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Abstract

In this paper, for the purpose of improving the energy efficiency of the industrial sensor networks, we investigated
the event-based H∞ filtering problem for a class of discrete-time nonlinear sensor network systems with time-varying
delay, packet dropout, and multiplicative noises. Instead of traditional time-triggered communication mechanism, the
event-triggered strategy is adopted in industrial sensor network, which could not only reduce the transmission
frequency of the sensor measurement output, but also guarantee the prescribed filtering performance, if only the
threshold in the event-triggered function is chosen suitably. The time-varying delay characteristic of systems is
considered with the event-triggered strategy, which has seldom been studied due to the complexity of time-varying
delay and event-triggered strategy. The most common network-induced phenomenon of packet dropout in
industrial sensor network is described. The purpose is to design a filter satisfying exponentially stable and H∞ indexes.
The main result is that sufficient conditions are established, guaranteeing our proposed filter satisfying filtering
performance constraints, and the parameters of filter could be got through the derived linear matrix inequality (LMI), if
only it is feasible. At last, the filtering approach is demonstrated by a simulation.

Keywords: Energy efficiency, Event-triggered communication mechanism, Time-varying delay, Industrial sensor
network system, H∞ filtering, Multiplicative noises, Packet dropouts

1 Introduction
Over the past decades, the H∞ filtering technique has
attracted considerable research attention and fruitful
results have appeared, see for example [1–13] and the ref-
erences therein. This is mainly due to the following two
reasons. Firstly, in a lot of practical engineering, it is hard
to get the probabilistic information of disturbance and the
H∞ technique could well deal with this kind of noise sig-
nals. Secondly, nomatter how precise the systemmodel is,
there is also some error between the physical plant and its
model. And the robustness of the H∞ filtering approach
may tolerate such error in system model. From the above
analysis, we could find that investigating the H∞ filtering
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technique has not only theoretically importance but also
engineering significance. As such, we will employ the H∞
approach to design the filter for a class of sensor network
systems.
It is well known that the limited network channel

bandwidth and limited power are significant factors con-
straining the performance of industrial sensor network
systems [14–19]. In traditional time-triggered communi-
cation mechanism, the signal of sensor is transmitted to
the filter or controller at every time, which does not con-
sider the limited bandwidth of communication channel
and therefore increases the burden of industrial sensor
network channel. To avoid the unnecessary frequent com-
munication and save limited energy, an effectivemethod is
adopting event-triggered strategy [20–24], in which sen-
sor measurement output is transmitted only when an
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event-triggered condition is satisfied. If only the event-
triggered condition is suitably constructed, the trans-
mission frequency of measurement will decrease while
maintaining the prescribed filtering performance. During
recent years, the event-triggered communication mech-
anism has been successfully applied to controller design
for various engineer systems, such as networked systems
[25, 26] and multi-agent systems [27–29]. Also, some
results about event-based filter design have appeared,
see for example [30–34]. However, when it comes to
the industrial sensor network systems, considering the
inevitable network-induced phenomena, the event-based
filter design approach has not been adequately investi-
gated and still has many problems needed to be solved.
Therefore, the event-triggered communication mecha-
nism will be adopted in the filtering problem for the
proposed industrial sensor network systems.
Noting that, nonlinear control and filtering have

attracted much interest [4, 35–41], due to the popular
existence of nonlinearity in a lot of practical systems and
its important effectiveness to systems. In [4], a sector-
bounded approach is proposed to handle with a class of
nonlinearities. It is pointed out that many plants may be
modeled by systems with multiplicative noises and some
characteristics of nonlinear systems can be closely approx-
imately by models with multiplicative noises rather than
by linearized models [42, 43]. Therefore, in this paper,
the nonlinearity of addressed systems is described by a
nonlinear function and state-multiplicative noises, which
could better present the practical nonlinearity.
As a main source of system instability, time-delay

widely exists in practical industrial sensor network sys-
tems and should be taken into the analysis process of
systems. As such, the H∞ filtering for various time-
delay plants has attracted much interest, see [35, 44–46]
and the reference therein. For example, the robust fil-
ter is designed for systems with packet dropout and
constant delay in [44]. In [35], a delay-dependent H∞
filtering method is proposed for delay systems whose
postpone is time-varying. Very recently, in [30], the event-
triggered strategy is adopted to address distributed H∞
filtering problem for industrial sensor networks with
time-invarying delay. Unfortunately, up to now, when
event-triggered communication is adopted, the relative
investigation about event-based H∞ filter design problem
has seldom taken time-varying delay into account. There-
fore, we will investigate the event-based H∞ filtering
problem for industrial sensor networks whose postpone is
time-varying.
Summarizing the above discussions, the event-based

H∞ filtering problem will be investigated for a class of
nonlinear industrial sensor network systems with packet
dropouts, multiplicative noises and time-varying delay.
The main contributions are highlighted as follows:

1. During the design of filter for a class of discrete-
time sensor network systems with time-varying delay, the
event-triggered communication mechanism is adopted.
2. A comprehensive model of nonlinear sensor network

systems is proposed which subjects to packet dropouts,
multiplicative noises, and time-varying delay.
3. Sufficient conditions are built which could ensure

proposed filter and corresponding event-based filtering
algorithm is addressed.
Section 2 introduces the methods utilized for the

energy-efficient filter. In Section 3, the delay sensor net-
work with packet dropouts and multiplicative noises is
introduced. The results and discussions are given in
Section 4, where sufficient condition is derived for theH∞
filter and the filtering method is addressed . A numeri-
cal example is given in Section 5. Finally, we conclude in
Section 6.

2 Methods
In this paper, the energy-efficient filter is designed based
on Lyapunov theory method and linear matrix inequality
method. The simulation experiment is based on the LMI
toolbox of MATLAB R2014a.

3 Problem formulation and preliminaries
Here, the following discrete nonlinear sensor network
system with time-varying delay and multiplicative noise is
considered:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1)=
[

A +
α∑

i=1
w̃i(k)Ai

]

x(k)+
⎡

⎣Ad+
β∑

j=1
ṽj(k)Adj

⎤

⎦ x(k−τ(k))

+ f (x(k)) + Bw(k)

y(k) = Cx(k) + Dv(k)

z(k) = Lx(k)

x(l) = ϕ(l), l = −dM , −dM+1, ..., 0,

(1)

where x(k) ∈ R
n represents the state vector, y(k) ∈ R

r

is sensor output, z(k) ∈ R
m is the signal to be esti-

mated, w(k) ∈ R
p and v(k) ∈ R

q are disturbance
belonging to l2[ 0,∞], f (·) : Rn → Rn is nonlin-
ear vector function, w̃i(k)(i = 1, 2, ...,α) and ṽj(k)(i =
1, 2, ...,β) are zero mean Gaussian white noise with
E{w̃i(k)} = 0, E{w̃2

i (k)} = 1, E{w̃i(k)w̃j(k)} = 0(i �= j),
E{ṽj(k)} = 0, E{ṽ2j (k)} = 1, E{ṽi(k)ṽj(k)} = 0(i �=
j), E{w̃i(k)ṽj(k)} = 0. The time-varying delay τ(k) ∈
[ dm, dM]. A, Ai, Ad, Adj, B, C, L, andD are known, real
matrices with appropriate dimensions.
f (x(k)) is assumed to satisfy the following condition:

‖ f (x(k)) ‖2≤ θ ‖ Gx(k) ‖2, (2)

where θ > 0 is a known scalar and G is a known matrix.
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Remark 1 As an essential characteristic for many prac-
tical networked systems, time-delay should be considered,
due to it is a main source of system instability. Although,
for the purpose of decreasing the difficulty of filter design,
in many filter design algorithm, time-delay is assumed to
be constant. But, the fact is that time-delay is almost time-
variant. Therefore, it is more practical significant to design
filter for network systems with time-varying delay.

Remark 2 The addressed system (1) is a comprehensive
model for industrial sensor network systems which includes
the multiple noises, nonlinearity, and time-varying delay.
As far as we know, due to the complexity of the addressed
system (1), the relevant research results are few. This moti-
vates our research interest.

Different from traditional filter design, the event-
triggered strategy is considered, which could reduce com-
munication frequency. As such, a event generator function
g(·, ·) is defined as follows:

g(σ (k), δ) = σT (k)σ (k) − δ2yT (k)y(k), (3)

where σ(k) = y(ki) − y(k) with y(ki) being the measure-
ment at the latest event time ki and y(k) is the current
measurement. δ ∈[ 0, 1] is the threshold. In practical engi-
neering, δ can be determined on the basis of the filtering
requirement. When a smaller filtering error is needed, δ is
set to be smaller.
The current measurement y(k) of the sensor is transmit-

ted if only the following condition

g(σ (k), δ) > 0 (4)

is met. Thus, the event-triggered sequence 0 ≤ k0 ≤ k1 ≤
· · · ≤ ki ≤ · · · is determined iteratively by

ki+1 = inf{k ∈ N | k > ki, f (σ (k), δ) > 0}. (5)

Remark 3 The event-triggered strategy is adopted in the
networked filter design for industrial sensor network. As is
well known, in time-triggered communication mechanism,
the measurement output of sensor is transmitted by net-
work communication channel with limited bandwidth at
every sampling time, even though the measurement out-
put changes slightly in the next instant, which increases
the burden of network channel and wastes a lot of source
of industrial sensor network. However, in event-triggered
communication mechanism, only when the designed con-
dition is met, then measurement signal of sensor is trans-
mitted . And a suitable threshold in the event generator
function could not only reduce the measurement commu-
nication frequency but also make sure prescribed filtering
performance.

As is well known, the measurement of sensor transmit-
ted by networkmay encounter packet dropouts.When the
phenomenon of packet dropouts is considered, the real
measurement obtained by filter can be depicted as

ỹ(ki) = α(ki)y(ki). (6)

Here, stochastic variable α(ki) is employed to govern the
phenomenon of packet dropouts in industrial sensor net-
work. It is assumed to be Bernoulli-distributed white
sequence with

Prob{α(k) = 1} = E{α(k)} = ᾱ, Prob{α(k) = 0} = 1 − ᾱ.

For system (1), construct the following filter:
{
xf (k + 1) =Af xf (k) + Bf ỹ(ki)

zf (k) =Cf xf (k),
(7)

where xf (k) ∈ R
n is the estimate of the state x(k), zf (k) ∈

R
m represents the estimate of z(k), and Af , Bf , and Cf is

the filter gain matrix to be designed.
By letting η(k) =[ xT (k) eT (k)]T , z̃(k) = z(k) − zf (k),

e(k) = x(k) − xf (k), w̄ =[wT (k) vT (k)]T , h(η(k)) =
[ f T (x(k)) f T (x(k))]T , and α̃(k) = α(k) − ᾱ, we could get
the augmented system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(k + 1) =Āη(k) + α̃(ki)Ā0η(k) +
α∑

i=1
w̃i(k)Āiη(k)

+ Ādη(k − τ(k)) +
β∑

j=1
ṽj(k)Ādjη(k − τ(k)) + h(η(k))

+ α(ki)B̄f σ(k) + B̄1w̄(k) + α̃(ki)B̄2w̄(k)

z̃(k) =L̄η(k),

(8)

where,

Ā =
[

A 0
A − Af − ᾱBf C Af

]

, Ā0 =
[

0 0
−Bf C 0

]

,

Āi =
[
Ai 0
Ai 0

]

, Ād =
[
Ad 0
Ad 0

]

,

Ādj =
[
Adj 0
Adj 0

]

, B̄f =
[

0
−Bf

]

, B̄1 =
[
B 0
B −ᾱBf D

]

,

B̄2 =
[
0 0
0 −Bf D

]

,

L̄ = [
L − Cf Cf

]
.

Definition 1 [13]: The augmented system (8) with
w̄(k) = 0 is exponentially mean-square if there exist
constant ε > 0 and 0 < κ < 1 thus

E
{‖ η(k) ‖2}≤εκk max

i∈[−dm,0]
E

{‖ η(i) ‖2} , k ∈[ 0,∞).

Our aim is to design a filter satisfying the following
requirements: (Q1) the filtering error system (8) is expo-
nentially mean-square stable, and (Q2) under the zero
initial condition, for given scalar γ > 0, filtering error z̃(k)
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satisfies

∞∑

k=0
E

{‖ z̃(k) ‖2} < γ 2
∞∑

k=0
E

{‖ w̄(k) ‖2} (9)

for all nonzero w̄(k).

4 Results and discussions
The main results and some discussions are presented in
this section.

4.1 Analysis of H∞ performance
First of all, we introduce the following lemma.

Lemma 1 (Schur complement) Given constant matrices
S1, S2, and S3, where S1 = ST1 and 0 < S2 = ST2 , then
S1 + ST3 S

−1
2 S3 < 0 if and only if

[
S1 ST3
S3 −S2

]

< 0 or
[ −S2 S3

ST3 S1

]

< 0. (10)

Theorem 1 :Consider the sensor network system(1) and
let the filter parameters Af , Bf , and Cf be given. Thus, the
filtering error system(8) with w̄(k) = 0 is exponentially sta-
ble in mean-square, if there exist positive definite matrixes
P > 0, Q > 0 and positive constant scalars ε1, satisfying

1=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ11 + 2ε1θḠT Ḡ
+δ2C̄TC

ĀTPĀd ĀTP
ᾱĀTPB̄f

+ᾱ(1 − ᾱ)ĀT
0 PB̄f

∗ ϕ22 ĀT
d P ᾱĀT

d PB̄f
∗ ∗ P − ε1I ᾱPB̄f
∗ ∗ ∗ ᾱB̄Tf PB̄f − I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(11)

where

ϕ11 = ĀTPĀ + ᾱ(1 − ᾱ)ĀT
0 PĀ0 +

α∑

i=1
ĀT
i PĀi

− P + (dM − dm + 1)Q,

ϕ22 = ĀT
d PĀd +

β∑

j=1
ĀT
djPĀdj − Q,

Ḡ = [
G 0

]
, C̄ = [

C 0
]
.

Proof : Choose the following Lyapunov function

V (k) = V1(k) + V2(k) + V3(k), (12)

where

V1(k) = ηT (k)Pη(k), V2(k) =
k−1∑

i=k−τ(k)
ηT (i)Qη(i),

V3(k) =
k−dm∑

j=k−dM+1

k−1∑

i=j
ηT (i)Qη(i).

Then, according to (8) with w̄(k) = 0, there is

E{�V1(k)}
=E{V1(k + 1) − V1(k)}
=E

{
ηT (k + 1)Pη(k + 1) − ηT (k)Pη(k)

}

=E

{[

Āη(k) + α̃(ki)Ā0η(k) +
α∑

i=1
w̃i(k)Āiη(k)

+ Ādη(k − τ(k))

+
β∑

j=1
ṽj(k)Ādjη(k−τ(k))+h(η(k)) + α(ki)B̄f σ(k)

⎤

⎦

T

P

[

Āη(k)+α̃(ki)Ā0η(k)+
α∑

i=1
w̃i(k)Āiη(k)+Ādη(k−τ(k))

+
β∑

j=1
ṽj(k)Ādjη(k − τ(k)) + h(η(k)) + α(ki)B̄f σ(k)

⎤

⎦

−ηT (k)Pη(k)
}

=E{ηT (k)ĀTPĀη(k) + 2ηT (k)ĀTPĀdη(k − τ(k))

+2ηT (k)ĀTPh(η(k)) + 2ᾱηT (k)ĀTPB̄f σ(k)

+ᾱ(1−ᾱ)ηT (k)ĀT
0 PĀ0η(k)+2ᾱ(1−ᾱ)ηT(k)ĀT

0 PB̄f σ(k)

+
α∑

i=1
ηT (k)ĀT

i PĀiη(k)+ηT (k−τ(k))ĀT
d PĀdη(k−τ(k))

+2ηT (k−τ(k))ĀT
d Ph(η(k))+2ᾱηT(k−τ(k))ĀT

d PB̄f σ(k)

+
β∑

j=1
ηT(k−τ(k))ĀT

djPĀdjη(k−τ(k))+hT(x(k))Ph(η(k))

+2ᾱhT (x(k))PB̄f σ(k) + ᾱσT (k)B̄T
f PB̄f σ(k)

− ηT (k)Pη(k)}.
(13)

Next, it can be derived that
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E{�V2(k)} =E{V2(k + 1) − V2(k)}

≤E{
k−dm∑

i=k+1−dM

ηT (i)Qη(i) + ηT (k)Qη(k)

− ηT (k − τ(k))Qη(k−τ(k))}
(14)

and

E{�V3(k)}=E{V3(k+1)−V3(k)}

=E{(dM−dm)ηT(k)Qη(k)−
k−dm∑

i=k+1−dM

ηT(i)Qη(i)}.

(15)

Let

ζ(k) = [
ηT (k) ηT (k − τ(k)) hT (x(k)) σT (k)

]T .

It follows from (13)–(15) that

E{�V (k)} =E{V (k + 1) − V (k)}

=
3∑

i=1
E{�Vi(k)}

≤E{ζT (k)̃1ζ(k)},

(16)

where

̃1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĀTPĀ + ᾱ(1 − ᾱ)ĀT
0 PĀ0

+ ∑α
i=1 ĀT

i PĀi − P
+(dM − dm + 1)Q

ĀTPĀd

∗ ĀT
d PĀd + ∑β

j=1 Ā
T
djPĀdj − Q

∗ ∗
∗ ∗

ĀTP ᾱĀTPB̄f + ᾱ(1 − ᾱ)ĀT
0 PB̄f

ĀT
d P ᾱĀT

d PB̄f
P ᾱPB̄f
∗ ᾱB̄T

f PB̄f

⎤

⎥
⎥
⎥
⎦

< 0.

Moreover, if follows from (2) that

hT (η(k))h(η(k)) ≤ 2θηT (k)ḠTḠη(k). (17)

Furthermore, it follows from (16) and (17) that

E{�V (k)} ≤E{ζT (k)̃1ζ(k) − ε1[ hT (η(k))h(η(k))

− 2θηT (k)ḠTḠη(k)] }.
(18)

Considering the event-triggered condition (3), we have

E{�V(k)}≤E{ζT (k)̃1ζ(k) − ε1[ hT (η(k))h(η(k))

−2θηT(k)ḠTḠη(k)]−σT(k)σ (k)+δ2yT(k)y(k)}
=E{ζT (k)1ζ(k)}.

(19)

According to Theorem 1, we have 1 < 0. Thus, for
all ζ(k) �= 0, E{�V (k)} ≤ E{ζT (k)̃1ζ(k)} < 0. Fur-
thermore, similar to [13], system (8) can be proved to be
exponentially mean-square stable. The proof is complete.
Then, the H∞ index will be analyzed.

Theorem 2 : Let Af , Bf , and Cf and γ be given.
Then, system(8) is exponentially stable in the mean-square
and satisfies the H∞ performance constraint (9) for any
nonzero w̄(k) under zero initial condition, if there exist
matrices P > 0, Q > 0 and positive constant scalar ε1
satisfying

2 < 0, (20)

where

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ11 + 2ε1θḠT Ḡ + δ2C̄TC + L̄T L̄ ĀTPĀd ĀTP
∗ ϕ22 ĀT

d P
∗ ∗ P − ε1I
∗ ∗ ∗
∗ ∗ ∗

ᾱĀTPB̄f

+ᾱ(1 − ᾱ)ĀT
0 PB̄f

ĀTPB̄1 + ᾱ(1 − ᾱ)ĀT
0 PB̄2 + δ2C̄T D̄

ᾱĀT
d PB̄f ĀT

d PB̄1

ᾱPB̄f PB̄1

ᾱB̄T
f PB̄f − I ᾱB̄T

f PB̄1 + ᾱ(1 − ᾱ)B̄T
f PB̄2

∗ B̄T
1 PB̄1 + ᾱ(1 − ᾱ)B̄T

2 PB̄2 − r2I + δ2D̄T D̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

D̄ =[ 0 D].

Proof : It is clear that (20) implies (11). From Theorem 1,
system (8) is exponentially stable.

Then, we will analysis the H∞ performance.

E{�V (k)} ≤ ζ̄T (k)̃2ζ̄ (k), (21)

where

ζ̄ (k) =[ ζT (k) w̄T (k)]T ,

̃2 =
[

1 UT

∗ B̄T
1 PB̄1 + ᾱ(1 − ᾱ)B̄T

2 PB̄2 + δ2D̄T D̄

]

,

U = [
B̄T
1 PĀ + ᾱ(1 − ᾱ)B̄T

2 PĀ0 + δ2D̄T C̄ B̄T
1 PĀd

B̄T
1 P ᾱB̄T

1 PB̄f + ᾱ(1 − ᾱ)B̄T
2 PB̄f

]
.

To handle with H∞ performance, the following index is
introduced:

J(n) = E
n∑

k=0
{‖ z̃(k) ‖2 −γ 2 ‖ w̄(k) ‖2}, (22)

where n is a nonnegative integer.
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Under the zero initial condition, we have

J(n) = E
n∑

k=0
{‖ z̃(k)‖2−γ 2‖w̄(k)‖2+�V (k)}−E{�V (n+1)}

≤ E
n∑

k=0
{‖ z̃(k) ‖2 −γ 2 ‖ w̄(k) ‖2 +�V (k)}

≤ E
n∑

k=0
{ηT(k)L̄T L̄η(k)−γ 2w̄T(k)w̄(k)+ζ̄T(k)̃2ζ̄ (k)}

= E
n∑

k=0
{ζ̄T (k)2ζ̄ (k)}.

(23)

According to Theorem 2, we have 2 < 0, J(n) < 0.
When n → ∞, there is

n∑

k=0
E{‖ z̃(k) ‖2} < γ 2

∞∑

k=0
‖ w̄(k) ‖2 . (24)

The proof is complete.

4.2 Event-based H∞ filter design
Here, the H∞ filtering algorithm will be solved in
Theorem 3.

Theorem 3 Let the disturbance attention level γ > 0 be
given. Then, for sensor network system (1) and filter (7), the
H∞ performance constraints (9) and exponential stability
are guaranteed, if there exist positive matrices P > 0, Q >

0, and ε1 > 0 and matrices X and Cf satisfying

� =
⎡

⎣
�11 �12 �13
∗ �22 �23
∗ ∗ �33

⎤

⎦ < 0, (25)

where

�11=
α∑

i=1
ĀT
i PĀi+(dM−dm+1)Q+ε12θḠTḠ+δ2C̄T C̄−P,

�12=[
0 0 0 δ2C̄T D̄

]
,

�13=
[
ÂTP + ᾱĈTXT √

ᾱ(1 − ᾱ)RTXT L̂T − HT
2 C

T
f

]
,

�22 = diag{
β∑

j=1
ĀT
djPĀdj−Q,−ε1I,−I,−γ 2I+δ2D̄T D̄},

�23 =

⎡

⎢
⎢
⎣

ĀT
d P 0 0
P 0 0

ᾱHT
1 XT √

ᾱ(1 − ᾱ)HT
1 XT 0

B̂T
1 P + ᾱD̂TXT √

ᾱ(1 − ᾱ)D̂TXT 0

⎤

⎥
⎥
⎦ ,

�33 = diag{−P, −P, −I},
Â =

[
A 0
0 0

]

, H0 =
[
0
I

]

, K = [
Bf Af

]
,

Ĉ =
[
C 0
0 1

ᾱ
I

]

, R =
[
C 0
0 0

]

, H1 =
[
I
0

]

,

B̂1 =
[
B 0
0 0

]

, D̂ =
[
0 D
0 0

]

,

L̂ = [
L 0

]
, H2 = [

0 I
]
.

Furthermore, if (P, Q, X, Cf , ε1) is a feasible solution of
(25), then the filter matrices (Af , Bf , Cf ) could be obtained
by means of matrices X and Cf , where

[
Bf Af

] = K = (HT
0 PH0)

−1HT
0 X. (26)

Proof : Rewrite 2 as follows:

2 = ̂2 + VT
1 P−1V1 + VT

2 P−1V2 + VT
3 V3, (27)

where

V1 =[
PĀ PĀd P ᾱPB̄f PB̄1

]
,

V2 =[√
ᾱ(1−ᾱ)PĀ0 0 0

√
ᾱ(1−ᾱ)PB̄f

√
ᾱ(1−ᾱ)PB̄2

]
,

V3 =[
L̄ 0 0 0 0

]
,

̂2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

�11 0 0 0 δ2C̄T D̄
∗ ∑β

j=1Ā
T
djPĀdj−Q 0 0 0

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −γ 2I+δ2D̄T D̄

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

According to Lemma 1, (27) is equivalent to
⎡

⎢
⎢
⎣

̂2 VT
1 VT

2 VT
3

V1 −P 0 0
V2 0 −P 0
V3 0 0 −I

⎤

⎥
⎥
⎦ < 0. (28)

Moreover, rewrite the parameters in (8):

Ā = Â+ᾱH0KĈ, Ā0=H0KR, B̄f =H0KH1,
B̄1 = B̂1+ᾱH0KD̂, B̄2=H0KD̂, L̄= L̂−Cf H2, PH0K =X.

(29)



Li et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:162 Page 7 of 10

Thus, (28) is equivalent to (25). Then, from Lemma 2,
we obtain (9), and system (8) is exponentially stable. The
proof is complete.

Remark 4 The sufficient conditions guaranteeing the
event-based filter satisfy Q1 and Q2 are proposed in
Theorem 2. The design problem of desired filter is
addressed in Theorem 3. It is easy to find that all the
relevant information is contained in the LMI, such as sys-
tem parameters, nonlinearity, and the threshold of event-
triggered function.

5 Numerical simulations
The system (1) is as follows:

A=

⎡

⎢
⎢
⎣

0.3 −0.2 0

0 0.4 −0.1

−0.2 0.1 0.25

⎤

⎥
⎥
⎦ , A1=

⎡

⎢
⎢
⎣

0.1 0.05 0

0 0.15 0.1

0 −0.1 −0.01

⎤

⎥
⎥
⎦ , A2=

⎡

⎢
⎢
⎣

0.1 −0.05 0

0 0.15 0.05

0.05 −0.05 0.1

⎤

⎥
⎥
⎦ ,

Ad =

⎡

⎢
⎢
⎣

0.05 0 0

0.1 0.1 −0.1

0 0 −0.1

⎤

⎥
⎥
⎦ , Ad1 =

⎡

⎢
⎢
⎣

0.1 0.05 0

0.02 0.05 0

0 0 0.1

⎤

⎥
⎥
⎦ , Ad2 =

⎡

⎢
⎢
⎣

0.1 0 0

0 0.05 0.05

0 0 0

⎤

⎥
⎥
⎦ ,

C =
⎡

⎣
0.3 −0.2 0.1

0 0.35 0.2

⎤

⎦ , B =

⎡

⎢
⎢
⎣

0.2

0.15

0.4

⎤

⎥
⎥
⎦ , D =

⎡

⎣
0.3

0.1

⎤

⎦ , L =
[

0.5 0.2 0.3
]
.

f (k, x(k)) and disturbance w(k)andv(k) are chosen as

f (k, x(k)) =

⎡

⎢
⎢
⎣

(0.1x1)
1+2x23

0.1 sin (x2)√

x21+2
0.2x3

⎤

⎥
⎥
⎦ ,

w(k) = [ 5
k+14 ∗cos(k)] , v(k)=[

exp(−0.05k) sin (k)
]
.

where xi(i = 1, 2, 3) denotes the ith element of the system
state x(k). Then, the constraint (2) can be met with

G(k) =
⎡

⎣
0.1 0 0
0 0.1 0
0 0 0.2

⎤

⎦ , θ = 1.

The initial value of state is x(0) =[ 0.3 0.25 − 0.5]T
.The initial value of state estimation is x̂(0) =[ 0 0 0]T .
The probability of stochastic variable α(k) is taken as ᾱ =
0.9. Delay is dM = 3, dm = 1. Choose the event threshold
δ = 0.3. The disturbance attenuation level is γ = 0.95.
The filter parameters can be obtained as follows:

Af =
⎡

⎢
⎣

−0.0846 0.0548 0.0444
0.0025 −0.1229 0.1027
0.0952 −0.0107 −0.0516

⎤

⎥
⎦ ,Bf =

⎡

⎢
⎣

0.4851 0.1995
0.2279 0.4215
0.2858 0.3967

⎤

⎥
⎦ ,

Cf =
[
0.2714 0.1160 0.1708

]
.

Figures 1, 2, 3, 4, 5, 6, and 7 show the simulation results.
When setting the threshold δ = 0.3, the results are
described in Figs. 1, 2, 3, and 4. Figure 1 depicts the state

Fig. 1 State x3(k) and its estimate (δ = 0.3)

variables x3(k) and its estimate x̂3(k), and Fig. 2 plots the
output z(k) and its estimation ẑ(k), whereas the estima-
tion error z(k) − ẑ(k) is shown in Fig. 3. Event-triggered
times are plotted in Fig. 4, whereas one represents the
times that event-triggered condition is satisfied and sen-
sor signal is transmitted and zero represents times that
event-triggered condition is not satisfied. It follows from
Fig. 4 that the event-triggered communication mecha-
nism can reduce the transmission frequency of the mea-
surement output, which is energy efficient. According to
Figs. 1, 2, and 3, it is easy to find that the proposed
filter can estimate the state of the system well, and the
energy-efficient filtering strategy has satisfying filtering

Fig. 2 Output z(k) and its estimate (δ = 0.3)



Li et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:162 Page 8 of 10

Fig. 3 Estimation error z(k) − ẑ(k) (δ = 0.3)

performance. Next, we will compare the event-triggered
mechanism with the time-triggered mechanism. When
setting the threshold δ = 0, e.g., the time-triggered mech-
anism, the corresponding results are depicted in Figs. 5, 6,
and 7. Corresponding to Figs. 1, 2, and 3, Fig. 5 describes
x3(k) and its estimate x̂3(k), and Fig. 6 plots z(k) and
its estimation ẑ(k), whereas the estimation error z(k) −
ẑ(k) is shown in Fig. 7. Compared with the simulation
results between δ = 0 and δ = 0.3, we conclude that,
with suitable threshold δ, the event-triggered mechanism
could reduce the network burden while ensuring certain
system performance. The results confirm the proposed fil-
ter design method which could well achieve the desired
filtering requirement.

Fig. 4 The event-triggered times (δ = 0.3)

Fig. 5 State x3(k) and its estimate (δ = 0)

6 Conclusions
In this paper, based on the event-triggeredmechanism, we
have designed the energy efficiency H∞ filter for a class
of industrial sensor network system with time-varying
delay, packet dropouts, and multiplicative noises. The
event-triggered communication mechanism is adopted
to improve energy efficiency. It could not only reduce
the transmission frequency of the measurement output,
but also guarantee the prescribed filtering performance.
The time-varying delay is considered with event-triggered
strategy, which has seldom been studied. Sufficient con-
ditions are found through stochastic analysis technique.

Fig. 6 Output z(k) and its estimate (δ = 0)
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Fig. 7 Estimation error z(k) − ẑ(k) (δ = 0)

The filter parameters could be obtained by solving the cer-
tain LMI. Finally, the simulation confirms the proposed
method.
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