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Abstract

The Internet of Everything (IoE) paradigm makes the Internet more pervasive, interconnecting every devices of
everyday life, and it is a promising solution for the development of 5G network services. Nowadays, Internet-
connected devices are equipped with various built-in sensors. Therefore, the concept of mobile crowdsensing (MC)
has been introduced to the IoE-driven situation where mobile devices gather data with the aim of performing a
specific application. In this paper, we propose a new cooperative game model for the privacy-driven device
collaboration in the MC system. The major goal of our approach is to incentivize the participating devices for
effective data acquisitions while protecting each individual privacy based on each device’s preference. According to
the Owen value mechanism, the proposed scheme provides an effective payment solution for each MC
participating device under privacy considered IoE environments. The main merit possessed by our MC control
approach is to guide the cooperation of mobile devices in providing MC services. Performance evaluation reveals
the superiority of our proposed scheme in terms of task success ratio, MC participating ratio, and payoff fairness.
Finally, we provide the guidance on the future research direction of the MC system including other issues.
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1 Introduction
The highly distributed Internet of Everything (IoE) para-
digm envisions everyday life devices to be smart to com-
municate with each other, and extends ubiquity of the
Internet through integrating each mobile device for the
interaction via embedded systems. IoE devices are
uniquely identifiable and are equipped with multiple
types of sensors. These IoE devices can be used to sense
and collect data dynamically from the surrounding
environment, without the need to build new infrastruc-
tures. The collected data can be delivered to the central-
ized server, where they can be further aggregated to get
a collective intelligence. Taking advantage of the variety
data generated by these devices will foster the develop-
ment of innovative applications in a broad range of
domains [1–4].
All above-mentioned properties make IoE a perfect

choice for the mobile crowdsensing (MC). MC is a

pervasive sensing paradigm where mobile devices can
often replace static sensing infrastructures, and consider-
ably advantageous for applications such as healthcare
analytics, route planners, and social-related applications
[5]. In MC operations, devices, i.e., smartphones, tablets,
and IoE devices like wearables, serve data generated
from embedded sensors. Usually, the performance of
MC depends on the number of participating devices,
which are contributing to complete sensing tasks. There-
fore, how to recruit mobile devices while fulfill sensing
tasks with high accuracy is a key challenge in MC
systems. Recently, several recruitment policies have been
proposed in the literature with the aim of addressing the
MC operations [6].
Proper recruitment policies can successfully assemble

mobile devices that are able to fulfill sensing tasks while
minimizing system costs [6]. Therefore, MC schemes
should incorporate efficient payment mechanisms to
recruit devices for their MC contributions. Currently,
the payment issue in MC systems has been extensively
studied by giving devices’ rewards to cover their
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contributions of individual sensing activities. Different
kinds of devices may have diverse sensing contributions
due to the difference in device mobility, ambient noise,
energy consumed for sensing, etc. Thus, rather than
treating all participating devices equally, we consider
devices’ actual contributions and their individual condi-
tions to design a reward-based payment mechanism.
During MC operations, sensing devices potentially col-

lect sensitive data of individuals. Therefore, privacy issue
also arises as another key problem. For example, the
GPS embedded device usually senses the private infor-
mation of individual commuting routes and locations.
By sharing the GPS measurements, end users’ privacy
can be revealed. Hence, it is important and necessary to
preserve the security and privacy of each individual.
Even though privacy protection is a principal issue, it has
not yet been well addressed, especially in the MC system.
Few existing work systematically investigates the privacy
protection problem considering the tradeoff between priv-
acy preservation and sensed data accuracy [7–10].
Differential privacy (DP) has been introduced and

gained popularity as a formal quantifiable measure of
privacy risk. Usually, the DP captures the increased risk
to one’s privacy incurred by participating in a database.
In particular, it measures how much the outcome of a
procedure changes probabilistically by the presence or
absence of any single subject in the original data; the
measure provides an upper bound on privacy loss re-
gardless of any prior knowledge an adversary might
have. While the DP has been applied in various research
fields, it has become a hot research topic in MC systems.
In this paper, we integrate the DP technique into the
MC system while providing effective payments to par-
ticipating devices. This approach can ensure a strong
protection against various types of possible attacks in
security, and conduces implicit collaboration of parti-
cipating devices [11–14].
To design a novel DP-based MC control scheme, we

need a game-theoretic payment mechanism. Generally,
payment mechanisms are characterized using the co-
operative game theory. Currently, game theory is exten-
sively used for the model and analysis of competition
and cooperation situations between the rational agents.
Being the control theory of multiple goal-driven agents,
game theory can provide effective solutions for dealing
with the DP-based MC situation and questions. Moti-
vated by this factor, we have adopted a novel cooperative
game-based payment approach to design a new practical
MC control scheme. This approach is a more practical
and justified method for real world MC operations [15].
In this study, we address the challenges of MC algo-

rithm, payment algorithm, and DP algorithm. These
algorithms are combined in an integrated scheme in
order to strike the appropriate performance balance

between contradictory requirements. To adapt dynamic-
ally changing MC environments, our holistic scheme is
designed to harness the synergies between competitive
and cooperative interactions among MC agents. To
adaptively responsive to individual MC agents, our pay-
ment process is operated according to the cooperative
game manner, especially the Owen value. As an exten-
sion of the Shapley value, Owen value was defined as an
efficient solution for cooperative games with coalition
structure; it has been successfully applied in many
engineering fields [16]. The proposed scheme mainly
considers how to estimate an individual payment for
each device. Based on the Owen value approach, our
scheme achieves greater and reciprocal advantages while
offering a well-balanced solution in MC operations.
Although several MC algorithms including the DP
concept have been proposed, no systematic study has
been conducted. The contributions of this study can be
summarized as follows:

� Owen value implementation: we introduce a novel
cooperative game model while capturing dynamic
interactions of MC agents depending on their
different viewpoints. This approach is generic and
applicable to implement real-world MC operations.

� Payment mechanism for devices: we implement a
payment mechanism based on the Owen value.
To attract enough mobile devices’ participations,
their resource consumption and the risk of privacy
exposure are compensated with rewards through
our payment mechanism.

� Differential privacy algorithm: we employ the
basic concept of DP to formalize the notion
of devices’ privacy. To protect the sensitive
information that needs to be released, our DP
algorithm can preserve devices’ private data by
data anonymization. The level of data protection
will accordingly be used to set the rewarding
payment to encourage their true data.

� The synergy of combined algorithms: we explore the
sequential interaction of MC, payment and DP
algorithms, and jointly design an integrated scheme
to strike an appropriate performance balance
between conflicting requirements. The synergy
effect lies in its responsiveness to the reciprocal
combination of different control algorithms.

� Practical implementation: we investigate
the dynamic MC environment based on the
step-by-step distributed cooperative game process.
This is a suitable and practical approach for
real-world MC operations.

� Performance analysis: we evaluate the performance
of the proposed scheme based on the simulation
model. Numerical study demonstrates that the
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overall system performance of our proposed scheme
can be significantly improved by comparing to the
existing [17–19] schemes.

The rest of the paper is structured as follows. Next
section, we review the related work. Section 3 describes
the principal of the MC platform, presents the problem
formulation, and proposes the Owen value-based MC
control scheme. In addition, we show the main steps of
the proposed scheme to increase readability. The simula-
tion scenario and the experimental results while com-
paring with some existing methods are detailed in
Section 4. Section 5 concludes the paper. In this section,
we also discuss the remaining open challenges in this
research area along with possible solutions.

2 Related work
There has been considerable research into the imple-
mentation of privacy-based MC algorithms. In [20],
Yuichi Sei et al. proposed a new anonymized data-
collection scheme that can estimate data distributions
more accurately. They prove that their proposed method
can reduce the mean squared error and the Jensen-
Shannon divergence compared with other existing
studies [20]. In [17], Jian Lin et al. proposed the
BidGuard scheme for privacy-preserving MC incentive
mechanisms. This scheme is a general privacy-preserving
scheme for incentivizing MC while achieving compu-
tational efficiency, individual rationality, truthfulness,
differential privacy, and approximating the social cost
minimization. It works with two score functions, i.e.,
linear and log functions, for selecting users. The authors
prove that the BidGuard scheme with log score function
is asymptotically optimal in terms of the social cost and
can validate the desired properties [17].
The authors in [18] propose a new accuracy privacy

trade-off MC (APMC) scheme for achieving high service
accuracy while protecting privacy based on user prefer-
ences [18]. This scheme proposes a coalition strategy
that allows users (i) to cooperate in providing their data
under one identity, (ii) to increase their anonymity
privacy protection, and (iii) to share the resulting payoff.
In particular, users are incentivized to provide true data
by being paid based on their individual contributions to
the overall service accuracy. The APMC scheme pro-
vides answers to three questions; (i) how does the MC
service define the contributions and payoff allocations of
users with varying privacy levels? (ii) Do MC coalitions
change the attained privacy of the cooperative users? (iii)
How do cooperative users divide the coalition payoff
among themselves? Through extensive simulation and
real testbed results, authors show the performance of
the APMC scheme [18].

The paper [19] proposes the privacy protection-
oriented MC (PPMC) scheme to continually provide the
high-quality data in the MC process. First, the PPMC
scheme gives a formal definition of the sensing user’s
contribution based on the accuracy in data analysis.
Based on the reputation incentive mechanism, the
PPMC scheme considers the privacy protection of the
sensing data and encourages more sensing users. In this
scheme, new users and users who provide high-quality
data can receive their reputation rewards, and reputation
punishments for users who quit the sensing tasks.
Therefore, the PPMC scheme can motivate more users
to participate in sensing tasks and provides high-quality
data over a long period of time. Finally, an efficient solu-
tion is given by the prisoner’s dilemma between the
service provider and the mediator [19].
Some earlier studies [17–20] have attracted consi-

derable attention while introducing unique challenges in
handling the MC control problems. In this paper, we
demonstrate that our proposed scheme significantly out-
performs these existing BidGuard [17], APMC [18], and
PPMC [19] schemes.

3 The proposed integrated MC control scheme
In this section, we present the privacy preserving MC
system architecture and develop a cooperative game
model to calculate the payment for each mobile device.
Our game approach is inherent in the proposed MC con-
trol scheme, and a desirable solution is achieved during
the interactions among independent decision makers.

3.1 Cooperative game model for the MC system
In this study, we consider that MC infrastructure is a
new dimension of privacy preserving platform, which is
consisting of mobile user devices, access points, and MC
server. There are multiple sensing task requests from
the MC server. Each mobile device individually submits
his contribution to the corresponding access point. From
the data analytics perspective, the contribution of each
device is defined based on the quality of the sensing data
and its privacy-protecting level [18]. Between the MC
server and MC participating devices, the access point
works as a mediator to effectively decide the payment of
MC participating devices. In this study, our major goal is
to design a cooperative game model for the dynamic
MC control scheme while balancing conflict interests
among system entities. The main entities of our scheme
are defined as follows:

Mobile user devices (MUDs): MUDs, i.e., mobile
phones and IoT gadgets, are the MC participants which
collect the sensing data, and report this information to
the MC server. M is the set of MUDs where
MUD1≤ i≤m∈M ¼ {MUD1…MUDm}. According to
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their own preferences, MUDs also select their levels of
privacy protection. When a MUD chooses a higher
level of privacy protection, his MC contribution is
reduced. Naturally, individual MUD’s payoff is
proportional to his contribution. Therefore, each
rational MUD needs to trade-off between the level
of privacy protection and his payoff maximization.
Access point (AP): AC is a networking agent that
allows MUDs to connect to a wired network. Usually,
APs are situated around high MUD density hotspots
to improve communication capacity. In our scheme,
AP is also working as a payment management entity
that controls the exchange of sensing data between
multiple MUDs and the MC server. Based on the
MUD’s contribution, the AP decides each MUD’s
payment according to the Owen value algorithm.
MC server (MCS): MCS gets the sensing data and
provides the reward through the AP. Finally, the MCS
delivers a final service to MC customers by analyzing
the sensing data.
Application tasks: A ¼{ A1…Av } is the set of MC
sensing tasks.

In our game model, MUDs, APs, and MCS work to-
gether as game players, and act cooperatively with each
other. The MCS generates multiple MC sensing tasks,
and wants to obtain and analyze the sensing data to
satisfy sensing tasks. Each AP offers the fair-efficient pay-
ment solution to MC participating MUDs in its coverage
area. Under the dynamic MC environments, individual
MUDs are enforced to contribute the MC process
cooperatively while considering their DP features.

3.2 Differential privacy algorithm for MC
Privacy preservation is one of the greatest concerns in
the MC system. In the last couple of years, it has been
one of the most serious problems, which hampers the
further growth of MC. In 2006, Cynthia Dwork first pro-
posed a mathematically rigorous mechanism, called DP,
which formally guarantees specific levels of privacy, even
from powerful adversaries with side information. The
concept of DP is the state-of-the-art privacy notion that
assures a strong and provable privacy guarantee for the
aggregated data. It requires a negligible change of com-
putation results, when a single data subject had opted
out of the data collection. Therefore, a common way of
achieving DP is a perturbation of aggregated statistics by
calibrated noise [21, 22].
As a protection mechanism, the DP adds random

noises to public information in such a way it is not too
sensitive to the response of any single participant; this
assures an individual that any computation results will
not unveil the presence (or absence) of its record.
Specifically, it is a mathematical definition for the privacy

loss that results to individuals when their private infor-
mation is used in the creation of a data product [21, 22].
Recently, the DP has been extended to control systems
where streams of data that evolve over time are collected
in order to generate control signals that can drive states to
desired values [21].
Definition 1: A randomized algorithm N has ε-

differential privacy if for any two input sets A and B
differing on a single entry, and for any set of outcomes
R ∈ Range(A) [23].

ℙ N Að Þ∈R½ �≤ exp εð Þ � ℙ N Bð Þ∈R½ � ð1Þ

Informally, the DP means that the outcome of two
nearly identical input datasets, i.e., different for a single
component, should also be nearly identical. Therefore,
individual information can hardly be inferred by com-
paring the query result of A and B. The privacy ε is the
parameter to measure the privacy level of the algorithm.
The choice of ε is a tradeoff between the privacy and the
accuracy of the output [23].
Generally, the DP is a probabilistic concept. Therefore,

it is necessarily randomized to realize the DP. Recently,
Laplace mechanism has been proposed by adding
controlled noise to the DP function that we want to
compute. Compared to the other mechanisms, the
Laplace mechanism is fit to numeric data manipulation
[21]. The Laplace mechanism involves adding random
noise that conforms to the Laplace statistical distribu-
tion. The Laplace distribution (Lap(∙)) can be expressed
by probability density function given by;

Lap Xjψð Þ ¼ 1
2� ψ

� exp −
Xj j
ψ

� �
ð2Þ

where X is a support and ψ is a scale parameter, some-
times referred to as the diversity; the value of ψ depends
on the privacy parameter ε. In the MC process, the risk
to the most different individual of having their private
information teased out of the data. This can be defined
mathematically, and is known as the sensitivity (△∮) of
the query function ∮;

△∮ ¼ max
A;B

∮ Að Þ−∮ Bð Þ
�� �� ð3Þ

Let noise from the Laplace distribution denote the
Laplace noise, which is obtained where ψ = △ ∮ /ε in the
Laplace distribution. According to the new study of C.
Dwork, there is a proof that the ε-DP is guaranteed to a
sensing task by adding a random Laplace noise [24].
Thus, the balance of DP between privacy and accuracy
has been extensively researched. In this study, we focus
on the availability of MC services based on the DP idea.
According to the game theory, the service availability of
MUD is defined by using a quantity associated utility
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function, which can construct the relationship of DP and
MC availability.

3.3 The Owen value of cooperative game
In the classical cooperative game theory, payment mech-
anism to coalitions of game players is one of main issues.
Many solution concepts have been proposed to answer
this problem, each kind of which satisfies a certain
rational behavior and reasonable principle. Among the
solutions that have been used in actual payment allo-
cation problems, the value was introduced and axioma-
tized by L. Shapley. Since then, a number of alternative
axiomatizations have been proposed. Recently, weighted
values have been studied, and their computation com-
plexities have been considered for specific problems. In
1977, G. Owen defined an efficient solution for coopera-
tive games with coalition structure that also extends the
traditional Shapley value, and it has been widely used in
many practical applications [16, 25].
Based on the idea of the classical value solution, Owen

value has many characterized axioms; efficiency, sym-
metry, additivity, dummy, balanced contributions among
players and coalitions, monotonicity among players and
coalitions, and marginality among players and coalitions.
In addition, other interesting feature is to characterize
the level structure value according to efficiency and the
principle of balanced contributions. Therefore, the Owen
value is formally captured using the notion of a consistency
with a coalition structure [16, 25, 26].
To define the Owen value, we introduce some nota-

tions. Let (ℕ, V ) be a game with transferable utility,
where ℕ= { a1, a2,..., an } is the set of players and V is
the characteristic function, which assigns a real number
V (C) to every coalition C⊆ℕ. A coalition structure for ℕ
is a partition ℂ= { C1 ,..., Ch }, i.e., C1≤ k ≤h∩C1≤ l≤h ¼ ∅ if
k ≠ l and ∪hk¼1Ck ¼ ℕ . Let Ω(ℕ) be the set of all permuta-
tions on ℕ. We say that π∈ΩðℕÞ is admissible with respect
to the coalition structure C if for any ai, aj, ak ∈ ℕ, ai, ak ∈
Cl ∈ ℂ, and π(ai) < π(aj) < π(ak) imply that aj ∈Cl , where
π(ai), π(aj), π(ak) denote the position of ai, aj, and ak in
the permutation π. We denote by Ω(ℕ, ℂ) the set of all
admissible permutations on ℕ with respect to ℂ. Given ℕ, ℂ,
and V (∙), the Owen value of ai ðχaiðℕ; ℂ;VÞÞ is defined as
follows [26];

χai ℕ; ℂ;Vð Þ ¼ 1
Ω ℕ; ℂð Þk k

� �
�
X

π∈Ω ℕ;ℂð Þ

�
V Pπ

ai∪ aif g
� �

−V Pπ
ai

�� i
; for all ai∈ℕ

ð4Þ

where Pπ
ai ¼ faj∈ℕjπðajÞ < πðaiÞg and kΩðℕ; ℂÞk denotes

the cardinality of the set Ωðℕ; ℂÞ . If ℂ= {{a1}, … , {an}} or
ℂ= {ℕ} then the Owen value is given by [26].

χai ℕ;ℂ;Vð Þ ¼
X

S⊆ℕ∖ aif g

Sj j−1ð Þ! n− Sj jð Þ!
n!

� �
� V S∪ aif gð Þ−V Sð Þð Þ

� �

ð5Þ

which coincides with the Shapley value of the V (∙)
function. Owen et al. proved that there exists a
unique mapping, the Owen value, from the space of
all coalitional games to ℝℕ, that satisfies the below
axioms [16, 26]. Let C be the set of all cooperative
games with coalition structure, and ℂ|S is the
restriction of ℂ to the members of coalition S, i.e.,
ℂjS ¼ fCl∩SjCl∈ℂ and Cl∩S≠ϕg.

� efficiency: for all (ℕ, ℂ, V) ∈ C,P
ai∈ℕ χaiðℕ; ℂ;VÞ ¼ VðℕÞ.

� symmetry: for all (ℕ, ℂ, V) ∈ C and for all
symmetric coalitions Ck , Cl∈ ℂ, thenP

ai∈Ck χaiðℕ; ℂ;VÞ ¼
P

ai∈Clχaiðℕ; ℂ;VÞ.
� dummy: for all (ℕ, ℂ, V) ∈ C and for

all ai∈ ℕ, χaiðℕ; ℂ;VÞ ¼ 0 if ai is a null player.
� additivity: for all (ℕ, ℂ, V) and (ℕ, ℂ, V0) ∈ C,

and for all ai∈ ℕ, χaiðℕ; ℂ;V þ V0Þ ¼ χaiðℕ; ℂ;VÞ
þχaiðℕ; ℂ;V

0Þ where ðV þ V0ÞðSÞ ¼ VðSÞ þ V0ðSÞ
for any S ⊂ ℕ.

� Balanced contributions among coalitions: for all
(ℕ, ℂ, V) ∈ C and Ck ; Cl∈ ℂ,

P
ai∈Ckχaiðℕ; ℂ;VÞ−P

ai∈Ck χaiðℕ∖ Cl; ℂjℕ∖Cl ;Vjℕ∖ClÞ ¼
P

ai∈Clχaiðℕ; ℂ;VÞ−P
ai∈Clχaiðℕ∖Ck ; ℂjℕ∖Ck ;Vjℕ∖Ck Þ.

� Balanced contributions among players: for all (ℕ, ℂ, V)
∈ C and Ck ; Cl∈ ℂ, χaiðℕ; ℂ;VÞ−χaiðℕ∖aj; ℂ−a j ;V−a jÞ
¼ χa j

ðℕ; ℂ;VÞ−χa j
ðℕ∖ai; ℂ−ai ;V−aiÞ.

� monotonicity among coalitions: for all (ℕ, ℂ, V) and
(ℕ, ℂ, V0) ∈ C,

P
ai∈Ckχaiðℕ;ℂ ;VÞ≥

P
ai∈Clχai

ðℕ; ℂ;V0Þ if VðS∪CkÞ−VðSÞ≥V0ðS∪CkÞ−V0ðSÞ for
all S⊆ℕ∖Ck .

� monotonicity among players: for all (ℕ, ℂ, V) and (ℕ,
ℂ, V0) ∈ C, χaiðℕ ; ℂ;VÞ≥χaiðℕ;ℂ ;V0Þ if VðS∪ faigÞ
−VðSÞ≥V0ðS∪faigÞ−V0ðSÞ for all S⊆ ℕ ∖ {ai}.

� marginality among coalitions: for all (ℕ, ℂ, V)
and (ℕ, ℂ, V0) ∈ C,

P
ai∈Ck χaiðℕ; ℂ;VÞ ¼

P
ai∈Clχai

ðℕ; ℂ;V0Þ if VðS∪CkÞ−VðSÞ ¼ V0ðS∪CkÞ−V0ðSÞ
for all S⊆ℕ∖Ck .

� marginality among players: for all (ℕ, ℂ, V) and
(ℕ, ℂ, V0) ∈ C, χaiðℕ; ℂ;VÞ ¼ χaiðℕ; ℂ;V

0Þ if V
ðS∪faigÞ−VðSÞ ¼ V0ðS∪faigÞ−V0ðSÞ for
all S⊆ ℕ∖ {ai}.

Based on the above properties, the Owen value can be
obtained by considering the following a heuristic develop-
ment in two steps of bargaining: the first one among the
coalitions and the second one into each coalition [27].
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Simply, we present the computation example for the Owen
value. Prerequisite is that the members of the coalition im-
prove their payoff by forming a union; if we assume that
ℕ ¼ fa1; a2; a3g;V ðfa1gÞ ¼ 20;Vðfa2gÞ ¼ 30;Vðfa3gÞ ¼
40;Vðfa1; a2gÞ ¼ 90;Vðfa1; a3gÞ ¼ 80;V ðfa2; a3gÞ ¼ 70
and Vðfa1 ; a2; a3gÞ ¼ 120 , then the Table 1 shows an
example of the computation of the Owen value.

3.4 Main steps of our integrated MC control scheme
Similar to the most MC systems, our MCS sequentially
generates sensing tasks, and assigns each task to a specific
AP, which is distributed regionally. MUDs, who are inter-
ested in performing sensing tasks, are associated with
their DP value (ε). Within the AP’s covering area, each
MUD performs a sensing task ðA∈AÞ and reports his
actual sensing contribution AA

MUD to the corresponding
AP. For the task Av in A , a set N Av , i.e., N Av⊆ M , is
created by the MUDs, who are actively participating the
MC service to complete the task Av. In the N Av , multiple
coalitions are formed according to MUDs’ ε values. There-
fore, a coalition ðCÞ in the N Av has represented a subset of
MUDs, who have the same ε value. Usually, the different
coalitions are intended to work independently of each
other based on their privacy preserving levels. Finally, the

AP calculates the payment PAv
MUD for each MC partici-

pating MUD. Based on the MUD’s actual contribution,

PAv
MUD is estimated using the Owen value. In this study,

the characteristic function V for the coalition Cl ðVðClÞÞ is
defined based on the bankruptcy game model in [28].

V Clð Þ ¼ max 0;MT Av−
X
ai∉Cl

AMUDi

 !

s:t:;

MT Av ¼ ψAv
�

X
MUDk∈N Av⊂M

AAv
MUDk

AAv
MUDi

¼ 1þ log
eεMUDi þ 1ð Þ2

eεMUDi

 ! !
� ∂Av

MUDi
�
∂Av
MUDi

T Av

 ! !
8>>><
>>>:

ð6Þ

where ψAv
is the control factor for the Av and εMUDi is

the MUDi’s DP value (ε). ∂Av
MUDi

and T Av are the MUDi’s
MC sensing outcome and the total MC requirement to

complete the Av, respectively. AAv
MUDi

indicates the
MUDi’s actual MC contribution; it depends on the MUDi’s

DP value (eεMUDi ), ∂Av
MUDi

and T Av . Based on the VðℂAvÞ
where ℂAv is the set of all coalitions in the N Av , we can
calculate the Owen value χ¼½χMUD1

ðN Av ; ℂ
Av ;VÞ…

χMUDi
ðN Av ; ℂ

Av ;VÞ…χMUDn
ðN Av ; ℂ

Av ;VÞ� according to (4)
where n is the cardinality of N Av . In the proposed scheme,

the PAv
MUDi

is χMUDi
ðN Av ; ℂ

Av ;VÞ in χ, and the AP can dis-
tribute payments to MUDs in N Av based on the Owen
value χ.
For privacy-reserving applications, our prime focus is

to combine the DP and payment algorithms comprehen-
sively to get a full synergy of dynamic MC system opera-
tions. Inspired by the Owen value, the proposed MC
control scheme plays a crucial role to tradeoff privacy
and MC accuracy while satisfying the different goals of
MUDs and MCS. Based on the cooperative game model,
MUDs, AP, and MCS can capture the current MC sys-
tem condition and determine their best strategies to
maximize their payoffs. Through a step-by-step distri-
buted cooperative game process, they can benefit from
joining in the MC process, and a win-win situation can
be achieved; it is a promising approach to implement
the real-world MC services. The main steps of the
proposed MC control scheme are described as follows.

Step 1: At the initial time, application features and
system parameters are determined by the simulation
scenario and Table 2.
Step 2: Each MUD has its own privacy preserving level
(ε); it is fixed for each sensing task application.
Step 3: The MCS generates MC sensing tasks,
sequentially. These task applications are operated
through local APs. Each AP works as a mediator

Table 1 Example of the computation of the Owen value
Set of coalitions ℂ ¼ fC1 ¼ fa1; a2g; C2 ¼ fa3gg
Permutation a1 a2 a3

a1← a2← a3 Vðfa1gÞ - VðϕÞ =20 Vðfa1; a2gÞ - Vðfa1gÞ = 70 Vðfa1; a2; a3gÞ - Vðfa1; a2gÞ = 30

a1← a3← a2 N/A; π(a1) < π(a3) < π(a2)
and a1; a2∈C1 but a3∉C1

a2← a1← a3 Vðfa1; a2gÞ- Vðfa2gÞ =60 Vðfa2gÞ- VðϕÞ =30 Vðfa1; a2; a3gÞ- Vðfa1; a2gÞ =30

a2← a3← a1 N/A; π(a2) < π(a3) < π(a1) and a2; a1∈C1
but a3∉C1

a3← a1← a2 Vðfa1; a3gÞ- Vðfa3gÞ =40 Vðfa1; a2; a3gÞ- Vðfa1; a3gÞ =40 Vðfa3gÞ- VðϕÞ =40

a3← a2← a1 Vðfa1; a2; a3gÞ- Vðfa2; a3gÞ =50 Vðfa2; a3gÞ- Vðfa3gÞ =30 Vðfa3gÞ- VðϕÞ =40

Total 20 + 60 + 40 + 50 = 170 70 + 30 + 40 + 30 = 170 30 + 30 + 40 + 40 = 140

Owen value
χaðℕ; C1;VÞ

170/4 = 42.5 170/4 = 42.5 140/4 = 35
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between the MCS and MUDs while calculating
their payments.
Step 4: The task Av is assigned to a specific AP,
and MUDs around that AP create the set N Av

while actively participating the MC service. At
this time, MUDs in N Av form multiple coalitions
according to their privacy preserving level (ε).
Step 5: Using (2) and (3), each MUD generates
the Laplace noise, and adds it to the actual
MC outcome while satisfying the Eq. (1); it
guarantees the MUD’s DP.
Step 6: In a distributed manner, the AP
monitors only MUDs in its own coverage area,
and estimates each MUD’s actual MC
contribution ðAÞ according to (6).
Step 7: Based on the Eq. (4), the AP
calculates the Owen value for each individual
MUD; ℂ for each task is localized at
each AP. Therefore, the computation overhead
can be practically reduced.
Step 8: Based on the step-by-step distributed
cooperative game process, the AP, MCS, and
MUDs interact with one another, and cause a
cascade of interactions.
Step 9: Under the dynamic MC system
environment, the MCS is constantly generates
MC tasks; proceeds to step 2 for the next
cooperative game iteration.

4 Performance evaluation
In this section, we evaluate the performance of our pro-
posed protocol, and compare it with that of the existing
BidGuard [17], APMC [18], and PPMC [19] schemes.
Based on the simulation results, we confirm the super-
iority of the proposed approach.

4.1 Experimental method
In this study, we have used the simulation tool
MATLAB to develop our simulation model. MATLAB is
one of the most widely used tools in a number of

scientific simulation fields; its high-level syntax and dy-
namic types are ideal for model prototyping. To ensure
a fair comparison, the following simulation assumptions
and MC system scenario are used.

� 100 MUDs are used in which these devices
are distributed randomly.

� 10 APs are located evenly in a geographical
region.

� Each MUD’s ε value for its PD is randomly
decided among {0.85, 0.9, 0.95}. According to
the DP mechanism, the proposed approach
cannot achieve a complete privacy protection,
but provide a partially protected privacy
based on the ε value.

� Simply, we consider four cases of MUD
capacity to proceed the MC service; 100 cycles/s,
150 cycles/s, 200 cycles/s, and 250 cycles/s.
MC capacity of each individual MUD is
randomly selected from the above four cases.

� There are four different sensing task applications,
i.e., {τ1, τ2, τ3, τ4}, which are specified according
to the sensing requirements. They are generated
with equal probability.

� Sensing tasks A are generated based on the
Poisson process, which is with rate λ (tasks/s),
and the range is varied from 0 to 3.

� All application tasks need a specific local
region information. This region is randomly
selected, and the MC task is assigned to the
corresponding AP.

� System performance measures obtained on
basis of 100 simulation runs are plotted as
functions of the sensing task generation rate.

� For simplicity, we assume the absence of physical
obstacles in the experiments.

To demonstrate the validity of our proposed method,
we measured the task success ratio, MC participating
ratio, and MUD’s payoff fairness. Table 2 shows the
system parameters used in the simulation. Major system

Table 2 System parameters used in the simulation experiments

Sensing tasks ψ MC cycles per MUD Total MC cycles (T Av ) Service duration

Av = τ1 0.95 180 cycles/s 750 cycles/s 2400 s (40 min)

Av = τ2 0.9 200 cycles/s 1000 cycles/s 2700 s (45 min)

Av = τ3 0.85 220 cycles/s 1250 cycles/s 2880 s (48 min)

Av = τ4 0.8 250 cycles/s 1500 cycles/s 3000 s (50 min)

Parameter Value Description

m 100 The number of physical
mobile devices

‖AP‖ 10 The number of access points
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control parameters of the simulation, presented in
Table 2, facilitate the development and implementation
of our simulator.

4.2 Result analysis
Figure 1 gives the performance comparison of each
scheme in terms of the task success ratio. In this simu-
lation study, the task success ratio is defined as the
ratio of the total number of sensing tasks applications
which have been generated by the MCS to the number
of task applications which are successfully completed.
Compared with other existing schemes, MUDs and
MCS in our scheme can reach jointly a mutually accept-
able agreement to complete the request tasks; it leads a
higher task success ratio. From low to high task request
distributions, it is easy to see that the scheme which is
designed in this paper has the best performance.
Figure 2 presents the MC participating ratio for each

scheme. In the simulation result, we can see that all
schemes exhibit a similar trend. However, we can align
the goals of selfish individual MUDs while revealing
their private information as well as to take appropriate
actions. This stimulates MUDs to actively participate
the MC process. For this reason, the proposed scheme
can attain the better MC participating ratio to other
schemes. The curves in Fig. 3 indicate the MUD’s
payoff fairness. From the viewpoint of social welfare, it
is a main concern and important performance criterion.
Therefore, during the MC operations, the most proper
combination of the efficiency and fairness is the major

issue. In this paper, the concept of fairness is defined as
an equitable payoff rate for the MC participating
MUDs. To characterize this fairness notion, we follow
the Jain’s fairness index (Findex) [29], which has been
frequently used to measure the fairness of network
management.

Findex ¼

P
MUDk∈N Av⊂M

χMUDk
N Av ;ℂ

Av ;V
	 
�

AMUDk

 ! !2

N Avk k �
P

MUDk∈N Av⊂M
χMUDk

N Av ;ℂ
Av ;V

	 
�
AMUDk

 !2 !

ð7Þ

where kN Avk is the cardinality of the set N Av . From the
Fig. 3, we can see that the proposed scheme achieves a
higher and stable fairness during different task request
intensities. In our scheme, the AP distributes payments
according to the Owen value; it correlates with the
fairness provisioning.
In summary, simulation results shown in Figs. 1, 2, and 3

demonstrate that the proposed scheme can monitor the
current MC system conditions and leverages the DP and
payment algorithms to get the full synergy of MC pro-
cessing operations. Through cooperative game theoretic
operations and functionality, MUDs, AP, and MCS are
mutually dependent, and coordinate with each other in
order to get the best solution for all. To provide a suitable
tradeoff between conflicting requirements, it is a suitable
approach. In conclusion, simulation results show that our
scheme attains an attractive MC system performance,
something that the BidGuard [17], APMC [18], and PPMC

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Task Request Load (Sensing Request Rate)

oita
R

sseccu
S

ksa
T

The Proposed Scheme
The BidGuard scheme
The APMC scheme
The PPMC scheme

Fig. 1 MC task success ratio. The task success ratio is defined as the ratio of the total number of sensing tasks applications which have been
generated by the MCS to the number of task applications which are successfully completed
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[19] schemes cannot offer. In addition, it is also interesting
to see that we consistently maintain the operational excel-
lence from low to high task request intensities.

5 Results and discussions
Recently, the MC is growing in popularity as an emer-
ging paradigm that requires an implicit collaboration of
mobile devices, which sense data with the aim of per-
forming a specific application. However, sensing data

may be privacy-sensitive. Therefore, the state-of-the-art
scheme, which can encourage devices to participate MC
while ensuring privacy protection, is necessary. In this
article, we have proposed an integrated MC control
scheme by effectively combining the payment algorithm
and DP algorithm. In particular, we formulate the pri-
vacy protective MC control scheme as a cooperative
game process that models the relations among MC
agents to successfully complete application tasks. Using
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Fig. 3 MUD payoff fairness. To characterize this fairness notion, the Jain’s fairness index is adopted; it has been frequently used to measure the
fairness of network management
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Fig. 2 MC participating ratio. For each scheme, the MC participating ratio is estimated from low to high task request distributions
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the step-by-step distributed game process, we explore
effective answers to the fundamental questions of how
to design a payment algorithm, and how to provide a
differential privacy while considering the impact of payoff.
Under the situation characterized by the MC system, our
method is a practical and suitable approach. Compared to
the existing protocols, simulation results are presented to
show the superiority of our proposed scheme. For the
future research, there are a series of possible ways to
extend the results in this study. New research issues will
focus on the in-depth study of challenges and techniques,
solutions for the MC systems while providing case studies.
Furthermore, more heterogeneous devices will be tested,
in order to assess the proposed approach in different
conditions. In the current research, machine learning issue
still lacks exploration. Therefore, another interesting
direction is to address the learning and AI issues in the
MC system from the operator’s perspective.
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