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Abstract

The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning.
First, establish the environment model of the unmanned vehicle path planning, process and describe the
environmental information, and finally realize the division of the problem space. Next, the biomimetic behavior of the
ant colony algorithm is described. The ant colony algorithm has been improved by adding a penalty strategy. This
penalty strategy can enhance the utilization of resources and guide the ants to explore other unknown areas by using
the worse value in the search history to enhance the volatility of the pheromone.
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1 Introduction
Unmanned vehicle path planning explores a feasible
path in the known or unknown environment by sensing
the surrounding environment. Path planning problem
not only simply expresses the search of a route from the
start point to the end point but also presents an optimal
path among all reachable paths [1]. When generating the
best path, there are several related issues to consider,
such as security, obstacles, and computation time. Due
to its importance, many researchers have conducted a
large path planning algorithms. In the literature [2], the
paper proposes a drone route planning based on particle
swarm optimization algorithm. The corresponding mu-
tation and fine adjustment of the inactive particles are
carried out to ensure the particle group has strong vital-
ity in the evolution process. In the literature [3], the au-
thor obtains the best path for each UAV in parallel by
genetic algorithm. According to the dimensions of path
planning, genetic coding, etc., new genetic operators are
introduced to select appropriate chromosome pairs for
crossover operations. In the literature [4], Fan et al. pro-
posed a kind of manual market method of infeasible
path correction strategy for the differential evolution al-
gorithm mutation factor to improve the effectiveness of
the algorithm to find the shortest path.

The ant colony optimization algorithm, which is de-
rived from the study of ant group behavior, simulates a
bionic intelligent optimization algorithm based on the
cooperation between ant colonies. When ants are for-
aging, they will leave exogenous hormone, and others
can recognize the intensity of pheromone. And ants tend
to move toward higher pheromone concentrations. That
can be said as a kind of positive feedback phenomenon
of the ant group during the foraging process [5]. It is be-
cause of this positive feedback mechanism that the ant
colony can search for food more quickly. This algorithm
has strong global search ability, can perform parallel and
distributed computing, and has fast convergence speed
and strong adaptability [6], so it has been widely used in
solving path planning problems. In the literature [7], the
paper proposes an improved ant colony algorithm. The
article mainly improves the positional distribution of the
initial population and increases the adaptive evaporation
factor and simulated annealing. It is found through ex-
periments that the algorithm can effectively reduce the
problem of search time. In the literature [8], the author
can avoid the blindness of initial planning by adjusting
the transition probability based on the classical ant col-
ony algorithm and introducing relevant strategies to
solve the deadlock problem. The simulation experiment
proves that the algorithm is superior to the classical ant
colony algorithm, which can effectively guide the mobile
robot to avoid dynamic obstacles in the environment,
obtain the optimal or suboptimal path without collision,
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and better adapt to the changes of the environment. In
the literature [9], based on the basic ant colony algo-
rithm, the author improves the heuristic information
and pheromone update strategy by introducing the ant
colony regression strategy to improve the adaptability,
convergence speed and optimization ability of the
algorithm.

2 Environmental model
The currently constructed environment model is gener-
ally simplified to a two-dimensional map. The path plan-
ning environment model of the unmanned vehicle of
this paper will be constructed by the grid method pro-
posed by W.E. Howden. According to the grid method,
first divide the simulation environment into several iden-
tical grids according to the scale and segmentation re-
quirements, then set the environmental parameters for
each grid, next set the conditions of each grid obstacle
according to the actual or hypothetical environment.
The data structure obtained by the grid method is actu-
ally a two-dimensional table, so the map is relatively easy
to create and maintain in the computer. The map is easy
to transfer into the coordinate system, so that the pos-
ition and feasible area of the obstacle can be displayed
more intuitively, and the position information is mark-
edly marked by the row and column [10].
The grid method decomposes the unmanned work

space into a series of binary information grid cells. In a
static environment, it is assumed that the size and pos-
ition of the obstacle are known, and the two-
dimensional workspace model of the unmanned vehicle
is D, which is evenly divided using the grid. Since the ac-
tual shape of the obstacle is irregular, when it is less than
one grid, it is added as a grid. Considering that the two-
dimensional map can be of any shape, the entire graph
is set to a rectangle or a square, complemented by a bar-
rier grid at the boundary of the original graph. Accord-
ing to the meshed area and the area where the obstacle
is located, as shown in Fig. 1, it can be divided into a
feasible grid (white grid) and an infeasible grid (black
grid), where green is the starting point and red is the
ending point.
Using the numbering method, the divided grids are

numbered in order from left to right and top to bottom.
Each grid has its corresponding serial number and coordi-
nates, that is, the i-th row, the grid of the j-th column is
denoted as D(i, j), and the corresponding serial number is
k. The relationship between the grid number k and the co-
ordinates (xi, yj) is as shown in Eqs. (1) and (2).

xi ¼ k−1ð Þ modNh½ � þ 1 ð1Þ

y j ¼ int k−1ð Þ=Nh½ � þ 1 ð2Þ

where Nh is the number of rasters per row, int is the
remainder of the remainder, and mod is the remainder
calculation.
During the movement of the robot, the default move-

ment direction of the robot is set to eight, as shown in
Fig. 2 below. Since each step of the robot is from the
center of one grid to the center of another adjacent grid,
the motion step of the robot is R or

ffiffiffi
21

p
R.

Fig. 1 Grid method to establish environment model. Figure
illustrates that the unmanned work space is decomposed into a
series of binary information grid cells

Fig. 2 Unmanned vehicle movement direction. Figure shows the
default movement direction of the vehicle
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3 Ant colony algorithm
3.1 Ant colony optimization algorithm
The ant colony algorithm (ACO) is used to solve the
path planning problem, which can be divided into two
parts: path construction and pheromone update [11].
The artificial ant colony algorithm and the real ant for-
aging process are moving from one position to the next,
and the position change is realized by the probability se-
lection strategy. A pheromone release and volatilization
mechanism is also set in the process of artificial ant
movement, but the artificial ant colony algorithm adds
some characteristics that are different from the real ant
colony foraging behavior:

(1) In the algorithm, the artificial ant colony is placed
in a discrete space and does not have any
association with time. The next move position is
determined by the selection strategy. The update of
the pheromone is independent of time and is only
related to the path and update method.

(2) The artificial ant colony has a path memory
function, which records the walking route before
the ant [12].

(3) The artificial ant colony is not completely blind. It
has heuristic information about the problem space.

(4) In order to improve the search efficiency of the
algorithm. Artificial ant colonies have added new
features such as local optimization, prior
knowledge, predictive future and tabu search.

In the following formula (3), Pk
ijðtÞ is the calculation

method of ant position transfer, which indicates the
transition probability of ant k moving from position i to
position j at time t:

Pk
ij tð Þ ¼

τij tð Þ� �α � ηij tð Þ
h iβ

P
k∈allowedk τij tð Þ

� �α � ηij tð Þ
h iβ 0 if j∈allowedk

0 0 otherwise

8>>><
>>>:

ð3Þ

where τij(t) represents the pheromone intensity of the
current position to the target point at time t, and ηij(t) is
the visibility of the ant, that is, the reciprocal of the dis-
tance from the current position to the end point,
expressed as ηij(t) = 1/dij. Both have a certain guiding
role for the movement of ants. α and β represent the
weight of the pheromone intensity and the ant visibility,
respectively. Allowedk = {N-tabuk} indicates the city col-
lection that ant k can currently select; tabuk is the taboo
list of ant k, indicating the city collection where ants are
not selectable and N is the total number of cities from

the current location to the next location. And tabuk is
constantly changing as the position of the ant changes.
In order to simulate the change of pheromone in the

process of ant foraging, the update of artificial ant col-
ony pheromone also considers the two processes of
volatilization and release of pheromone [13]. In the real
world, as time goes by, the pheromone on the path will
gradually evaporate. And its volatilization is helpful for
ants to explore other areas to find better paths, so it
does not converge too quickly to a local optimal solu-
tion; in the path of ants to explore food, the correspond-
ing pheromones are also released, so that the ants can
communicate with each other and have a certain guiding
effect on other ants who are looking for food. The initial
setting of the pheromone is neither too large nor too
small; too large will make its guiding effect lower, while
too small will make the ant group converge too quickly
to a local optimal path [14]. Thus, the pheromone up-
date formula (4) is expressed as follows:

τij tð Þ ¼ 1−ρð Þτij tð Þ þ
Xm
k¼1

Δτkij ð4Þ

where m is the number of ants, 0 < ρ < =1 is the evap-
oration rate of the pheromone and is usually set to 0.5
in the ACO. Therefore, (1 − ρ)τij(t) represents the re-
sidual amount of a path pheromone found by the ant
after volatilization, and Δτkij is the pheromone left by the

kth ant in the path i to j. As shown in Eq. (5):

Δτkij ¼ Ckð Þ−1 0 shortest path
0 0 otherwise

�
ð5Þ

where Ck is the total path length obtained after the kth
ant walks the complete path. Here, as described above,
the optimal path distance is obtained.
Take the TSP problem as an example. The process of

algorithm design is as follows:

Step 1: Initialize the relevant parameters, including ant
colony size, pheromone factor, heuristic function factor,
pheromone volatilization factor, pheromone constant
and maximum number of iterations
Step 2: And reading the data into the program and
pre-processing: for example, converting the city’s
coordinate information into a distance matrix between
cities
Step 3: Randomly place the ants at different starting
points and calculate the next visiting city for each ant
until there are ants accessing all the cities
Step 4: Calculate the path length of each ant, record
the optimal solution of the current iteration number,
and update the pheromone concentration on the path
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Step 5: Determine whether the maximum number of
iterations is reached. If not, return to step 2 or end the
program.
Step 6: Output the result, and output relevant
indicators in the optimization process, such as running
time, convergence iteration number, etc., as needed.

3.2 Ant colony algorithm with punitive measures
In the research of ant colony algorithm, it is found that
there must be an optimal solution and the worst solu-
tion for the whole ant colony search results. Previous
artificial ant colony algorithm only based on the optimal
solution of ant colony search behavior, to generate posi-
tive feedback behavior of the whole group. However, the
total amount of resources invested in the path explor-
ation process is constant. Therefore, this paper hopes to
use the search results of the poor path to enhance the
volatilization degree of the pheromone on the poor path
and reduce the number of traversal times. At this time,
the concentration of the pheromone in the unexplored
area will be significantly larger than the value confirmed
as the worse path, which will give the ant a greater
chance to explore the unknown area, because there may
be a better solution in the unknown field. First, all the
paths found by the ants are sorted, and then, the path is
sorted to the last ω ants to punish the pheromone
volatilization. The ω ants are sorted according to the
length of the path, and the penalty condition is weighted
according to different sorting levels, that is, the higher
the path sorting, the higher the level, and the greater the
penalty for the ant search path. Based on this idea, this
paper attempts to design the pheromone penalty model
of the ant colony algorithm, as shown in formula (8):

C ¼ ρþ
λ
Xk¼ω

ω¼0

k−ωð Þ

D
ð6Þ

where ρ represents the pheromone volatilization rate
and D is the distance from the point to the target point.
λ represents 1/10 of the distance D to ensure that the
entire value is not too large. ω is the order of the poor
path of the ant search, and k is a fixed value equal to ω.
In a specific application, if the optimal path and the
worst path pass through this point, no penalty is
imposed.
In fact, this has an effect on the value of the ant’s

probability selection formula. That is, the value of the
pheromone on the poor path is reduced, and the prob-
ability of being traversed again is lower. At this time,
there is a greater probability of exploring the unknown
domain. In the aspect of pheromone update, the global
pheromone update method is adopted, because the local
update method is more likely to cause the ant to fall into

the local optimal solution [15]. That is, after all the ants
of each generation have completed the search, the
pheromone is updated according to the result of the
optimization and the pheromone update model de-
scribed above. In the search mode of the AS algorithm,
the premature convergence mechanism is avoided, so
that the algorithm obtains better performance. The total
amount of pheromone on the path is also controlled
within a certain range ([MIN, MAX]), which can well
avoid the ant to converge too quickly to the local opti-
mal path, so that ants can search for a wider range of
unknown areas. In the initial search phase of the ant, in
order to improve the algorithm search ability, the initial
value of the pheromone is set to the upper limit. Its
pheromone is updated according to the following rules:

τij tð Þ ¼ 1−ρð Þτij tð Þ þ Δτbestij ð7Þ

where Δτbestij is the update of the optimal path phero-

mone, and Ck is the optimal path distance, as follows:

Δτbestij ¼ Ckð Þ−1 0 shortest path
0 0 otherwise

�
ð8Þ

Although the historical optimal solution is retained
after the ant colony search ends, when the path phero-
mone is updated, the pheromone matrix is updated on
the optimal path of the current generation [16]. It will
make better use of the positive feedback mechanism
generated by the optimal path and give more opportun-
ities to explore the unknown. As a result, the path ex-
ploration of the whole algorithm becomes relatively
more diverse, avoiding premature convergence to the
local optimal solution and reducing the exploration of
the path that has been confirmed as a worse path, fur-
ther improving the performance of the ant colony search
algorithm.

Table 1 Partial issues in the TSPLIB data set

Question Description Optimal solution

ulyeese Odyssey of Ulysses(Groetschel/Padberg) 74

Att48 48 capitals of the US (Padberg/Rinaldi) 33,522

Eil76 76-city problem (Christofides/Eilon) 538

Table 2 Algorithm parameter settings

Algorithm Algorithm parameter settings

PSO The problem size is n, the number of ants is m = n, and
other variables are set according to the classical algorithm
guidance.GA

ASrank

MMAS

AS-N The problem size is n, the number of ants M = N
α = 2, β = 8, ρ = 0.02, W = 5
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4 Performance test
4.1 Data set
This chapter mainly tests the performance of the algo-
rithm through the TSPLIB data set. The improvement
effect of AS-N algorithm is expounded by comparing
AS-N algorithm with other classical algorithms on the
data set. Table 1 shows some of the issues in the TSPLIB
data set.

4.2 Parameter settings
Table 2 lists the algorithm’s internal initial value par-
ameter settings. The size of the population is ad-
justed according to the size of the TSP problem
space. For example, eil76 is the coordinate point of
76 cities in Christofides, so the population size is 76.
The number of iterations per test is set to 200 gen-
erations, and the number of independent runs of
each algorithm is 30.

4.3 Analysis of results
This section uses data analysis methods on different test
questions to describe the algorithm and describe the al-
gorithm’s search capabilities. In the test, this article used
three questions in the TSPLIB test data set, and tested
30 times for each question. Both the algorithm test work
and the result data analysis were performed using the
MATLAB 2014 software tool. The experiment recorded
30 sets of test results for each question; took the average,
maximum, and minimum values of the data for data
analysis; and evaluated the performance of the algo-
rithm. Table 3 gives the test results for each algorithm.
From the perspective of data analysis, the improved al-

gorithm AS-N has achieved better results, and it is bet-
ter to search for the optimal solution stably and
effectively. Among them, the MMAS algorithm performs
second, which is obviously better than the AS, GA, PSO
and MMAS algorithms.

Table 3 Test results

ASrank GA PSO MMAS AS-N

ulyees Average value 76.6355 76.5267 76.5355 76.1533 75.8746

Maximum 78.4533 77.2298 77.4509 77.4575 76.0355

Minimum 75.3625 75.9035 75.9843 75.3672 75.1283

Att48 Average value 33,864.65 33,821.96 32,268.86 33,751.98 33,728.76

Maximum 34,139 34,684 34,218 34,375 34,092

Minimum 33083 33,187 33,201 33,548 33,529

Eil76 Average value 572.66 574.63 570.98 567.9876 560.87

Maximum 589.43 590.86 588.42 584.87 573.54

Minimum 564.87 564.87 562.64 549.76 548.82

Fig. 3 Complex environment 1 Fig. 4 Changed complex environment 1
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5 Application experiment
In this section, MAX-MIN Ant System (MMAS) and
the ant colony algorithm with punitive measures
(AS-N) are compared experimentally. The MMAS al-
gorithm is the most typical representative of the dir-
ect improvement of the basic ant colony algorithm.
The experiment was completed in vs2013, and the
computer was configured as 4GB RAM, 2.50-GHz
processor.

5.1 Parameter setting and operation result
The ant colony algorithm includes parameters such as α,
β, ρ, γ, δ, and number of ants: The optimal parameter
settings are derived with reference to the classical ant
colony algorithm and a large number of references. The
pheromone intensity α is limited to [1, 5] and is set to α
= 2 during the experiment; the ant visibility β is limited
to [5, 12], and the experimental data is set to β = 8. The
evaporation rate ρ is limited to [0.01, 0.05], and ρ = 0.02
during the experiment. The modeling environment is:
design a 40 × 40 grid work area with different complex-
ity. The starting point is at (1, 1), the target point is (40,
40), and each small grid is 1 cm long. In a dynamic en-
vironment, testing is performed using two different com-
plex environments 1, 2. For the complex environment 1
(Fig. 3), the population size is set to 50. When the 25th
generation is run, the existing environment is trans-
formed, the feasible path is intercepted, and the obsta-
cles are placed to search for the new feasible path again.
As shown in Figs. 3 and 4 below:
For the complex environment 2 (Fig. 5), the popula-

tion size is set to 50, and the existing environment is
transformed when running 25 or 50 generations, re-
spectively, and other parameters are not changed. Inter-
cept the feasible path twice and set the obstacle to

Fig. 5 Complex environment 2

Fig. 6 Changed complex environment 2–1

Table 4 Complex environment 1

Algorithm MMAS AS-N

Figure 3 average distance 63.5451 63.4512

Figure 4 average distance 64.7329 64.6763

Average running time 1.1963 1.2305

Fig. 7 Changed complex environment 2–2
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search for the new feasible path again. As shown in
Figs. 5, 6, and 7 below:
The data analysis will be carried out separately for the

test results of the above simulation environment, the
convergence diagram is compared, and the box diagram
explains the superiority of the AS-N algorithm.

5.2 Data analysis
For complex problems 1, 2, as shown in Figs. 3 and 5,
30 sets of data are used to compare the superiority of
the algorithm. Tables 4 and 5 give the average distance
and average running time of the optimization results of
the two algorithms AS-N and MMAS. In the dynamic
environment, changing the search environment and im-
proving the superiority of the algorithm AS-N can
clearly see that the improved algorithm AS-N has
achieved ideal results regardless of running time or opti-
mal distance.

5.3 Box chart comparison
It can be concluded from the box graph data that the
composition of the data is the optimal solution obtained
for each set of tests. In a dynamic environment, this sec-
tion shows the search results before and after environ-
mental changes, as shown in Fig. 8. The plus sign in the
figure is the abnormal point, the red line represents the
median value, the blue line above the red line is the
maximum value, and the blue line below the red line is

the minimum value. The figure shows the average of
30 sets of data. AS-N1 and MMAS1 represent the
data distribution in the initial environment, that is,
the environment in Fig. 3, and AS-N2 and MMAS2
represent the data distribution in the environment of
Fig. 4, that is, the data distribution after the obstacle
is added on the basis of Fig. 3. It can be seen from
Fig. 8 that AS-N is more concentrated than MMAS
algorithm, and the results obtained by multiple tests
are more stable.
Figure 9 shows the data distribution of the complex

environment 2. Similarly, the three sets of arrays are the
results of running multiple times in Figs. 5, 6, and 7. In
the figure, the AS-N and MMAS algorithms, the median
and minimum values of AS-N, are smaller than the
MMAS.
In summary, the distribution of data on the box graph

can more clearly see the superiority of the AS-N

Fig. 8 Complex environment 1 box chart comparison

Fig. 9 Complex environment 2 box chart comparison

Fig. 10 Complex environment 1 convergence chart comparison

Table 5 Complex environment 2

Algorithm MMAS AS-N

Figure 5 average distance 61.3387 61.0082

Figure 6 average distance 63.8864 63.0581

Figure 7 average distance 64.9977 64.2471

Average running time 3.3951 3.1737
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algorithm, and its data distribution is relatively stable,
which leads to a stronger ability to find and optimize.

5.4 Convergence contrast
It can be seen from the illustration that in the dynamic
environment, the active occlusion of the ant feasible
path in the experiment, but the ant can quickly find the
feasible path and reach the target point. The conver-
gence diagram in different environments is shown in
Figs. 10 and 11. It can be seen that the AS-N algorithm
not only can search for the optimal path in the static en-
vironment, but also maintains the superiority of the algo-
rithm in the dynamic environment, and its adaptability to
the environment changes is also very high.

6 Conclusion
Ant colony algorithms have been widely used to solve
various optimization problems in different fields, espe-
cially in the field of engineering design. Ant colony algo-
rithm is an intelligent algorithm with positive feedback
mechanism. The main content includes the construction
of path and the update of pheromone. After an in-depth
study of the ant colony algorithm, an ant colony algo-
rithm with punitive measures is proposed. The salient
aspect of this punitive measure is that at the end of each
generation, the ant finds a poorer path pheromone
volatilization rate, thereby reducing the re-exploration of
this path and increasing the opportunity to explore the
unknown. In this paper, the MMAS algorithm and the
AS-N algorithm are used to simulate the unmanned
vehicle path planning problem in the dynamic environ-
ment. Finally, the simulation results and their compari-
sons are given. The AS-N algorithm performs better in
dealing with unmanned vehicle path planning.

Abbreviation
ACO: Ant colony optimization algorithm; AS-N: Ant colony algorithm with
punitive measures; ASrank: Ant system-based rank; MMAS: MAX-MIN Ant
System

Acknowledgements
The research presented in this paper was supported by Ministry of Science
and Technology of the People’s Republic of China and National Natural
Science Foundation of China.

Authors’ contributions
LY is the main writer of this paper. He proposed the main idea and applied the
MMAS algorithm and AS-N algorithm to simulate the unmanned vehicle path
planning problem in dynamic environment. HC proposed MMAS algorithm and
AS-N algorithm and gave some important suggestions for the simulation. All
authors read and approved the final manuscript.

Funding
This work is supported by National key Research and Development Program
of China under grant No. (2017YFB1103603, 2017YFB1103003), National
Natural Science Foundation of China under grant No. (61602343, 51607122,
61772365, 41772123, 61802280, 61806143, 61502318), Tianjin Province
Science and Technology Projects under grant No. (17JCYBJC15100,
17JCQNJC04500) and Basic Scientific Research Business Funded Projects of
Tianjin (2017KJ093, 2017KJ094), and Natural Science Foundation of Henan
province under grant No. (182300410286).

Availability of data and materials
The simulation code can be obtained by contacting the e-mail of corresponding
authors.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1School of Mechanical and Electrical Engineering, Henan University of
Technology, Zhengzhou, China. 2School of Computer Science and
Technology, Tianjin Polytechnic University, Tianjin, China.

Received: 20 February 2019 Accepted: 15 May 2019

References
1. Hsu C C, Hou R Y, Wang W Y. Path Planning for Mobile Robots Based on

Improved Ant Colony Optimization[C]. Proceedings of the 2013 IEEE
International Conference on Systems, Man, and Cybernetics. IEEE, 2013. A

2. H. Shorakaei, M. Vahdani, B. Imani, et al., Optimal cooperative path planning
of unmanned aerial vehicles by a parallel genetic algorithm[J]. Robotica
34(04), 823–836 (2016)

3. L. Wang, R.H. Shi, Application of particle swam optimization algorithm to
path planning of unmanned aerial vehicle[J]. Comput. Simul. 28(4), 74-77
(2011).

4. Y.W. Fan, C.M. Zhang, Hybrid differential evolution algorithm for path
planning of mobile robots. J Taiyuan Univer Sci Technol 40(01), 6–12 (2019)

5. M. Dorigo, T. Stützle, in Handbook of Metaheuristics. Ant colony optimization:
overview and recent advances (Springer, Cham, 2019), pp. 311–351

6. F. Zheng, A. Zecchin, J. Newman, et al, An adaptive convergence-trajectory
controlled ant colony optimization algorithm with application to water
distribution system design problems[J]. IEEE Trans. Evol. Comput. 21(5), 773-
791 (2017)

7. Cheng J , Miao Z , Li B , et al. An improved ACO algorithm for mobile robot
path planning. IEEE International Conference on Information & Automation.
IEEE, 2017.A

8. H. Qu, L.W. Huang, X. Ke, Research of improved ant colony based robot
path planning under dynamic environment[J]. Dianzi Keji Daxue Xuebao/J.
Univ. Electron. Sci. Technol. China, 44(2), 260-265 (2015).

Fig. 11 Complex environment 2 convergence chart comparison

Yue and Chen EURASIP Journal on Wireless Communications and Networking        (2019) 2019:136 Page 8 of 9



9. G. Baoqing, H. Shuyun, Z. Liqiang, et al., Multi-AGV parking path planning
based on improved ant colony algorithm. J. Transp. Syst. Eng. Eng. 18(6),
55–62, 80 (2018)

10. J. Cheng, Z. Miao, B. Li, et al., An improved ACO algorithm for mobile robot
path planning, Information and Automation (ICIA), 2016 IEEE International
Conference on. IEEE (2016), pp. 963–968

11. S.P. Carabaza, E. Besada-Portas, J.A. Lopez-Orozco, et al, Ant colony
optimization for Multi-UAV minimum time search in uncertain domains[J].
Appl. Soft Comput. 62, 789-806 (2017).

12. J. Ning, Q. Zhang, C. Zhang, et al., A best-path-updating information-guided
ant colony optimization algorithm. Inf. Sci. s 433–434, 142–162 (2018)

13. S. Bououden, M. Chadli, H.R. Karimi, An ant colony optimization-based fuzzy
predictive control approach for nonlinear processes. Inf. Sci. 299(C), 143–158
(2015)

14. W. Wu, Y. Tian, T. Jin, A label based ant colony algorithm for heterogeneous
vehicle routing with mixed backhaul. Appl. Soft Comput.. 47, 224–234
(2016)

15. Q. Zhang, S. Xiong, Routing optimization of emergency grain distribution
vehicles using the immune ant colony optimization algorithm. Appl. Soft
Comput.. 71, 917–925 (2018)

16. O. Castillo, H. Neyoy, J. Soria, et al., A new approach for dynamic fuzzy logic
parameter tuning in ant colony optimization and its application in fuzzy
control of a mobile robot. Appl. Soft Comput. 28(C), 150–159 (2015)

Yue and Chen EURASIP Journal on Wireless Communications and Networking        (2019) 2019:136 Page 9 of 9


	Abstract
	Introduction
	Environmental model
	Ant colony algorithm
	Ant colony optimization algorithm
	Ant colony algorithm with punitive measures

	Performance test
	Data set
	Parameter settings
	Analysis of results

	Application experiment
	Parameter setting and operation result
	Data analysis
	Box chart comparison
	Convergence contrast

	Conclusion
	Abbreviation
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Publisher’s Note
	Author details
	References

