
O(n log n). In conclusion, the computation complexity for
the RKDR algorithm is O(mn2).

6.2 Computation complexity of the PLF-RKDR algorithm
The computation complexity of Step 1 in the PLF-RKDR
algorithm consists of three parts. Firstly, the compu-
tation complexity of preprocessing the training set is
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O(nm logm). Then, the computation complexity of calcu-
lating optimal segment points for n attributes is O(nm3).
Finally, the computation complexity of calculating the cor-
relation coefficients between query Q and attributes is
O(nm). Therefore, the computation complexity of Step
1 is O(nm3). The computation complexity of calculating
candidate relative kernel dataset in Step 2 is O(mn2). In
Step 3, the computation complexity of sorting all correla-
tion coefficients isO(n log n). In conclusion, the computa-
tion complexity for the PLF-RKDR algorithm is O(nm3).

6.3 Computation complexity of the PLF-AE algorithm and
the TC-AE algorithm

The computation complexity of the PLF-AE algorithm
and the computation complexity of the TC-AE algo-
rithm are similar. For each attribute xi ∈ Kq, the
following computations are conducted. Firstly, the com-
putation complexity of sorting the extracted tuples
{(x1i , y1q), · · · , (xmi , ymq )} is O(m logm). Then, the compu-
tation complexity of calculating optimal segment points
is O(m3). Finally, the computation complexity of calcu-
lating the Pearson correlation coefficients and piecewise
linear functions for all segments is O(m). Therefore, the
computation complexity of the algorithm is O(km3).

7 Simulation results and discussion
In this section, the performances of the RKDR algo-
rithm and the PLF-RKDR algorithm are evaluated by
extensive simulations on both simulation dataset and real
dataset. The RKDR algorithm and the PLF-RKDR algo-
rithm retrieve the (k,β)-relative kernel datasets for con-
tinuous queries. The application of the RKDR algorithm
and the PLF-RKDR algorithm is to estimate the answers
of the continuous queries given by users in IoT systems
with the retrieved (k,β)-relative kernel datasets. There-
fore, to evaluate the performances of the RKDR algorithm
and the PLF-RKDR algorithm, we evaluate the accuracy
of the answers estimated by the retrieved (k,β)-relative
kernel datasets of continuous queries. The PLF-AE algo-
rithm and the TC-AE algorithm are proposed in this
paper to estimate the answers of continuous queries by the
retrieved (k,β)-relative kernel datasets.
The simulation dataset consists of two sub-datasets,

which are about two functions yq = f1(x1, · · · , x15) and
yq = f2(x1, · · · , x15), respectively. There are 15 attributes
of the IoT systems, which are x1, x2, · · · , x15. There are two
continuous queries of the IoT systems, which are query
Q1 and query Q2. Each training example in the simulation
dataset includes the values of 15 attributes and the tar-
get values of query Q1 and query Q2 following function f1
and f2, respectively.We apply the RKDR algorithm and the
PLF-RKDR algorithm to retrieve the (k,β)-relative kernel
dataset for query Q1 and query Q2. Then, we apply the
PLF-AE algorithm and the TC-AE algorithm to estimate

the target values of query Q1 and query Q2 with the
retrieved (k,β)-relative kernel dataset.
The real dataset is collected from a mobile device.

The collected data from the mobile device contains 6
attributes, i.e. the X-, Y -, and Z-axes of a three-axis
accelerometer and the X-, Y -, and Z-axes of a three-axis
gyroscope of the mobile phone, and a motion type of a
person holding the mobile phone. Each training exam-
ple is generated by a person holding the mobile device
and making 7 types of motions, which are numbered as
motion 1 to 7. Each training example contains values of
6 attributes and a target value yq indicating which type of
motion happens. We apply the RKDR algorithm and the
PLF-RKDR algorithm to retrieve the (k,β)-relative ker-
nel dataset for the motion query, where the (k,β)-relative
kernel dataset is a subset of 6 attributes of the mobile
phone. Then, we apply the PLF-AE algorithm and the TC-
AE algorithm to estimate the motion type of the person
holding themobile phonewith the retrieved (k,β)-relative
kernel dataset.
In the following simulations, two types of error are

applied to evaluate the performance of the proposed
algorithms. The first one is the absolute error er1 =
| ŷq(t)−yq(t)

yq(t) |, where ŷq(t) is the target value estimated by
sensory data of attributes in the (k,β)-relative kernel
datasetKq retrieved by the proposed algorithms and yq(t)
is the true target value of query Q at time slot t. How-
ever, the true target value of query Q is always unknown
or inaccessible in the monitored physical world. As a con-
sequence, another type of error replaces yq(t) by y′

q(t),
where y′

q(t) is the target value estimated by sensory data
of all n attributes. The second type of error is called as the
relative error, denoted as er = | ŷq(t)−y′q(t)

y′q(t)
|.

In the following subsections, the comparison experi-
ments are firstly conducted to compare the performances
of the RKDR algorithm and the PLF-RKDR algorithm.
Then, both absolute error and relative error are evaluated
on simulation dataset to verify the performance of the
proposed algorithms. Finally, experiments on real dataset
are carried out to verify the performance of the proposed
algorithms.

7.1 Comparison experiments of the RKDR algorithm and
the PLF-RKDR algorithm

We compare the RKDR algorithm and the PLF-RKDR
algorithm by conducting a group of comparison exper-
iments on simulation dataset. We compare the relative
error er = | ŷq(t)−y′q(t)

y′q(t)
| of the RKDR algorithm and the

PLF-RKDR algorithm when the size of the (k,β)-relative
kernel dataset increases. The simulation results are pre-
sented in Fig. 1. Each data point presented in Fig. 1 is the
average of simulation results on 500 times of query.
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Fig. 1 The relative error of RKDR algorithm and PLF-RKDR algorithm
on the simulation dataset

In Fig. 1, the relative error of both algorithms decreases
when k increases. However, the relative error of the PLF-
RKDR algorithm is much smaller than that of the RKDR
algorithm no matter how much k is. In particular, the rel-
ative error of the PLF-RKDR algorithm is almost a half of
the RKDR algorithm when k is larger than 5. Therefore,
the PLF-RKDR algorithm has better performance than the
RKDR algorithm. Besides, Fig. 1 shows that the relative
error of both algorithms on simulation dataset with func-
tion f1 is much less than that of function f2, which reveals
that linear correlation cannot describe the relationship
between sensory data and query Q2 perfectly.

7.2 The performance of proposed algorithms on
simulation dataset

7.2.1 The absolute error on simulation dataset
The first group of simulations is conducted on the simula-
tion dataset to evaluate the performance of the PLF-RKDR
algorithm through the absolute error. Firstly, the PLF-
RKDR algorithm is applied to retrieve the (k,β)-relative
kernel datasets of continuous queries. Then, the PLF-
AE algorithm is applied to estimate answers of continu-
ous queries. Finally, the absolute error of the estimated
answers of the continuous queries are evaluated. The
simulation results are presented in Figs. 2 and 3.
Firstly, we investigate the impact of k, the size of the

(k,β)-relative kernel dataset, on the absolute error of the
estimated answers of the continuous queries. Figure 2
presents the absolute error under three test sets, whose
size are T = 1000, T = 500, and T = 100. The data
points presented in Fig. 2 are the average of simulation
results on 1000, 500, and 100 times of query, respectively.
Figure 2 presents that the absolute error decreases with
the increasing of k. It is shown that the absolute error can

Fig. 2 The impact of k on the absolute error of PLF-RKDR algorithm
on the simulation dataset

reach to 0.258 when k is only 5, which is pretty small for
users.
Then, we study the impact of m, the size of training set,

on the absolute error of estimated answers of the continu-
ous queries. Figure 3 presents the absolute error when the
size of the (k,β)-relative kernel dataset are k = 5, k = 8,
and k = 11. Each data point presented in Fig. 3 is the aver-
age of simulation results on 500 times of query. Figure 3
reveals that the absolute error of estimated answers of the
continuous queries decreases sharply with the increasing
ofm.

7.2.2 The relative error on simulation dataset
The second group of simulations is carried out on the sim-
ulation dataset to evaluate performance of the PLF-RKDR
algorithm. Firstly, the PLF-RKDR algorithm is applied
on the simulation dataset to retrieve the (k,β)-relative

Fig. 3 The impact ofm on the absolute error of PLF-RKDR algorithm
on the simulation dataset
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kernel datasets of query Q1 and query Q2. Then, the PLF-
AE algorithm is applied to estimate answers of query
Q1 and query Q2. Finally, the relative error of the esti-
mated answers of query Q1 and query Q2 is evaluated.
The simulation results are presented in Figs. 4 and 5. Each
data point presented in Figs. 4 and 5 is the average of
simulation results on 500 times of query.
Firstly, we investigate the impact of k, the size of the

(k,β)-relative kernel dataset, on the relative error of the
estimated answers of query Q1 and query Q2. The size
of training set is set as m = 3000. When the size of the
(k,β)-relative kernel dataset is fixed, the relative error of
the estimated answers of query Q1 and query Q2 are dif-
ferent since different queries have different relative kernel
datasets. That explains why we need to retrieve the rel-
ative kernel dataset for each given query. Figure 4 shows
that the relative error of the estimated answers of both
queries decreases with the increasing of k. Specially, Fig. 4
presents that the relative error is reduced to 0.05 when k
is only a half of n. That means the IoT system can save
a half of energy consumption when sacrificing only a few
accuracy.
Then, we study the impact of m, the size of training

set, on the relative error of the estimated answers of the
continuous queries. In the simulations, different scales of
training set are evaluated and the size of the (k,β)-relative
kernel dataset is set as k = 8. We evaluate the relative
error with the size of training set m varying from 500 to
3000 with increment of 500. Figure 5 presents that the rel-
ative error decreases slowly with m increases. Similarly,
the relative error of the estimated answers of query Q1 is
less than that of query Q2. It is worth noting that even m
is only 500, the relative error is less than 0.15 when k is no
less than a half of n.

Fig. 4 The impact of k on the relative error of PLF-RKDR algorithm on
the simulation dataset

Fig. 5 The impact ofm on the relative error of PLF-RKDR algorithm on
the simulation dataset

7.3 The performance of the proposed algorithm on real
dataset

In this subsection, simulations are conducted on the real
dataset to evaluate the performance of the PLF-RKDR
algorithm. Each training example of the real dataset con-
sists of the values of 6 attributes and a target value
indicating which type of motion happens. For each type
of motion i, the target value is set as 1 if motion i
happens; otherwise, the target value is set as 0. Firstly,
the (k,β)-relative kernel datasets for motion 1 to 7 are
retrieved by the PLF-RKDR algorithm. Then, the PLF-
AE algorithm is applied to estimate the target value of
each motion, respectively. Finally, if the target value of
a motion i calculated by the PLF-AE algorithm with its
(k,β)-relative kernel dataset retrieved by the PLF-RKDR
algorithm is larger than 0.5, it is thought that motion i
happens. To evaluate the performance of the PLF-RKDR
algorithm, we evaluate the precision of the judgement
of each motion. The simulation results are presented
in Figs. 6 and 7.
The first group of simulations are conducted to study

the impact of k on the motion judgement precision. The
size of training set is fixed to m = 4796. The simula-
tion results are presented in Fig. 6, where each data point
is the average of the simulation results on 1511 times of
query. Figure 6 presents that the precision for eachmotion
increases with k increases. The reason is similar to the
analysis of simulations on the simulation dataset. For each
type of motion, more than 80% of the queries are correctly
answered by the PLF-RKDR algorithm and the PLF-AE
algorithm.
The second group of simulations are carried out to study

the impact of m on the motion judgement precision. The
simulation results are presented in Fig. 7, where the size
of the (k,β)-relative kernel dataset is set as k = 4. Each
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Fig. 6 The impact of k on the precision of PLF-RKDR algorithm on the
real dataset

data point presented in Fig. 7 is the average of simulation
results on 585 times of query. Figure 7 presents that more
than 80% of the motions are correctly judged.

8 Related works
Reducing the energy consumption of an IoT system
through reducing sensory data transmitted and computed
in the IoT system has been studied for a long time. The
existing data reduction algorithms can be divided into two
categories. The first category of algorithms are based on
sampling. The second category of algorithms are based on
compressed sensing.
The first category of data reduction algorithms is

sampling-based data reduction algorithms. The authors
in [12] investigate Bernoulli sampling-based aggrega-
tion algorithms, which can satisfy arbitrary precision
requirement. They firstly adapt the sampling probabil-
ity to satisfy the arbitrary precision requirement given

by users. Then, the aggregation is approximately com-
puted with the sampled sensory data. The work in [13]
proposes a sampling-based algorithm to compute approx-
imate quantiles in sensor networks. The authors apply
random sampling in the algorithm and provide a guar-
antee that the computed φ-quantile are within error ε

with a constant probability which can arbitrarily close to
1. The algorithms proposed in [14] adapt the sampling
frequencies for energy-hungry sensors in wireless sensor
networks according to the real needs of the monitored
physical environment. As a consequence, the proposed
algorithms can reduce the sensory data by sampling and
then reduce the energy consumption of a wireless sen-
sor network. Another work in [15] adaptively adjusts the
sampling frequency to retrieve the critical data points of
each sensor, which can significantly reduce the energy
consumption. The authors in [16] apply adaptive sam-
pling in snow monitoring applications of wireless sensor
networks. They proposed algorithms to dynamically esti-
mate the sampling frequencies of sensors to minimize
sensory data sensed and transmitted in sensor networks
while maintaining acceptable accuracy of the monitoring
application.
The second category of data reduction algorithms is

compressed sensing-based data reduction algorithms.
The authors in [17] propose an algorithm combining
the compressed sensing with the principal component
analysis. The algorithm can recover the whole dataset
through a small subset of data, which can significantly
reduce the sensory data transmitted in the network.
Other two works [18, 19] are proposed to compress
the sensory data in a wireless sensor network by the
principal component analysis technique. The work in
[20] applies the compressed sensing in both single-
sink and multi-sink wireless sensor networks to effi-
ciently gather sensory data. The authors in [21] propose

Fig. 7 The impact ofm on the precision of PLF-RKDR algorithm on the real dataset
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a compressed sensing-based approach to monitor with
vehicular networks. The tradeoff between the communi-
cation cost and the estimation accuracy is studied in this
work. The authors in [22] proposed an algorithm to mini-
mize the energy consumption of sensor networks through
joint routing and compressed aggregation. Compressed
sensing-based data reduction algorithms compress raw
sensory data and transmit compressed sensory data in the
network.
However, the sampling based data reduction algorithms

in the first category are only effective for some simple
statistic queries, such as maximum, quantile, and aver-
age. These algorithms cannot reduce sensory data for
arbitrary queries. Besides, the compressed sensing-based
data reduction algorithms in the second category only
consider the temporal and spatial correlations between
sensory data but ignoring the correlation between the
sensory data and the queries. The sensory data can be
further reduced if the correlations between sensory data
and queries of IoT system are taken into considera-
tion. And the data reduction for a given query is not
enough in these algorithms. Another work is proposed in
[23, 24] to retrieve the dominant dataset from big sensory
data for a wireless sensor network. However, the domi-
nant dataset defined in [23, 24] is a general one for all
queries instead of a specific one for a given query. As
a consequence, the existing algorithms cannot retrieve
the relative kernel dataset for continuous queries in IoT
systems.

9 Conclusion
This paper studies the problem of retrieving the rela-
tive kernel dataset from big sensory data for continu-
ous queries in IoT systems. The RKDR algorithm and
PLF-RKDR algorithm are proposed to retrieve the (k,β)-
relative kernel dataset for continuous queries. Besides, the
PLF-AE algorithm and TC-AE algorithm are proposed to
estimate the answers of continuous queries based on their
(k,β)-relative kernel datasets. Extensive simulations are
carried out to evaluate the performances of the proposed
algorithms.
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