
Bregar et al. EURASIP Journal onWireless Communications and
Networking        (2019) 2019:173 
https://doi.org/10.1186/s13638-019-1489-y

RESEARCH Open Access

Evaluation of range-based indoor
tracking algorithms by merging simulation
and measurements
Klemen Bregar1,2* , Roman Novak1,2 and Mihael Mohorčič1,2

Abstract

Precise location information will play an important role in 5G networks, their applications and services, especially in
indoor environments. Ultra-wideband (UWB) technology offers exceptional temporal resolution enabling the
emergence of high accuracy ranging-based indoor localization systems. In order to reduce time to market, developers
need a reliable, fast and efficient method to evaluate localization and tracking system designs in the selected
high-dimensional parameter space. Purely measurement-based performance evaluation of such systems is costly and
cumbersome, so we propose the use of a radio frequency (RF) ray-tracing simulator augmented with a noise model
based on measurements with localization equipment in real environment. We demonstrate the proposed approach
by evaluating the UWB-based two-way-ranging (TWR) localization with the least squares (LS) and with the extended
Kalman filter (EKF) tracking algorithms. We analyze the degradation of tracking performance due to time spreading of
range measurements. Moreover, on a set of fixed locations we also show that the proposed approach is sufficiently
representative for the pure measurement-based evaluation. The results obtained in a reference office environment
show that EKF algorithm is twice as efficient and more resilient to the effects of time spreading of range
measurements as LS algorithm.
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1 Introduction
Precise tracking and localization are gaining the impor-
tance in modern applications and services and are among
the key enablers of the 5G networks. They are addressing
the challenges of application domains as well as sup-
porting the optimization of network performance and
improved utilization of radio resources in increasingly
densified environments [1]. In outdoor scenarios, global
navigation satellite systems (GNSS) augmented by terres-
trial cellular and wireless network localization techniques
provide sufficient precision and accuracy for most of the
applications in 5G networks, they are considered mature
and well-tested technology, and are readily available in
most of the mobile devices available in the market already
today.
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Many 5G application domains, however, depend on pre-
cise location information also in the indoor environment,
such as tracking the inventory, goods and people, navigat-
ing robots, and autonomous driving vehicles inside manu-
facturing facilities, optimizing wireless network resources
according to users’ demand.
In indoor environments, satellite signals are gener-

ally too weak or degraded to be of any use. Different
approaches with special infrastructure are thus used to
serve the needs of indoor localization systems, their
choice largely depending on the required localization
accuracy, equipment availability, and deployment com-
plexity. This localization infrastructure can be a part of the
existing communication infrastructure (e.g., WiFi access
points) or needs to be installed and maintained separately
(e.g., Bluetooth beacons, NFC tags).
One approach for indoor localization and tracking sys-

tems is based on signal propagation models. For good
performance, these systems mostly rely on extensive mea-
surements and calibration procedures [2, 3]. Another
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promising approach for a precise and accurate indoor
localization is based on the use of ultra-wideband (UWB)
pulse radios developed especially for ranging applica-
tions with time-of-flight (ToF) measurement capability.
These do not require any calibration for a very accu-
rate localization in line-of-sight (LoS) signal propagation
conditions [4].
Regardless of the approach, developing reliable and

accurate localization and tracking algorithms and espe-
cially their performance evaluation require extensive and
costly deployment of localization equipment and time-
consuming measurement procedures. Moreover, it is dif-
ficult to precisely track the moving object and also track
the communication between the nodes while studying
the impacts of all parameters (e.g., ranging time step,
ranging sequence, movement speed) on a final tracking
and localization performance. To this end, developers of
localization and tracking algorithms need a suitable sim-
ulation approach that is considering most of the aspects
from the real operating environment. It should enable fast
performance evaluation and investigation of the sensitiv-
ity of tracking algorithms to various parameters such as
speed of movement, ranging update period, localization
resolution, computation time.
Radio frequency (RF) ray tracing is a particularly

valuable technique in the development of wireless tech-
nologies in indoor environments. It is based on a phys-
ical channel model that allows far superior prediction
of electromagnetic propagation effects than any other
stochastic modeling, thus being able to accurately simu-
late real operating environment from the signal propaga-
tion perspective. Accuracy wise, it can only be surpassed
by approximations of spatial and temporal derivatives
appearing in Maxwell’s equations, but those are compu-
tationally infeasible if the wavelength is exceedingly small
compared to the size of the modeled environment.
In this article, we propose a simulation approach

for evaluation of range-based tracking algorithms. The
approach exploits the benefits of a controlled environ-
ment of an RF ray-tracing simulator augmented with real
environment measurements. This makes the approach
able to investigate the sensitivity on the movement, rang-
ing protocol, and geometry specifics, thus ensuring sim-
ulator representability. We demonstrate the proposed
approach in a reference office environment, modeled
and imported in a RF ray-tracing simulation software
together with all materials but without furniture. The
measurement step in the selected environment intro-
duces the noise which we model by the measurements
obtained from actual ranging equipment, complement-
ing the noise-free simulation environment to resemble the
real-tracking system behavior. With the proposed sim-
ulation approach, we then evaluate the performance of
the simple least squares (LS) and the extended Kalman

filter-based (EKF) tracking algorithms with the constant
velocity walking model on simulated trace-based ranging
data. Such simulation approach ensures repeatability of
results, non-obtrusive testing and validation of the sys-
tem for people working in the target environment, and fast
execution of multiple iterations in searching through the
high-dimensional parameter space for optimal parameters
setting.
The main contributions of this paper are

• A complete simulation-based approach exploiting
realistic measurement-based noise model and models
of a reference operating environment, movement of
traced terminal, and ranging protocol.

• Evaluation of two reference localization algorithms
for different parameter settings focusing on the
impact of ranging noise, ranging update period, and
walking path resolution.

The rest of this paper is organized as follows. Related
work is presented in Section 2. Section 3 describes the
proposed simulation-based approach and models used
for evaluation of localization and tracking algorithms. In
Section 4, the selected reference tracking algorithms are
described. In Section 5, the performance evaluation of the
reference tracking algorithms is given according to differ-
ent parameter settings. Finally, Section 6 gives conclusions
and outlines the future work.

2 Related work
The main lines of previous research work related to this
study are concerned with indoor localization and RF ray-
tracing simulation algorithms. Both lines have been exten-
sively investigated in the research community, so we only
provide very coarse overview of the related literature with
the aim to position the proposed simulation approach for
evaluation of ranging-based tracking algorithms.

2.1 Indoor localization
Indoor localization approaches can be classified accord-
ing to the information they are based on to received
signal strength indicator (RSSI)-based methods, angle-of-
arrival (AoA)-basedmethods, and time-based localization
methods [3].
The accuracy of RSSI-based localization methods is

highly dependent on channel variability due to shadowing,
multipath propagation, reflections, channel fading, and so
forth [5, 6], and they require extensive environment char-
acterization and periodical (re)calibration. AoA-based
localizationmethods rely on receiving antenna array capa-
bility to capture the direction of propagation of the radio
wave, which is not practical for resource-constrained
wireless devices in indoor environment with emphasized
multipath effects, or even feasible if great angle resolution
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and consequently great localization accuracy are desired
[7]. In such environments, time-based localization meth-
ods measuring the signal propagation time between a
transmitter and a receiver provide a reasonable trade-
off between the accuracy and implementation complexity.
The baseline time-based localization and tracking algo-
rithms rely on a precise clock synchronization between
a transmitter and a receiver and calculate the range
from time-of-arrival (ToA) or time-difference-of-arrival
(TDoA) [3], so we refer to them also as range-based
methods. For more general systems, where no time syn-
chronization between nodes is available or feasible such
as assumed in this article, dual-time-of-flight (DToF) or
two-way-ranging (TWR) algorithms can be used [8]. This
approach requires two-way communication between a tag
(i.e., node with the unknown location) and all anchors
(i.e., nodes with known locations). Amessage is exchanged
at least two times between a tag and each anchor. The
current local time stamp is pinned to a message every
time it is received or transmitted as can be seen in Fig. 1.
After a full TWR cycle between a tag-anchor pair is
completed, four timestamps are accumulated (Tpoll_TX,
Tpoll_RX, Tresp_TX, and Tresp_RX) and local clock differ-
ences can be eliminated according to (1).

T̂TWR = Tround − Treply

2
, where

Tround = Tresp_RX − Tpoll_TX

Treply = Tresp_TX − Tpoll_RX

(1)

This approach removes the need for time synchroniza-
tion among the nodes, but relies on a suitable ranging
protocol for contention resolution in a system with many
tracked nodes and anchors. In case of tracking a moving
object, the time required for collecting multiple times-
tamps in turn to each anchor node introduces errors to
the final estimated location since each anchor samples the
location at different point in time and space.

2.2 RF ray-tracing
RF ray-tracing technique, adopted from the com-
puter graphics domain, is increasingly used for radio
environment characterization particularly in indoor envi-
ronments. Many RF ray-tracing algorithms have been
proposed since first ideas by Ikegami et al. [10] in 1991.
Advanced RF ray-tracing algorithms take into account

the majority of paths the real wave-front would tra-
verse and model actual physical phenomena responsible
for propagation of electromagnetic waves, in particular
reflection and refraction. From the ray handling perspec-
tive, most of them fall into three computationally distinct
groups. The first, often seen as the brute force approach
and used in our simulation tool, effectively traces a large
number of rays from the transmitting source in all direc-
tions into the scene. The concept of a reception sphere is
needed to detect rays passing by the receivers [11]. The
algorithms from this group refer to the principle as ray
launching [12], pincushion method [13], or ray shooting
and bouncing (SBR) [14], which is also a designation used
in this article. The second approach aggregates traced rays
as ray tubes [15] or beams [16] in order to reduce com-
putational complexity. Finally, the third RF ray-tracing
approach [17] goes the furthest by using entire scene
surfaces as ray aggregation units.

3 Methods
In this section, we present the entire setup of the RF
ray-tracing-based simulation approach for the evaluation
of tracking algorithms including the models of the ref-
erence environment and movement, and the calibration
measurement setup.

3.1 Reference environment model
As a reference environment for simulation and measure-
ments, we selected an office environment which occupies
the entire top floor in an office building of dimensions
15.38 m×11.5 m. It consists of eight offices, two toilets, a

Fig. 1 Single-sided TWR ranging scheme where Tpoll_TX, Tpoll_RX, Tresp_TX and Tresp_RX represent four ranging timestamps that can be used for ToF
calculation [9]



Bregar et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:173 Page 4 of 11

hallway, and a staircase. The inner walls are made mostly
of drywall material with a few reinforced concrete pillars
supporting the roof.
The complete environment including the wall and ceil-

ing materials was modeled in a 3D modeling software and
imported into a custom RF ray-tracing simulation soft-
ware described in Section 3.2. The office environment
floor plan is depicted in Fig. 2.
Four anchor nodes with known locations are placed in

the environment and a walking path for position tracking
simulation is generated as described in Section 3.3. Each
point on a walking path has a unique set of ranging errors
for range measurements to anchor nodes because each
position in an environment has different signal propaga-
tion conditions. Ranging errors are mostly proportional
to the number of walls and their thicknesses the ray
propagates through along the signal path.

3.2 RF ray-tracing simulator
The proposed simulation approach can use any RF ray-
tracing tool, but to avoid the potential influence or bias
to results of any hidden details of the implementation
and to have full control over all simulation parameters
at the source code level we decided to use our own
radio frequency ray-tracing simulator1. It was developed
and validated in the course of several applied and indus-
trial projects and is based on the brute force shooting
and bouncing rays (SBR) for simulation of ToF measure-
ments. The simulator has already been proven in sev-
eral projects with the telecommunication industry. It is a
highly optimized GPU-based ray tracer using the NVIDIA
OptiX ray-tracing engine, which is adapted to the radio

frequency simulations. Scene objects are kept in a bound-
ing volume hierarchy entirely on a GPU, with rays gen-
erated and traced through the scene in parallel threads.
It employs recursive icosahedral grids for ray launching
and wave-front double counting avoidance in the form of
highly configurable Bloom filters [18].
Calculated channel impulse responses (CIRs) were used

to extract expected time-of-flight measurements. CIR is
typically modeled as a sum of time-varying number of
multipath components in a tap-delayed linear filter and
may be formulated as

h(τ ) =
L∑

i=1
αiδ(τ − τi), (2)

where each of L taps represents a multipath component of
polarity sign-extended (±) real amplitude α, multiplied by
a time delayed Dirac delta function. Because only the ear-
liest, min τi, component was needed for ToF simulation,
the depth of simulation, i.e., the number of interactions
each ray is allowed to encounter, was selected based on
the maximum number of wall faces to which the direct
ray can encounter during traveling on a path from a tag to
the anchor. We graphically analyzed the simulation scene
and counted the eight faces that the ray can encounter on
the longest possible path between a tag and an anchor.
We added the three ray encounters as a heuristic increase
to the simulation depth limitation to allow more rays to
reach the anchor also with some reflections on a path.
The resulting RF ray-tracing depth limit was set to 11.
Simulated interactions can be reflections and/or refrac-
tions. Note that indoor geometry has low number of

Fig. 2 Ground plan of a reference 15.38 m× 11.5 m office environment with 21.73 m walking path used in simulations and measurements
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potential diffraction edges. Further, tracing rays in agree-
ment with the geometrical theory of diffraction [19] can
introduce a performance penalty of several orders of mag-
nitude. Therefore, the diffraction phenomenon was not
accounted for in our study. Allowing up to 120 dB sig-
nal loss per multipath component and initially launching
41.943.042 rays, a single simulation typically took around
5 min to complete.

3.3 Walking path generation
For a walking path generation used in simulations and as
a ground truth for measurements in real environment, we
developed a simple application with a graphical user inter-
face (GUI). First the scaled map of real environment is
loaded into the GUI and several path anchoring points are
put on the map by clicking on desired positions on a map.
These points represent the successive locations on a final
walking path. The points are connected into a high reso-
lution walking path using cubic splines and sampled to a
walking path with a resolution of 1 cm. The final walking
path with 1 cm resolution consists of 2173 points with full
length of 21.72 m. Figure 2 represents generated walking
path with positions of four localization anchor nodes. The
walking path is further sampled to lower path resolutions
(2, 4, 6, 8, 10, and 12 cm) later used to analyze the impact
of a ranging time slot length on a tracking performance.

3.4 Impact of movement on the localization accuracy
Several ranging protocols can be used in real TWR local-
ization systems. The simplest to implement are ALOHA
[20] random access protocols, where a localization tag
randomly sends a blinkmessage containing tag’s ID and an
intent for ranging procedure and waits for a short period
for any anchor’s response. This scheme is quite ineffective
with slow update times when many tag devices need rang-
ing with many anchor nodes. To improve the update rate,
a round-robin scheduling scheme can be implemented,
where each anchor node has its dedicated time slot to lis-
ten for blink messages that represent the start of ranging
procedure.
We implemented a simple round-robin ranging pro-

tocol, where a tag communicates with four anchors in
a cyclically repeating pattern (A0, A1, A2, A3 . . . ) and
fixed time delay between two consecutive ranging events.
By changing the timing delays, the influence of different
sampling frequencies of walking path on a tracking perfor-
mance can be evaluated. For the evaluation purposes, we
selected walking path sampling at 2, 4, 6, 8, 10, and 12 cm.
According to [21], average human walking speed can be
estimated as 1.4ms−1. Taking into account the assumed
walking speed the time between path samples equals to
14.28ms, 28.56 ms, 42.84 ms, 57.12 ms, 71.4 ms, and
85.68 ms respectively. Each location estimation is made
based on four consecutive range measurements at four

consecutive points on a walking path, thus introducing
additional estimation error due to movement of a tag.

3.5 Measurement setup
The DW1000 [22] UWB pulse radios from DecaWave
were used for ranging error measurements and valida-
tion of simulations. Four anchors were placed at identical
places in the reference environment as in simulations,
and a tag was used for measurements on a predefined
walking path.
For the inclusion in the simulation environment, mea-

surement noise was obtained for all four anchor nodes
from the calibration point positioned close to the cen-
ter of the reference environment. For each link between
a tag and one of the anchors 10,000 ranges were col-
lected to sufficiently describe the probability distribu-
tion function (PDF) of measured ranges representing
the measurement noise of the selected tag-anchor pair.
Four histograms were created for corresponding tag-
anchor pairs and PDF functions were fitted to the
measurement distributions using Levenberg-Marquardt
algorithm.
The PDFs and histograms for the individual tag-anchor

pairs are depicted in Fig. 3. The links between the cal-
ibration point and anchors show Gaussian characteris-
tics with standard deviation σ of measurement noise
equal to 1.17 cm, 1.89 cm, 2.3 cm, and 2.04 cm
for A0, A1, A2, and A3 respectively. Standard devi-
ations of measurement noise include effects of inter-
nal clock drifts used for time stamping the messages,
imperfections of the first front detection in CIR and
limitations in precision imposed by the UWB tech-
nology temporal resolution defined by the 499.2 MHz
bandwidth.
To limit the measurement time and efforts, only 18

points on a walking path were selected. On all 18 point
ranges to all 4 anchor nodes were collected. The resulting
ranging errors are presented as dots in Fig. 4 alongside the
ranging errors obtained by the simulations.
The resulting visualization shows that measurements

are correlated with simulations in places where simulated
errors are also high. In other cases measured ranging
errors typically exceed the ranging errors produced by
the simulation. The difference in ranging errors comes
from the difference in the dynamic range between the
simulator and the measurement hardware. The measured
RSSI values for all measurements made in the reference
indoor environment are depicted in Fig. 5. The measure-
ments cover all cases from near-field NLoS cases to cases
where the received signal strength is at the measure-
ment equipment sensitivity threshold. It can be observed
that the dynamic range of measurement equipment is
around 50 dB whereas the simulated maximum path loss
per multipath component is 120 dB. In the case of real
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Fig. 3 Graphical representation of measurement probability distributions for all four anchor nodes (A0 to A3). The origin of track position is the
closest point to A0

environment measurements, the shortest path signal can
already be too weak to reach the receiver’s antenna and by
that only the signal from longer less obstructed paths can
be detected at the receiver. On the other hand, the sim-
ulated loss limit of 120 dB also allowed the detection of
such strongly attenuated shorter signal paths.

4 Reference tracking algorithms
In order to demonstrate the proposed simulation
approach, two reference tracking algorithms were selected
to evaluate the impact of round-robin ranging scheme
time slot sizes on a tracking performance. A simple least
squares tracking algorithm is presented in Section 4.1 and

Fig. 4 Graphical representation of ranging errors for simulated trajectory (lines) and measured trajectory (dots)
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Fig. 5 Graphical representation of measured RSSI values at different anchor distances in the reference indoor environment

a more complex tracking algorithm based on extended
Kalman filter is presented in Section 4.2.

4.1 Least squares localization algorithm
The simplest approach for location estimation is based on
the least squares estimator. A Euclidean distance between
an UWB anchor and UWB tag is defined as

di =
√

(xi − x)2 + (yi − y)2, (3)

where di is the measured range between the ith anchor
(xi, yi) and the tag (x, y) with a yet-unknown location.
The system can be rewritten in a matrix form

H =

⎡

⎢⎢⎢⎣

− 2x1 − 2y1 1
− 2x2 − 2y2 1

...
...

...
− 2xN − 2yN 1

⎤

⎥⎥⎥⎦ (4)

x =

⎡

⎢⎢⎢⎢⎣

d̂21 − x21 − y21
d̂22 − x22 − y22

...
d̂2N − x2N − y2N

⎤

⎥⎥⎥⎥⎦
, (5)

which represents a predefined system of linear equations
in a normal form. The location can be estimated using the
LS estimator in a normal form

θ̂ = (HTH)−1HTx. (6)

4.2 Extended Kalman filter-based localization algorithm
The Kalman filter is the optimal filter minimizing the dif-
ference between the true and the estimated states of the

system [23]. The procedure of the Kalman filter estima-
tion process consists of a prediction step and an update
step. During the prediction step (7), a prediction of a new
system state x̂−

k is calculated based on a mathematical
kinematic model of a system in a form of a transition func-
tion �k , the system’s previous state x̂+

k−1 and an input
uk−1. The covariance of the state vector propagation P−

k
is calculated using a transition function, the previous state
covariance P+

k−1, and the process noise covariance matrix
Qk−1. The superscript (−) designates the state after pre-
diction and superscript (+) designates the state after the
update step.

x̂−
k = �k · x̂+

k−1 + �k · uk−1

P−
k = �k · P+

k−1 · �T
k + Qk−1

(7)

In the update step 8, the Kalman gain K k is first calcu-
lated using the predicted state covariance P−

k , the mea-
surement function Hk , and the measurement covariance
matrix Rk . The Kalman gain controls the magnitude of
filter’s use of predicted state estimate x̂−

k over the mea-
surement vector zk . When the measurement covariance
magnitude Rk is small, measurements are accurate and
filter weighs them more than the less reliable predicted
system state. The covariance update P+

k and the system
state update after measurement x̂+

k are then calculated as
shown in (8).

K k = P−
k · HT

k · [Hk · P−
k · HT

k + Rk]−1

P+
k = [I − K k · Hk] · P−

k

x̂+
k = x̂−

k + K k · (zk − Hk · x̂−
k )

(8)
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The underlying kinematic model defines four system
state parameters (x position x, y position y, velocity in
x direction ẋ and velocity in y direction ẏ). The Kalman
filter implementation requires the linear system model
and linear measurement model [23]. The continuous
velocity linear dynamic model (9) is used as a kine-
matic model but the measurement model is non-linear.
When any model of a system is non-linear, the extended
Kalman filter (EKF) approach needs to be employed.
The idea of EKF is to linearize the non-linear equations
of the dynamic model and the measurement model
around the current estimation point and subsequently
use the linear Kalman filter algorithm on the linearized
models.

f k(xk−1,uk−1) =

⎡

⎢⎢⎣

x + �t · ẋ
y + �t · ẏ

ẋ
ẏ

⎤

⎥⎥⎦ (9)

The resulting state transition function of a dynamic model
(9) is depicted in (10), where �t is a time between two
consecutive points on a walking path or a corresponding
scheduling time slot length.

�k =

⎡

⎢⎢⎣

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (10)

To model the process noise, we assume that the veloc-
ities (ẋ, ẏ) are constant. But the movement of a person
is not constant because a person is not moving along a
straight line. We can assume the velocity change by a con-
tinuous time zero-mean white noise w(t). Because the
implementation of the filter is discrete, we need a projec-
tion of the continuous noise to the instant t by our process
model �(t). We define the continuous noise Qc with a
matrix (11)

Qc =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦φS, (11)

where φS is the spectral density of the white noise.
With the integration of the term �Qc�

T on the [ 0,�t]
time interval, we get the process noise matrix (12).

Q =

⎡

⎢⎢⎢⎣

�t3
3 0 �t2

2 0
0 �t3

3 0 �t2
2

�t2
2 0 �t 0
0 �t2

2 0 �t

⎤

⎥⎥⎥⎦ �s (12)

The measurement model is as in the LS localization
algorithm defined by (3) representing the Euclidean dis-
tance between the tracked object and the anchor device.

The measurement model is non-linear, and we need to
linearize it by evaluating its partial derivative at the cur-
rent process state xk . The linearized measurement matrix
is represented in (13)

H =
[

(x−xi)√
(x−xi)2+(y−yi)2)

(y−yi)√
((x−xi)2+(y−yi)2)

0 0
]

(13)

The measurement noise matrix R in our case is a matrix
with dimensions 1 × 4 and is assumed to be the white
Gaussian process. Four measured ranges are used dur-
ing the update step of the EKF filter. If the number of
available anchors increases, the dimensions of the mea-
surement noise matrix R and the measurement matrix H
change.
We assume that the noise for each anchor is normally

distributed around the mean which enables the use of
different measurement noise levels for different anchors.
According to the localization measurements in the real
environment, the worst case scenario (Fig. 3) measure-
ment noise standard deviation σ = 2.30 cm was used in
the subsequent performance evaluation, which gives the
variance σ 2 = 5.29 cm2.

5 Results and discussion
In order to demonstrate the proposed simulation
approach, we evaluated the performance of the two
selected reference tracking algorithms, focusing on the
impact of measurement noise and the duration of round-
robin ranging procedure time slot.
Figure 6 shows the actual performance of the LS and

EKF tracking algorithms in comparison to the actual
walking path. We can visually analyze the performance
in different situations and see the effects of different
parameter settings on the actual tracking performance,
which is useful during the localization and tracking system
development.
The LS tracking algorithm gives very poor results

because it lacks the inclusion of any kind of system infor-
mation in the process of localization, where input infor-
mation (measured or simulated ranges) directly affects
the result. The EKF algorithm, in contrast, uses the pre-
defined kinematic model and measurement noise model
for actual output filtering. The kinematic model accord-
ing to the defined or expected system dynamics prevents
larger output fluctuations in the presence of unexpected
input signal disturbances. In other words, if the filter
expects that according to the kinematic model, the speed
of the tracked object in single step cannot change for
more than 0.1 ms−1, the output will not change much
despite the current input suggesting the sudden change
of 10 ms−1.
To evaluate the influence of the input information on

the performance of tracking algorithms, we defined the
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Fig. 6 The performance of LS and EKF tracking algorithms in comparison to the actual (ground truth) walking trajectory

following four evaluation cases with different combina-
tions of ground truth information (i.e., actual Euclidean
distance), simulated ranging and the presence of measure-
ment noise:

• The actual Euclidean distance between an anchor and
a tag.

• The actual Euclidean distance with added
measurement noise.

• The simulated distance between an anchor and a tag.
• The simulated distance with added measurement

noise.

In Fig. 7, the performance for all 8 combinations
between the 2 tracking algorithms and the 4 input data
options are depicted. The simulations were performed
for 6 different time-slot durations: 14.28 ms, 28.56 ms,
42.84 ms, 57.12 ms, 71.4 ms, and 85.68 ms. The results
indicate that the measurement noise (i.e., the measure-
ment noise of sensors excluding the ranging errors caused
by NLoS and multipath propagation) has no signifi-
cant influence on the tracking performance. With the
increasing time-slot size, we get the increased tracking
error. The actual Euclidean distance is free of multi-
path error, which is a major error contribution in the
RF ranging. This can be seen in the cases using sim-
ulated ranges (i.e., LS sim and EKF sim in Table 1) as
80 cm worse mean error for the EKF and up to twice
as much for the LS algorithm compared to tracking with
the Euclidean distances (i.e., LS true and EKF true in
Table 1).

We can also observe the performance of tracking
errors for different aspects of the observed error data.
With respect to the maximum error, the EKF algo-
rithm performs even better. The maximum error shown
in Table 1 is up to 4.5 times lower in the EKF
experiments than the corresponding error in the LS
experiments. All performance results in terms of max-
imum and mean tracking errors are represented in
Table 1.

6 Conclusions
For the developers of tracking systems the measure-
ment of all expected trajectories in real environments
is too complex and time consuming to be done in
full. As an alternative, we propose an RF ray-tracing-
based simulation approach for performance evaluation
of tracking algorithms using very limited number of
localization measurements for the calibration and char-
acterization of the measurement noise model. Although
RF ray-tracing simulations are also time consum-
ing, the required human involvement is significantly
lower compared to the measurements. Moreover, spe-
cialized measurement equipment is not needed, and
the chance for the introduction of human errors is
minimized.
We demonstrated with the case of LS and EKF track-

ing algorithms that the proposed combination of sim-
ulations and measurements can be of great value in
the design of range-based tracking algorithms. The
simulation of round-robin scheduling for ToF ranging
showed negative correlation of the ranging time-slot
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Fig. 7 The influence of the ranging slot length on the size of mean tracking errors

durations on the final tracking outcome. The errors intro-
duced by the round-robin scheduling come from the
fact that each position of a moving tag in a dynamic
environment is estimated from ranging samples mea-
sured at different points in time and space. There-
fore, the round-robin scheduled TWR tracking systems
are appropriate for mostly stationary or slowly moving
objects, or in applications with looser tracking accuracy
and precision requirements.
As part of future work, a comparison between

the round-robin and some more sophisticated ranging

scheduling protocols is planned to find an efficient
ranging protocol for tracking in wireless sensor net-
works, especially in dense deployments withmany devices
present.
Other indoor localization-related problems can also be

more efficiently addressed by calibrated simulations. A
very important aspect of indoor localization and tracking
system deployment is optimization of anchor positions
and their number in a target environment. Using aug-
mented simulations, the optimal and cost-efficient anchor
deployment can be planed in advance.

Table 1 Mean and maximum values of tracking errors obtained by the LS and EKF algorithms with simulations and measurements

Ranging slot size

14.28 ms 28.56 ms 42.84 ms 57.12 ms 71.4 ms 85.68 ms

Mean tracking error [cm] LS true 8.7 11.1 13.9 18.3 21.6 25.4

LS sim 171.6 172.8 169.1 153.8 176.2 178.0

EKF true 8.1 12.6 15.7 20.3 24.0 26.7

EKF sim 85.3 91.2 88.3 85.1 95.5 98.7

Max tracking error [cm] LS true 39.9 39.4 44.6 52.5 59.4 76.7

LS sim 1164.6 942.1 964.5 810.0 863.1 896

EKF true 28.7 37.1 43.4 52.8 55.4 57.9

EKF sim 259.7 269.4 279.9 270.1 305.0 300.2
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Endnote
1 Ray-tracing simulator is publicly available at http://e6.

ijs.si/tools as a part of project L2-7664 which co-funded
this study.
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