
Baidas et al. EURASIP Journal onWireless Communications and
Networking        (2019) 2019:220 
https://doi.org/10.1186/s13638-019-1528-8

RESEARCH Open Access

User association and channel
assignment in downlink multi-cell NOMA
networks: A matching-theoretic approach
Mohammed W. Baidas1* , Zainab Bahbahani2 and Emad Alsusa3

Abstract

This paper studies the problem of stable user association and channel assignment in downlink multi-cell
non-orthogonal multiple-access (NOMA) networks. To be specific, the goal is to assign network users to the channels
at each base station, while accounting for inter-user interference and maintaining quality of service (QoS) per user. To
that end, a low-complexity iterative solution procedure is devised to obtain the optimal power allocation for
proportional fairness signal-to-interference-plus-noise ratio (SINR)-based maximization, which is then utilized to
determine the preferences of network users over the channels available at each base station and the preferences of
base stations over the network users. In turn, a many-to-one matching-theoretic model based on the student-project
allocation problem is applied. Particularly, two polynomial-time complexity stable matching algorithms are proposed
to associate users with base stations and perform channel assignment, such that no user or base station would
deviate and change its association or channel assignment unilaterally. To validate the efficacy of the proposed
solution procedure and stable matching algorithms, extensive simulation results are presented to compare them to a
centralized joint user association, channel assignment, and power allocation (C-J-UA-CA-PA) scheme. It is
demonstrated that the proposed algorithms efficiently associate users with base stations and assign them to channels
as well as efficiently yielding comparable SINR per user to the C-J-UA-CA-PA scheme, while maximizing proportional
fairness and satisfying QoS constraints.

Keywords: Channel assignment, Matching, Multi-cell, Non-orthogonal multiple access, Proportional fairness, User
association

1 Introduction
Non-orthogonal multiple access (NOMA) has recently
attracted so much attention to meet the ever-increasing
demand for high spectral efficiency, improved fairness,
massive connectivity, low transmission latency, and high
throughput in future 5G cellular networks [1]. Specifically,
the principle of NOMA is based on multiplexing users
in the power domain over resource blocks by enforcing
power imbalance between the transmitted user signals,
which allows successive interference cancelation (SIC)
to effectively eliminate inter-user interference, and yield-
ing considerable performance gains over conventional
orthogonal multiple access (OMA) schemes [2]. To date,
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the majority of the published literature on resource allo-
cation for NOMA systems has considered on single-cell
networks. For example, the problem of sum-throughput
maximizing power allocation based on α−fairness in
single-cell downlink NOMA networks is studied in [3].
Particularly, the cases of statistical and perfect channel
state information at the transmitter (CSIT) are consid-
ered. For the former case, fixed target data rates are
pre-defined for all users, while for the latter case, users’
rates are adapted according to the instantaneous CSI. In
[4], the authors propose user-pairing schemes for capacity
maximization in single-cell downlink NOMA networks.
To be specific, two user-pairing schemes have been pro-
posed so as to provide capacity gains to almost all users
by grouping them in pairs. Additionally, the exact sum
capacity of a two-user pair has been analytically derived,
while taking into account perfect and imperfect SIC. A
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dynamic power allocation scheme—subject to quality-of-
service requirements—for downlink and uplink single-cell
NOMA networks with two users has been considered
in [5]. Moreover, the exact expressions for the outage
probability and average rate resulting from the proposed
scheme are obtained. The problem of optimal power allo-
cation with given channel assignment under different
performance criteria for single-cell downlink NOMA net-
works is studied in [6]. Furthermore, the authors proposed
a low-complexity scheme for joint channel assignment
and power allocation via a dynamic/iterative matching
algorithm. Although single-cell NOMA networks have
received significant attention in the past few years, much
less attention has been given to multi-cell NOMA net-
works. Therefore, it is of paramount importance to study
NOMA in the more realistic multi-cell scenario, which
is much more challenging due to the complex interplay
between multiple cells [7].
Recently, a few research works have focused on resource

allocation in multi-cell NOMA networks. For example,
in [8], distributed power control for downlink multi-
cell NOMA networks is studied. Particularly, the authors
study the problem of total transmit power minimiza-
tion of all base stations, subject to minimum data rate
requirements of network users. Moreover, a distributed
algorithm is devised, which has been shown to converge
to the optimal solution, if one exists. The problems of
sum-power minimization (SPM) and sum-rate maximiza-
tion (SRM) for multi-cell NOMA networks are studied in
[9]. To be specific, the SPM is transformed into a linear
programming problem, and closed-form solutions to the
power allocation of each user are determined. Contrar-
ily, the SRM problem is solved by decomposing it into a
power allocation problem for users in a single cell, and a
power control problem over multiple cells. After obtain-
ing the optimal sum rate in a single cell, a distributed
algorithm is devised to solve the original sum-rate max-
imization. In [10], the authors consider the problem
of jointly optimizing power allocation, user-pair selec-
tion, and time-frequency resource allocation in multi-cell
NOMA networks. In particular, an efficient algorithm for
obtaining the equilibrium for resource allocation—while
taking into account inter-cell interference—is proposed,
which has also been proven to be the global optimum
resource allocation solution. In [11], the authors outline
a general framework for coordinated multipoint (CoMP)
transmission in downlink multi-cell NOMA systems with
distributed power allocation at each cell. Specifically,
the applicability and necessary conditions for different
CoMP schemes and network scenarios are investigated,
and simulation results are presented to quantify the spec-
tral efficiency gains of CoMP-NOMA over CoMP-OMA.
Efficient power allocation for sum network capacity
maximization in downlink multi-cell multi-user NOMA

networks is considered in [12]. Particularly, a local opti-
mal solution iterative scheme is proposed, which has been
shown to outperform non-optimal NOMA and OMA
schemes. In [13], the performance of NOMA in multi-cell
downlink millimeter-wave (mmWave) networks is inves-
tigated. To be specific, closed-form outage probability
expressions are derived, where it has been demonstrated
that NOMA can outperform OMA in multi-cell mmWave
networks.
This paper studies the problem of stable user association

and channel assignment in downlink multi-cell NOMA
networks. To be specific, the goal is to assign network
users to the channels available at each base station, while
accounting for inter-user interference, and maintaining
quality of service (QoS) per user. To that end, a low-
complexity iterative solution procedure—that can be exe-
cuted locally at each base station—is devised to obtain the
optimal power allocation for proportional fairness signal-
to-interference-plus noise ratio (SINR)-based maximiza-
tion, which is utilized to determine the preferences of
network users over the channels available at each base sta-
tion, and the preferences of base stations over the network
users. In turn, a many-to-one matching-theoretic model
based on the student-project allocation (SPA) problem is
applied [14, 15]. Particularly, two polynomial-time com-
plexity algorithms are proposed, namely the user-oriented
stable matching (U-SM) and the base station-oriented
stable matching (BS-SM). The proposed SPA-based sta-
ble matching algorithms incorporate constraints on the
number of users per channel and the number of users
to be associated with each base station. Furthermore,
in the U-SM algorithm, a user-optimal stable matching
solution is achieved, while in the BS-SM algorithm, a
base station-optimal stable matching solution is obtained.
More importantly, the U-SM and BS-SM algorithms yield
user association and channel assignment stable match-
ings that are simultaneously best response for all users
and all base stations, respectively, such that no user or
base station would deviate and change its association
or channel assignment unilaterally. Additionally, a cen-
tralized joint user association, channel assignment, and
power allocation (C-J-UA-CA-PA) optimization problem
is formulated and shown to be computationally expensive.
To validate the efficacy of the proposed solution proce-
dure and stable matching algorithms, extensive simulation
results are presented to compare them to the C-J-UA-
CA-PA scheme. It is demonstrated that the proposed
algorithms efficiently associate users with base stations
and assign them to channels as well as yielding com-
parable SINR per user to the C-J-UA-CA-PA scheme,
while maximizing proportional fairness and satisfying
QoS constraints.
Few recent research works have applied matching the-

ory to NOMA networks. For example, in [16], user pairing
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in a single-cell cognitive radio-inspired NOMA network
is studied, where the base station allocates power to
paired users within a cluster. In particular, a user with
poor channel conditions is paired with a user with good
channel conditions, while satisfying their rate require-
ments. To that end, a two-sided one-to-one distributed
matching algorithm is developed, which is shown to
yield performance that approaches that of centralized
user pairing and power allocation. The authors in [17]
investigate channel assignment, power allocation, and
scheduling for single-cell downlink NOMA networks.
To be specific, the problem of joint channel assignment
and sum-rate maximizing power allocation with user
fairness is considered. Moreover, a many-to-many user-
channel matching algorithm is proposed, and an iter-
ative solution for joint channel assignment and power
allocation based on swap matching is devised. In [18],
the authors consider the problem of sum-rate maximiza-
tion for device-to-device (D2D) communication in uplink
single-cell NOMA networks by optimizing channel and
power allocation. In particular, a two-sided many-to-one
matching algorithm is proposed to allow D2D groups
to reuse the same channel occupied by a cellular user.
Power allocation is also studied, where swap matching
is applied to jointly allocate channel and power to the
D2D groups. In [19], the problem of joint spectrum
allocation and power control in single macro-cell NOMA-
enhanced heterogenous networks is considered. In partic-
ular, several many-to-one matching-theoretic algorithms
with a swap operation are proposed while incorporating
users’ fairness in sum-rate maximizing power allocation.
Clearly, all the aforementioned works focus on single-cell
NOMA networks.
To the best of our knowledge, no prior work has applied

the SPA matching problem for user association and chan-
nel assignment with proportional fairness SINR-based
power allocation in downlinkmulti-cell NOMAnetworks.
In turn, the main contributions of this work are summa-
rized as follows:

• Proposed a low-complexity iterative solution
procedure for determining the proportional fairness
SINR-based maximizing power allocation for
different user sets over the channels available at each
base station.

• Modeled the user association and channel
assignment problem in downlink multi-cell NOMA
networks as a SPA matching problem.

• Devised two polynomial-time complexity stable
matching algorithms based on the SPA matching
problem, which associate network users with base
stations and channels, such that user optimal and
base station-optimal stable matching solutions are
obtained.

• Compared the proposed algorithms to the
C-J-UA-CA-PA scheme and demonstrated that the
proposed algorithms yield comparable SINR per user
as well as efficiently assigning channels to cell-edge
users, while maximizing proportional fairness and
satisfying QoS constraints.

The proposed algorithmic designs in this work aim at
filling the gap for effective resource allocation solutions
in multi-cell NOMA-based 5G cellular networks. In par-
ticular, the proposed solution procedure can be executed
locally at each base station to efficiently determine the
proportional fairness SINR-based maximizing power allo-
cation of cellular users over each channel and within
each base station, and with minimal computational com-
plexity, while taking into account inter-user interference,
QoS requirements, and SIC decoding constraints. In fact,
the proposed solution procedure can incorporate other
power allocation strategies and performance criteria (e.g.,
sum rate, energy efficiency, etc.) to establish the prefer-
ences of users over channels and base stations over users.
Furthermore, the proposed stable matching algorithms
can efficiently be executed among the base stations and
without the need for a centralized controller. In sum-
mary, by optimizing the SINR of the network users via
proportional fairness-based power allocation, and effi-
ciently associating users with base stations and assigning
channels to them over multiple cells, this work fulfills
some of the requirements of NOMA-based 5G cellular
networks.
The rest of this paper is organized as follows. Section 2

presents the network model, while Section 3 presents
the centralized joint user association, channel assignment,
and power allocation problem formulation. Section 4
discusses the proposed solution procedure for propor-
tional fairness SINR-based maximizing power allocation.
In Section 5, the SPA-based stable matching algorithms
are devised, whereas in Section 6, the simulation results
are presented. Finally, Section 7 draws the conclusions.

2 Networkmodel
Consider a downlinkmulti-cellNOMAnetwork with a set of
Q base stations (BSs), denoted B = {

BS1, BS2, . . . , BSQ
}
,

a set of N users U = {U1,U2, . . . ,UN }, and a set of K
channels C = {C1,C2, . . . ,CK }. Particularly, the network
bandwidth is divided into K non-overlapping equal band-
width channels, such that each base station BSq ∈ B is
allocated a non-empty set of channels Cq ⊂ C, where
C1, C2, . . . , Cq partition C. In other words, Cq ∩ Cw = φ for
w �= q, and

⋃Q
q=1 Cq = C. Furthermore, let Uq ⊂ U be the

subset of network users within the coverage area of each
base station BSq ∈ B (see Fig. 1). Also, let ζq,k be the max-
imum number of users that can be assigned to channel
Cq,k ∈ Cq. That is, each channel Cq,k ∈ Cq can be occupied
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Fig. 1 A downlink multi-cell NOMA network with Q = 2 base stations and N = 8 users

by at most ζq,k users, ∀BSq ∈ B1. Moreover, note that
some network usersmay fall within the overlapping region
of two or more cells. Therefore, the maximum number of
users that can be associated with each base station BSq
is set to ξq (i.e., a quota per base station). Additionally,
each user may be associated with at most one base sta-
tion and assigned to one channel. Our network model
mimics that of a multi-cell orthogonal frequency-division
multiple access (OFDMA)-NOMA network, where each
channel is allocated to only one user, as per conventional
OFDMA networks; while multiple users within a cell can
share a channel via NOMA2.
In downlink NOMA networks, each base station BSq

sends data (over each assigned channel Cq,k ∈ Cq) to
its users simultaneously via power-domain superposition
coding. The instantaneous channel between each BS and
the network users within its coverage area follows nar-
rowband Rayleigh fading with zero-mean N0-variance
additive white Gaussian noise3. Particularly, hkq,n ∼
CN

(
0, σ 2

q,n

)
is the channel coefficient between BSq and

user Un ∈ Uq over channel Cq,k ∈ Cq, and σ 2
q,n = d−ν

q,n is
the channel variance, with ν and dq,n being the path loss
exponent and distance, respectively. Moreover, the instan-
taneous channel gain is defined as gkq,n �

∣∣∣hkq,n
∣∣∣
2
. Thus,

without loss of generality, let the channel gains between
base station BSq and the users within its vicinity over each
channel Cq,k be ordered as gkq,1 ≤ gkq,2 ≤ · · · ≤ gkq,|Uq|.

1The SIC receiver complexity isO
(
ζ 3
q,k

)
, ∀Cq,k ∈ Cq , and ∀BSq ∈ B [2].

2In other words, no frequency reuse is assumed in this work, and thus,
inter-cell interference is not considered.
3Perfect CSI knowledge is assumed at the base stations.

In turn, the power allocation coefficients are ordered as
akq,1 ≥ akq,2 ≥ · · · ≥ akq,|Uq|. Additionally, the total trans-
mit power at each base station BSq is set as PBS, ∀BSq ∈ B.
More importantly, let Pq,k = PBS/|Cq| � P be the
transmit power per allocated channel, ∀Cq,k ∈ Cq and
∀BSq ∈ B, where | · | denotes the cardinality of the
parameter set.
In this work, perfect SIC is assumed4, and thus,

the signal-to-interference-plus-noise ratio (SINR) of user
Un ∈ Uq over channel Cq,k ∈ Cq is written as

γ k
q,n = ρgkq,nakq,n

ρgkq,nākq,n + 1
, (1)

with ρ � P/N0, ākq,n �
∑|Uq|

m=n+1 akq,m, and ākq,|Uq| = 0.

Remark 1 The SINR function γ k
q,n, ∀n �= |Uq|, is linear-

fractional (LF) function, with ρgkq,nakq,n and ρgkq,nākq,n+1 >

0 being linear functions in akq,n and ākq,n, respectively [21].
However, the SNR function γ k

q,|Uq| is a linear function in
akq,|Uq|.

3 Centralized joint user association, channel
assignment, and power allocation

In this work, the aim is to jointly associate users with
base stations and perform channel assignment, along
with proportional fairness SINR-based maximizing power
allocation. Additionally, each user must satisfy a target
minimum SINR γTn , ∀Un ∈ Uq, and ∀BSq ∈ B (i.e.,

4The case of imperfect SIC is beyond the scope of this work; however,
practical solutions for mitigating SIC errors can be found in [20].
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QoS constraints). To this aim, define the binary decision
variable Ik

q,n as

Ik
q,n =

{
1, if channel Cq,k is assigned to user Un ∈ Uq,
0, otherwise.

(2)

Therefore, the centralized joint user association, chan-
nel assignment, and power allocation (C-J-UA-CA-PA)
problem is formulated as

C-J-UA-CA-PA:

max
∏

Un∈U

⎛

⎝
∑

BSq∈B

∑

Cq,k∈Cq
Ik
q,n

ρgkq,nakq,n
ρgkq,nākq,n + 1

+
⎛

⎝1 −
∑

BSq∈B

∑

Cq,k∈Cq
Ik
q,n

⎞

⎠

⎞

⎠

s.t. Ik
q,n

(
ρgkq,nakq,n

ρgkq,nākq,n + 1
−γTn

)

≥0,

∀Cq,k ∈ Cq, ∀Un ∈ Uq and ∀BSq ∈ B, (3a)

∑

Un∈Uq

∑

Cq,k∈Cq
Ik
q,n ≤ ξq, ∀BSq ∈ B, (3b)

∑

Un∈Uq

Ik
q,n ≤ ζq,k , ∀Cq,k ∈ Cq and ∀BSq ∈ B, (3c)

∑

BSq∈B

∑

Cq,k∈Cq
Ik
q,n ≤ 1, ∀Un ∈ U , (3d)

∑

Un∈Uq

akq,n ≤ 1, ∀Cq,k ∈ Cq and ∀BSq ∈ B, (3e)

akq,1 ≥ akq,2 ≥ · · · ≥ akq,|Uq|, ∀Cq,k ∈ Cq,
∀Un ∈ Uq and ∀BSq ∈ B,

(3f)

0 ≤ akq,n ≤ Ik
q,n, ∀Cq,k ∈ Cq,

∀Un ∈ Uq and ∀BSq ∈ B,
(3g)

Ik
q,n ∈ {0, 1}, ∀Cq,k ∈ Cq, ∀Un ∈ Uq and ∀BSq ∈ B.

(3h)

Constraint (3a) ensures that if a user Un is paired to
a channel Cq,k , then it must satisfy the target minimum
SINR γTn , while constraint (3b) ensures that the total
number of users paired to channels in any base station BSq
must not exceed ξq. Moreover, constraint (3c) ensures that
the number of users paired to each channel Cq,k ∈ Cq is
at most ζq,k . Constraint (3d) ensures that a user is associ-
ated with at most one base station, while constraint (3e)
ensures that the sum of power allocation coefficients of
the assigned users over any channel does not exceed one.

Constraint (3f) ensures that the decoding order of the SIC
is preserved. Constraint (3g) defines the range of values
each power allocation coefficients can take. Particularly, if
Ik
q,n = 1, then 0 ≤ akq,n ≤ 1; otherwise, akq,n = 0. Finally,

the last constraint defines the range of values the binary
decision variables can take.

Remark 2 The C-J-UA-CA-PA problem comprises an
upper-bound total of N · ∑

BSq∈B |Cq| continuous decision
variables (i.e., akq,n) and a similar number of binary
decision variables (i.e., Ik

q,n). In addition, it can be
verified that there is an upper-bound total of N +
Q+ 2

(∑
BSq∈B |Cq| + ∑

BSq∈B |Cq| · |Uq|
)

+ ∑
BSq∈B |Cq| ·

(|Uq| − 1
)
constraints.

Remark 3 Problem C-J-UA-CA-PA is a classified as a
mixed-integer nonlinear programming problem (MINLP),
which is NP-hard (i.e., extremely computationally expen-
sive [22, 23]). Thus, it can only be solved via a global
optimization package.

Based on Remark 3, problem C-J-UA-CA-PA can be
decomposed in two sub-problems: (1) proportional fair-
ness SINR-based maximizing power allocation and (2)
stable matching-theoretic user association and channel
assignment. Particularly, the aim is to optimally solve the
SINR-maximizing power allocation per base station and
over each channel, while accounting for inter-user inter-
ference and QoS constraints. This will be achieved via a
low-complexity iterative solution procedure, which also
determines the preferences of users over channels, and the
preferences of base stations over users. After that, base-
station association and channel assignment is performed
via the stable matching algorithms.

4 Proportional fairness SINR-basedmaximizing
power allocation

This section focuses on proportional fairness SINR-based
maximizing (PR-SINR-MAX) power allocation, subject to
target minimum SINR γTn per user Un ∈ Uq. Specifically,
the objective function of base station BSq over channel
Cq,k ∈ Cq be given by

γ k
q �

∏

Un∈Uq

γ k
q,n =

∏

Un∈Uq

ρgkq,nakq,n
ρgkq,nākq,n + 1

, (4)

which can be re-expressed as

γ k
q

(
akq, Ik

q

)
=

∏

Un∈Uq

(

Ik
q,n

ρgkq,nakq,n
ρgkq,nākq,n + 1

+
(
1 − Ik

q,n

))

,

(5)
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where akq =
[
akq,1, a

k
q,2, . . . , a

k
q,|Uq|

]
is the power allo-

cation vector, while Ik
q =

[
Ik
q,1, Ik

q,1, . . . ,Ik
q,|Uq|

]
is the

channel assignment vector. Since each channel Cq,k ∈
Cq has a quota ζq,k , then

∑
Un∈Uq I

k
q,n ≤ ζq,k . The

objective function in (5) stipulates that if user Un is
assigned channel Cq,k (i.e., Ik

q,n = 1), then its SINR
function is maximized; otherwise, it is set to one. There-
fore, the PR-SINR-MAX optimization problem can be
formulated as

PR-SINR-MAX:

max γ k
q

(
akq, Ik

q

)
=

∏

Un∈Uq

(

Ik
q,n

ρgkq,nakq,n
ρgkq,nākq,n + 1

+
(
1 − Ik

q,n

))

s.t. Ik
q,n

(
ρgkq,nakq,n

ρgkq,nākq,n + 1
− γTn

)

≥ 0, ∀Un ∈ Uq,

(6a)

∑

Un∈Uq

akq,n ≤ 1, (6b)

∑

Un∈Uq

Ik
q,n ≤ ζq,k , (6c)

akq,1 ≥ akq,2 ≥ · · · ≥ akq,|Uq|, (6d)

0 ≤ akq,n ≤ Ik
q,n, ∀Un ∈ Uq, (6e)

Ik
q,n ∈ {0, 1}, ∀Un ∈ Uq. (6f)

Constraint (6a) ensures that if a user is selected, then it
must satisfy the target minimum SINR, while constraint
(6b) ensures that the sum of power allocation coefficients
of the selected users does not exceed one. Constraint (6c)
ensures that the maximum number of users per channel
Cq,k ∈ Cq does not exceed ζq,k , while constraint (6d) main-
tains the SIC decoding order. Constraint (6e) ensures that
if channel Cq,k is assigned to user Un (i.e., Ik

q,n = 1), then
the power allocation coefficient akq,n must not exceed one;
otherwise, akq,n = 0 (since Ik

q,n = 0). The last constraint
defines the range of values the binary decision variables
take.

Remark 4 Problem PR-SINR-MAX is classified as a
mixed-integer linear-fractional programming (MILFP)
problem. More importantly, it is non-convex (and NP-hard
[24]); and thus, it is still computationally expensive.

In turn, a simple solution procedure is devised to effi-
ciently solve problem PR-SINR-MAX. To that end, let

q,k =

{

q,k,1, . . . ,
q,k,ζq,k

}
be the set of all combi-

nations of assigning uq users in Uq (for 1 ≤ uq ≤

ζq,k) over each channel Cq,k ∈ Cq, where 
q,k,uq ={
ωq,k,1,ωq,k,2, . . . ,ωq,k,�uq

}
, and

�uq �
(|Uq|
uq

)
= |Uq|!(|Uq| − uq

)
!uq!

, (7)

with �uq = |
q,k,uq |. Each combination is defined as
ωq,k,ς =

[
J k
q,ς ,1,J k

q,ς ,2, . . . ,J k
q,ς ,|Uq|

]
, for ς = 1, 2, . . . ,�uq .

Specifically, J k
q,ς ,n is defined as

J k
q,ς ,n =

{
1, if Un ∈ Uq is assigned Cq,k ∈ Cq in ωq,k,ς ,
0, otherwise.

(8)

For example, if |Uq| = 3 and ζq,k = 2, then 
q,k ={

q,k,1,
q,k,2

}
, where 
q,k,1 includes the combinations

[ 1, 0, 0] , [ 0, 1, 0], and [ 0, 0, 1], while 
q,k,2 contains the
combinations [ 1, 1, 0] , [ 1, 0, 1] , and [ 0, 1, 1]. In other
words, in the first set of combinations
q,k,1, only one user
is assumed to be assigned to channel Cq,k , while in 
q,k,2,
different combinations of two users are assigned to that
channel.

Remark 5 The total number of all possible user com-
binations over each channel Cq,k ∈ Cq, ∀BSq ∈ B is
obtained as

�
(
Uq, ζq,k

) =
ζq,k∑

uq=1

|Uq|!(|Uq| − uq
)
!uq!

. (9)

For notational convenience, letUq,k,ς ⊆ Uq be the subset
of users in Uq with J k

q,ς ,n = 1 in ωq,k,ς ∈ 
q,k,uq . Thus, the
SINR of each user Un ∈ Uq,k,ς is expressed as

γ k
q,n,ς = ρgkq,n,ςakq,n,ς

ρgkq,n,ς ākq,n,ς + 1
, (10)

It can be seen that for each possible combination ωq,k,ς ∈

q,k,uq , each user Un ∈ Uq,k,ς will have a different SINR
value, which depends on the other users sharing the same
channel in that combination.

Remark 6 The SINR function of each user is one with
peer effects (also known as negative network externality),
which is due to the fact that each user’s SINR γ k

q,n,ς is influ-
enced by the allocated power to all the other users utilizing
the same channel.

Remark 7 For uq = 1, only one user is assigned to
each channel Cq,k ∈ Cq, in any combination ωq,k,ς
in 
q,k,1, ∀ς = 1, 2, . . . , |Uq|. Consequently, the power
allocation coefficient for each user Un with J k

q,ς ,n = 1
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in ωq,k,ς is akq,n,ς = 1, whereas ākq,n,ς = 0, and hence,
γ k
q,n,ς = ρgkq,n,ς .

Now, for each possible combination ωq,k,ς ∈ 
q,k,uq , for
2 ≤ uq ≤ ζq,k , problem PR-SINR-MAX can be re-written
as

PR-SINR-MAX (ωq,k,ς ) :

max γ k
q,ς

(
akq,ς ,ωq,k,ς

)
= ∏

Un∈Uq,k,ς

ρgkq,n,ςakq,n,ς
ρgkq,n,ς ākq,n,ς+1

s.t. ρgkq,n,ςa
k
q,n,ς ≥ γTn

(
ρgkq,n,ς ā

k
q,n,ς + 1

)
, ∀Un ∈ Uq,k,ς ,

(11a)

∑

Un∈Uq,k,ς

akq,n,ς ≤ 1, (11b)

akq,1,ς ≥ akq,2,ς ≥ · · · ≥ akq,|Uq,k,ς |,ς , (11c)

0 ≤ akq,n,ς ≤ 1, ∀Un ∈ Uq,k,ς , (11d)
which can be verified to be non-convex, although all
the constraints are linear [25]. By utilizing the fact that
the ln(·) function is concave and strictly monotonically
increasing, then the objective function of problem PR-
SINR-MAX (ωq,k,ς ) can be re-expressed as

ln γ k
q

(
akq,ς ,ωq,k,ς

)
= f

(
akq,ς

)
− g

(
akq,ς

)
, (12)

with f
(
akq,ς

)
being defined as

f
(
akq,ς

)
=

∑

Un∈Uq,k,ς

ln
(
ρgkq,n,ςa

k
q,n,ς

)
, (13)

while

g
(
akq,ς

)
=

∑

Un∈Uq,k,ς

ln
(
ρgkq,n,ς ā

k
q,n,ς + 1

)
. (14)

It is noteworthy that f
(
akq,ς

)
and g

(
akq,ς

)
are con-

cave functions, which are also twice continuously dif-
ferentiable in akq,n,ς and ākq,n,ς , respectively. Hence,
ln γ k

q,ς

(
akq,ς ,ωq,k,ς

)
is a difference convex function [26, 27].

As a result, problem PR-SINR-MAX (ωq,k,ς ) can be refor-
mulated as [28, 29]

PR-SINR-MAX (ωq,k,ς ) :

min μ − g
(
akq,ς

)

s.t. f
(
akq,ς

)
≤ μ, (15a)

Constraints (11a)–(11d), (15b)

μ ≥ 0, (15c)

with μ being an auxiliary variable. It can be easily verified
that the objective function and the first constraint are
concave functions in akq,n,ς , ∀Un ∈ Uq,k,ς , whereas the
remaining constraints are linear.

Remark 8 R-PR-SINR-MAX (ωq,k,ς ) is a concave mini-
mization problem [30] and thus is solved efficiently with
minimal complexity via any standard convex optimization
package [31].

Remark 9 The optimal solution of problem R-PR-SINR-
MAX (ωq,k,ς ) is also the optimal solution of the original
problem PR-SINR-MAX (ωq,k,ς ) [30].

The following solution procedure determines the result-
ing SINR per user Un for each channel Cq,k of each
base station BSq. The goal is to iterate over all possi-
ble user combinations in 
q,k . Specifically, the solution
procedure starts by considering single-user combinations
(i.e., when uq = 1 and for each ωq,k,ς ∈ 
q,k,1)
over each channel Cq,k ∈ Cq and determines whether
the target minimum SINR γTn is satisfied by calculat-
ing γ k

q,n,ς , ∀Un ∈ Uq,k,ς . If γ k
q,n,ς < γTn for any ∀Un ∈

Uq,k,ς , then set γ k
q,n,ς = 0; otherwise, keep the value

of γ k
q,n,ς for later use to determine the preference lists.

After that, the solution procedure considers user com-
binations of sizes 2 ≤ uq ≤ ζq,k , and solves problem
R-PR-SINR-MAX (ωq,k,ς ) for each combination, such that
the optimal SINR of each user in each combination over
each channel is evaluated to determine whether the target
minimum SINR is satisfied, as stated earlier. Upon com-
pletion of the solution procedure, each user Un ∈ Uq
calculates

χk
q,n �

ζq,k∑

uq=1

�uq∑

ς=1
J k
q,ς ,n · γ k

q,n,ς (16)

for each channelCq,k ∈ Cq, which is considered as a weight
of how valuable that channel is to that user. Contrarily,
each base station BSq ∈ B calculates

ψq,n �
∑

Cq,k∈Cq

ζq,k∑

uq=1

�uq∑

ς=1
J k
q,ς ,n · γ k

q,n,ς (17)

for each user Un ∈ Uq, which is used as a weight for how
valuable that user is to that base station.
The proposed solution procedure for proportional fair-

ness SINR-based maximization (SP-PF-SINR-MAX) is
outlined in Algorithm 1, which can be performed locally
at each base station.
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Algorithm 1 Solution Procedure for Proportional-
Fairness SINR-Based Maximization (SP-PF-SINR-MAX)
1 FOR each Cq,k ∈ Cq
2 FOR each 
q,k,uq ∈ 
q,k

3 IF uq = 1
4 FOR each ωq,k,ς ∈ 
q,k,1

5 Evaluate γ k
q,n,ς = ρgkq,n,ς , ∀Un ∈ Uq,k,ς ;

6 IF γ k
q,n,ς < γTn for any Un ∈ Uq,k,ς

7 Set γ k
q,n,ς = 0;

8 END IF
9 END FOR
10 ELSE
11 FOR each ωq,k,ς ∈ 
q,k,uq

12 Solve problem R-PR-SINR-MAX (ωq,k,ς ) ;

13 Evaluate γ k
q,n,ς = ρgkq,n,ςakq,n,ς

ρgkq,n,ς ākq,n,ς+1 , ∀Un∈Uq,k,ς ;

14 IF γ k
q,n,ς < γTn for any Un ∈ Uq,k,ς

15 Set γ k
q,n,ς = 0;

16 END IF
17 END FOR
18 END IF
19 END FOR
20 END FOR
21 For each Un ∈ Uq, calculate χk

q,n, ∀Cq,k ∈ Cq;
22 For each BSq ∈ B, calculate ψq,n, ∀Un ∈ Uq;

Remark 10 For the case when uq = 1 (i.e., only com-
binations ωq,k,ς ∈ 
q,k,1, for ς = 1, 2, . . . ,�1) in which
only a single user is considered over each channel Cq,k ∈ Cq(
i.e. J k

q,1,n = 1
)
, if a user Un ∈ Uq,k,ς cannot satisfy the

target minimum SINR γTn , then it cannot satisfy it when
a greater number of users are considered (i.e., when 2 ≤
uq ≤ ζq,k) over that channel (due to negative network exter-
nality). Hence, χk

q,n = 0 for user Un ∈ Uq over channel
Cq,k ∈ Cq.

Remark 11 The greater the value of χk
q,n is, the more pre-

ferred channel Cq,k ∈ Cq is to user Un ∈ Uq. In a similar
manner, the greater the value of ψq,n is, the more preferred
user Un ∈ Uq is to base station BSq ∈ B.

Remark 12 If for any user Un ∈ Uq, the value of χk
q,n = 0,

then that channel is considered unacceptable to that user.

In a similar manner, if, for a base station BSq ∈ B,ψq,n =
0, then user Un is deemed unacceptable.

Remark 13 At the outset, the proposed solution proce-
dure may seem to be excessively complex. However, for each
base station BSq ∈ B, there is a total of |Cq| · �

(
Uq, ζq,k

)

iterations, and a convex optimization problem is efficiently
solved in only |Cq| · �

(
Uq, ζq,k

) − |Uq| iterations and thus
is guaranteed to converge5.

It should be noted that in multi-cell NOMA networks, a
small number of users are to be multiplexed into a chan-
nel, which is mainly to minimize inter-user interference,
reduce SIC hardware complexity and error propagation,
and leverage capacity gains [7], while satisfying the tar-
get minimum SINR constraint per user (i.e., ζq,k must be
kept reasonably small, ∀Cq,k ∈ Cq). Lastly, the proposed
solution procedure eliminates the need for swap opera-
tions, which have been utilized in [17–19]. Specifically, in
the aforementioned references, a swap operation is uti-
lized in an iterative manner to ensure stability after power
allocation. However, in the solution procedure, the opti-
mal power allocation per user over each channel is already
determined, which is then used to determine the prefer-
ence lists in the proposed matching algorithms (discussed
in the following section). Consequently, the stable match-
ing solutions resulting from the proposed stable matching
algorithms will already have obtained the optimal power
allocation for the users sharing each channel within each
base station.

5 Stable matching algorithms
In this section, the stable matching algorithms based on
the SPA problem are devised.

5.1 Description
The classical SPA problem involves a set of students
(users), projects (channels), and lecturers (base stations).
Each project is offered by a specific lecturer, and each lec-
turer has quotas (i.e., a maximum number of students per
project and per lecturer, respectively). Moreover, students
have preferences over the projects that are acceptable
(i.e., in which they would like to be involved), while each
lecturer has preferences over the acceptable students6.
Typically, a project is assigned to at most one student,
while in some other cases, a project may be undertaken
by more than one student to work on. More importantly,
there should be a number of projects that coincides with
the number of potential students, and each lecturer is
responsible for offering a range of projects, which are not

5Each convex optimization problem is solved efficiently within
polynomial-time complexity [31].
6The preferences are ordered in a descending order, from most preferred to
the least.
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necessarily all taken up. By utilizing the students’ and lec-
turers’ preferences, the goal is to find a stable matching
that pairs students to projects offered by each lecturer,
while satisfying the quotas [14, 15]. In an analogous man-
ner, the goal is to assign users to channels available at
each base station, such that a stable matching solution is
obtained, while satisfying the quotas of the channels and
base stations.
To that end, a few definitions must first be given.

5.2 Definitions
Definition 1 (Acceptability) A channel Cq,k ∈ Cq, ∀BSq

∈ B, is said to be acceptable to user Un ∈ Uq if χk
q,n >

0. Thus, let AUn be the list of acceptable channels by user
Un. In a similar fashion,ABSq is the list of acceptable users
Un ∈ Uq to base station BSq (i.e., for which ψq,n > 0).

Definition 2 (Assignment) An assignmentM is defined
as a subset of U × C, such that:

(a) (Un,Cq,k) ∈ M (i.e., user Un finds channel Cq,k
acceptable).

(b) A user Un is assigned at most one channel (i.e.,
| {(Un,Cq,k) ∈ M forCq,k ∈ AUn

} | ≤ 1).

In turn, if (Un,Cq,k) ∈ M, then user Un is considered
to be assigned to channel Cq,k , and vice versa (i.e., Cq,k
is assigned to Un). Also, let M (Un) = Cq,k indicate
that channel Cq,k is assigned to user Un in M, whereas
M

(
Cq,k

) = Un indicates that user Un is assigned to
channel Cq,k .

Definition 3 (Preference) If user Un prefers channel Cq,k
to Cw,l (i.e., χk

q,n > χ l
w,n for k �= l)7, then Cq,k �Un Cw,l. In

a similar fashion, if base station BSq prefers user Un to Um
(i.e., ψq,n > ψq,m for n �= m), then Un �BSq Um.

Definition 4 (Preference list) Let PUn =
{
C(1)
q,k , . . . ,

C(|AUn |)
w,l

}
denote the preference list of user Un, where C(1)

q,k(
C(|AUn |)
w,l

)
refers to the most (least) preferred channel to

Un. Similarly, PBSq =
{
U(1)
n , . . . ,U

(|ABSq |)
m

}
denotes the

preference list of base station BSq, where U(1)
n

(
U

(|ABSq |)
m

)

refers to the most (least) preferred user to BSq.

Definition 5 (Projected preference list) Let Pk
BSq ,∀BSq∈B,

be the projected preference list of base station BSq, which
is obtained from PBSq by eliminating the users who find
channel Cq,k ∈ Cq unacceptable.

7It is noteworthy that Cw,l refers to a channel different from Cq,k under a
possibly different base station BSw .

Definition 6 (Subscription) A channel Cq,k ∈ Cq
is said to be under-subscribed, full, or over-subscribed
if |M (

Cq,k
) | is less than, equal to, or greater than

ζq,k, respectively. In a similar manner, for any base sta-
tion BSq ∈ B under assignment M (i.e., M

(
BSq

)
),

BSq is considered to be under-subscribed, full, or over-
subscribed if |M (

BSq
) | is less, equal to, or greater than ξq,

respectively.

Definition 7 (Matching) A matching M is an assign-
ment, such that [14]:

(a) For each channel Cq,k ∈ Cq, |M
(
Cq,k

) | ≤ ζq,k .
(b) For each base station BSq ∈ B, |M (

BSq
) | ≤ ξq.

In other words, under matching M, no channel Cq,k ∈
Cq is assigned to more than ζq,k users and that each base
station BSq is assigned at most ξq users.

Definition 8 (Blocking) The pair
(
Un,Cq,k

) ∈ (U × C)\
M is said to block a matchingM if [15]:

(a) Cq,k ∈ AUn (i.e., user Un finds Cq,k acceptable).
(b) Either Un is unassigned inM or Un prefers Cw,l to

M (Un).
(c) Either

(c1) Cq,k is under-subscribed, and BSq is
under-subscribed, or

(c2) Cq,k is under-subscribed, BSq is full, and
either Un ∈ M

(
BSq

)
or BSq prefers Un to the

worst user inM
(
BSq

)
, or

(c3) Cq,k is full and BSq prefers Un to the worst
user inM

(
Cq,k

)
.

Accordingly, a (student, project) pair satisfying the above
conditions should not be included in the matching solution,
as such matching would not be stable.

Definition 9 (Stable matching) A matching M is con-
sidered stable ifM contains no blocking pairs.

5.3 Algorithmic design
In this subsection, the user-oriented stable matching

(U-SM) and base station-oriented stable matching (BS-
SM) algorithms are described [15].

5.3.1 User-oriented stablematching
Initially, all users are assumed to be free, and all chan-
nels and base stations are completely unsubscribed. The
U-SM algorithm is based on a sequence of proposals by
each user to the acceptable channels in its preference list.
Such proposals lead to provisional assignments between
users, channels, and base stations, which may be modified
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during the execution of the algorithm. That is, entries
from the preference lists of users and the preference lists
of base stations may be eliminated. To be more spe-
cific, deleting a pair

(
Un,Cq,k

)
corresponds to eliminating

channel Cq,k from user Un’s preference list PUn and also
removing Un from the projected list P

k
BSq of base sta-

tion BSq, which offers channel Cq,k . The algorithm iterates
as long as there is some user with a non-empty prefer-
ence list and who is still unpaired to any channel under
any base station. If some channel Cq,k is over-subscribed,
then its base station rejects the worst user Um assigned to
that channel (i.e., the pair

(
Um,Cq,k

)
is deleted). Also, if

some base station BSq is over-subscribed, then it rejects
its worst assigned user Um and deletes the pair

(
Um,Cq,l

)
,

where Cq,l is the channel previously assigned to user Um.
On the other hand, if a channel Cq,k is full, then for
the worst user Um paired to the channel (as per P

k
BSq ),

delete the pair of each successive user Up with that chan-
nel (i.e.,

(
Up,Cq,k

)
). Lastly, if some base station BSq is

full, then for the worst user Um associated with BSq,
delete the pair

(
Up,Cq,l

)
of each successive user Up (in

PBSq ) with each channel Cq,l that Up finds acceptable
by base station BSq. The U-SM algorithm is outlined in
Algorithm 2.

5.3.2 Base station-oriented stablematching
In a similar manner to the U-SM algorithm, all users
are initially assumed to be free, and all channels and
base stations are totally unsubscribed. Now, the BS-SM
algorithm iterates over each base station BSq that is
under-subscribed and offers a channel Cq,k to a user Un,
which is the first on BSq’s preference list PBSq , and Cq,k
must be the first under-subscribed channel on Un’s pref-
erence list PUn , such that Un ∈ P

k
BSq . After breaking

any existing assignment of user Un, then it is provision-
ally assigned to channel Cq,k under base station BSq.
In turn, any pair

(
Un,Cw,l

)
to which user Un prefers

Cq,k to Cw,l is deleted, and hence, Cw,l is removed from
Un’s preference list, and Un is eliminated from the pro-
jected list Pl

BSw of base station BSw offering channel Cw,l.
This process is repeated until convergence, as given in
Algorithm 3.

Remark 14 Backhaul links can be utilized to efficiently
execute the U-SM and BS-SM algorithms among the base
stations with minimal overhead [32, 33] and without the
need for a centralized controller.

5.4 Properties
In the following subsections, the properties of the U-SM
and BS-SM algorithms are discussed. To be concised, the
properties of theU-SM algorithm are discussed, which are
also applicable to the BS-SM algorithm.

Algorithm 2 Users-Oriented Stable Matching (U-SM)
Input: Preference lists PUn and PBSq , ∀Un ∈ U and

∀BSq ∈ B.
Initialization: Initialize matchingMU ← ∅, with each

Un being free and each channel Cq,k ∈ Cq
and each base-station BSq ∈ B being totally unsubscribed;
1 WHILE (some user Un is unpaired AND has a

non-empty preference list PUn )
2 Let Cq,k of base-station BSq be the first channel

on Un’s preference list PUn ;
3 Pair Un with Cq,k , such that

MU ← MU ∪ (
Un,Cq,k

)
;

4 IF (Cq,k is over-subscribed)
5 Let Um be the worst user paired to Cq,k

(according to P
k
BSq );

6 Delete the pair
(
Um,Cq,k

)
such that

MU ← MU\ (
Um,Cq,k

)
;

7 ELSE IF (BSq is over-subscribed)
8 Let Um be the worst user paired to BSq and Cq,l

be the channel assigned to user Um;
9 Delete the pair

(
Um,Cq,l

)
such that

MU ← MU\ (
Um,Cq,l

)
;

10 END IF
11 IF (Cq,k is full)
12 Let Um be the worst user paired to Cq,k

(according to P
k
BSq );

13 FOR (each successor Up of Um on BSq’s
projected preference list Pk

BSq )
14 Delete the pair

(
Up,Cq,k

)
;

15 END FOR
16 END IF
17 IF (BSq is full)
18 Let Um be the worst user paired to BSq;
19 FOR (each successor Up of Um on BSq’s

preference list PBSq )
20 FOR (each channel Cq,l ∈ Cq ∩ AUp )
21 Delete the pair

(
Up,Cq,l

)
;

22 END FOR
23 END FOR
24 END IF
25 ENDWHILE

Output: Stable matchingMU .

5.4.1 Convergence to a stablematching solution
Lemma 1 The U-SM algorithm converges in a finite

number of iterations to a stable matching solution.

Proof In the U-SM algorithm, a free user applies to the
first channel on its preference list in each iteration. In
particular, no user can apply to the same channel more
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Algorithm 3 Base-Stations-Oriented Stable Matching
(BS-SM)
Input: Preference lists PUn and PBSq , ∀Un ∈ U and

∀BSq ∈ B.
Initialization: Initialize matchingMBS ← ∅, with each

Un being free and each channel Cq,k ∈ Cq
and each base-station BSq ∈ B being totally unsubscribed;
1 WHILE (some base-station BSq is under-subscribed

AND there is a user Un that is not paired to channel
Cq,k AND Cq,k ∈ Cq is under-subscribed AND
Un ∈ P

k
BSq )

2 Let Un be the first such user on BSq’s preference
list PBSq ;

3 Let Cq,k be the first such channel on Un’s
preference list PUn ;

4 IF (Un is assigned to some channel Cw,l)
5 Delete the pair

(
Un,Cw,l

)
such that

MBS ← MBS\
(
Un,Cw,l

)
;

6 Pair Un with Cq,k (and BSq), such that
MBS ← MBS ∪ (

Un,Cq,k
)
;

7 FOR (each successor Cw,l of Cq,k on Un’s
preference list PUn )

8 Delete the pair
(
Un,Cw,l

)
;

9 END FOR
10 END IF
11 ENDWHILE

Output: Stable matchingMBS.

than once (i.e., each user-channel pair can occur at most
once). This can be verified from the fact that once a pair(
Um,Cq,k

)
is deleted, then user Um is freed and cannot

apply to that channel again. This also implies that no pair
deleted during the execution of the U-SM algorithm can
block thematching under construction [15]. If this had not
been the case (i.e., the pair

(
Um,Cq,k

)
is not deleted), then

user Um must be assigned to some channel MU (Um) �=
Cq,k ; otherwise, user Um remains free with a non-empty
preference list containing channel Cq,k (i.e., a contradic-
tion). Therefore, the pair

(
Um,Cq,k

)
must be deleted, since

if Um prefers Cq,k to MU (Um), then
(
Um,Cq,k

)
must

block MU . More importantly, the U-SM algorithm never
deletes a stable pair during its execution [15]. Lastly, since
the lengths of the user preferences lists are bounded, then
the total number of iterations is also bounded. Hence, the
U-SM algorithm converges in a finite number of iterations
to a stable matching solution.

5.4.2 Complexity
Lemma 2 The U-SM algorithm converges with

polynomial-time complexity of O (|U | · |C|), where |U |
and |C| are the total number of users and channels,
respectively [15].

Proof It is straightforward to verify that in the worst-case
scenario of the U-SM algorithm, each free user Un ∈
U–with a non-empty preference list—applies to at least
one channel out of the possible |C| channels. Moreover,
throughout the execution of the algorithm, some user-
channel pairs may be deleted, and their corresponding
entries are deleted from the preference lists of users and
from the projected preference lists of base stations. Hence,
the overall worst-case complexity of the U-SM algorithm
isO (|U | · |C|).

5.4.3 Optimality
Lemma 3 The stable matching resulting from the U-SM

algorithm is optimal with respect to each assigned user (i.e.,
user-optimal stable matching).

Proof Since each user is assigned to its first preferred
channel on its reduced preference list, and no stable pair
is deleted during the execution of the U-SM algorithm
[15], then each user is simultaneously assigned to the best
channel it can get in any stable matching. In addition,
and due to the proposed solution procedure SP-PF-SINR-
MAX, each user is not only assigned to its best channel,
but also is allocated power optimally over its assigned
channel.

By similar arguments, the BS-SM algorithm can
straightforwardly be verified to converge to a stable
matching solution within a finite number of iterations,
and with polynomial-time complexity ofO (|U | · |C|) [15].
It should be noted that the complexity of both the U-
SM and BS-SM algorithms may be much lower than
O (|U | · |C|), which is due to the fact that each user Un ∈
Uq only has preferences over the channels within its cell
(i.e., Cq). In other words, it is only the users within the
overlapping region of all cells that may have preferences
over all channels. Last-but-not-least, the stable match-
ing resulting from the BS-SM algorithm is simultaneously
optimal with respect to each base station. That is, each
base station is associated with the best set of users it
can get.
Despite the optimality of the proportional fairness

SINR-based maximizing power allocation (and hence the
solution procedure SP-PF-SINR-MAX), and also the opti-
mality of the proposed stable matching algorithms (i.e.,
U-SM and BS-SM), the resulting base-station association,
channel assignment, and power allocation solutions are
not necessarily global optimal. This is due to the following
two reasons. Firstly, decomposing problem C-J-UA-CA-
PA into two sub-problems does not necessarily guarantee
the global optimal solution. Secondly, enforcing stability
in terms of the user association and channel assignment
via the proposed stable matching algorithms may lead
to a sub-optimal solution. Nevertheless, our algorithmic
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Fig. 2 Simulated network topology

solutions pose a trade-off between complexity, optimality,
and stability.

Remark 15 Problem C-J-UA-CA-PA globally optimally
maximizes proportional fairness, but does not necessar-
ily ensure that the resulting user association and channel
assignment are stable.

The intuition behind Remark 15 is that for some net-
work instance, a certain user may be paired to a certain
channel in the solution of problem C-J-UA-CA-PA. How-
ever, that (user, channel) pair forms a blocking pair and
thus cannot be included in the stable matching solu-
tion of any of the stable matching algorithms. In other
words, that (user, channel) pair may be formed under
problem C-J-UA-CA-PA so as to obtain the global optimal
solution, however would be excluded from the match-
ing solution to ensure stability. Specifically, stability is
particularly important from a network’s perspective, as
it ensures that no user or base station would unilater-
ally want to change its channel assignment or association.
This in turn minimizes communications overheads and
signaling.

6 Simulation results
This section evaluates the performance of the proposed

solution procedure and stable matching algorithms. The
simulations assume a network consisting of Q = 3 base
stations/cells, with N = 12 users, K = 9 channels in a
200× 200 m2 area and cell radius of 50 m per base station
(see Fig. 2). Also, each base station BSq ∈ B for q ∈ {1, 2, 3}
is allocated the channel sets C1 = {C1,C2,C3}, C2 =
{C4,C5,C6}, and C3 = {C7,C8,C9}, respectively. More-
over, the transmit power per allocated channel is set to
P = 1 W, the noise variance is N0 = 10−7 W, and
the path loss exponent is ν = 3. The target minimum
SINR per user is set to γTn = γT = 15 dB, ∀Un ∈ U .
Furthermore, the simulations are averaged over 103 inde-
pendent instances of randomly generated channel coeffi-
cients, where the channel coefficients are assumed to be
quasi-static during each network instance, but vary from
one network instance to another8.
In the simulations, the following scenarios are com-

pared:

8Our algorithmic designs are applicable to arbitrary network topologies and
sets of parameters, provided that the selected parameters yield feasible
solutions.
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(a)

(b)

Fig. 3 a Average SINR (dB) and b average power allocation coefficients—Scenario 1

Scenario 1: ξq=4 and ζq,k = 2,∀Cq,k ∈ Cq and ∀BSq ∈ B.
Scenario 2: ξq=4 and ζq,k = 3,∀Cq,k ∈ Cq and ∀BSq ∈ B.

These scenarios aim at investigating the effect of assign-
ing different numbers of users to each channel. In
addition, in the aforementioned scenarios, the follow-
ing two deterministic power allocation schemes are
compared:

Equal power allocation (EPA)
In this scheme, the power is equally allocated across
all users over each channel. Specifically, for Scenario
1 (i.e., ζq,k = 2), akq,n = 1/2, while in Scenario 2 (i.e.,
ζq,k = 3), akq,n = 1/3,∀Un ∈ Uq, ∀Cq,k ∈ Cq, and
∀BSq ∈ B.

Conventional power allocation (CPA)
For this scheme, the power allocation coefficients
of the ordered network users (for 1 ≤ n ≤ ζq,k)
are set as akq,n = 3−n

3 in Scenario 1, while in
Scenario 2, akq,n = 4−n

6 , ∀Un ∈ Uq, ∀Cq,k ∈ Cq, and

∀BSq ∈ B [34]. That is, for the ordered users under
Scenario 1, akq,1 = 2

3 and akq,2 = 1
3

(
i.e., akq,1 > akq,2

)
,

while under Scenario 2, akq,1 = 3
6 , a

k
q,2 = 2

6 , and

akq,3 = 1
6

(
i.e., akq,1 > akq,2 > akq,3

)
.

For notational convenience, let the proposed U-SM
and BS-SM matching algorithm when combined with the
SP-PF-SINR-MAX be denoted SP-PF-SINR-MAX (U-SM)
and SP-PF-SINR-MAX (BS-SM) for short. Similarly, let
the power allocation schemes when combined with the
proposed stable matching algorithms be denoted EPA
(U-SM), EPA (BS-SM), CPA (U-SM), and CPA (BS-SM).
Lastly, the proposed algorithms are compared to the C-J-
UA-CA-PA scheme9.
In Fig. 3a, the average SINR per user for Scenario 1 is

illustrated. In particular, it can be seen that for the SP-

9The C-J-UA-CA-PA problem is solved via MIDACO [35], with tolerance set
to 0.001. Moreover, problem C-J-UA-CA-PA involves a total of 648 decision
variables and 144 inequality constraints.
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PF-SINR-MAX (U-SM) and SP-PF-SINR-MAX (BS-SM)
algorithms, all network users satisfy the target minimum
SINR per user of γT = 15 dB. On the other hand, for the
proposed stable matching algorithms with the EPA and
CPA schemes, not all users satisfy γT . This is due to the
fact that power is deterministically allocated to the paired
users and without ensuring that the target minimum SINR
constraint per user over each channel is satisfied. This
proves that the SP-PF-SINR-MAX is effective in guaran-
teeing that γT is met for all network users. It is also evident
that the highest average SINR among all users is achieved
by users U2,U7, and U10, which is due to their locations
being closest to their respective base stations, as can be
seen from Fig. 2. Moreover, the C-J-UA-CA-PA scheme
marginally outperforms the proposed SP-PF-SINR-MAX
(U-SM) and SP-PF-SINR-MAX (BS-SM) algorithms, while
guaranteeing that γT is achieved. This is because the C-
J-UA-CA-PA scheme maximizes proportional fairness of
the SINR of all network users via user association and
channel assignment without any bearing on the network

stability (as per Remark 15). Figure 3b shows the average
power allocation coefficient per user. Evidently, the SP-
PF-SINR-MAX (U-SM) and SP-PF-SINR-MAX (BS-SM)
algorithms allocate power very similarly to all network
users. However, the power allocated per user resulting
from the C-J-UA-CA-PA scheme is lower than the afore-
mentioned algorithms. As before, this is attributed to the
fact that the C-J-UA-CA-PA scheme aims at maximiz-
ing proportional fairness without necessarily enforcing
stability. Generally speaking, the C-J-UA-CA-PA scheme
achieves onlymarginally higher average SINR per network
user with relatively lower transmit power per user. Lastly,
it is observed that the users U2,U7, and U10 are allocated
relatively lower power than the other network users, since
they are relatively closer to their respective base stations
than the other users (i.e., in agreement with the concept of
NOMA).
Similar observations to Fig. 3 can be made for Scenario

2 (see Fig. 4a and b). However, the average SINR per
user in Scenario 2 is relatively lower than in Scenario 1.

(a)

(b)

Fig. 4 a Average SINR (dB) and b average power allocation coefficients—Scenario 2
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This is attributed to the fact that in Scenario 2, ζq,k =
3,∀Cq,k ∈ Cq, ∀BSq ∈ B, which implies more users can
be assigned to each channel. This in turn means that the
available transmit power over each channel is distributed
over a potentially larger number of users, and hence, each
user’s share of the allocated power is less than that of
Scenario 1. As before, it can be seen from Fig. 4a that
γT is satisfied for all network users under both proposed
SP-PF-SINR-MAX (U-SM) and SP-PF-SINR-MAX (BS-
SM) algorithms as well as the C-J-UA-CA-PA scheme,
but this is not the case for the EPA and CPA schemes
when combined with the U-SM and BS-SM matching
algorithms.
Figure 5 illustrates Jain’s fairness index based on the

average SINR of each network user under both scenarios
[36]. Evidently, under both scenarios, the C-J-UA-CA-PA
scheme achieves the greatest fairness, which is followed
by the proposed SP-PF-SINR-MAX (U-SM) and SP-PF-
SINR-MAX (BS-SM) algorithms, respectively. Contrarily,
the EPA andCPA schemes when combined with theU-SM
and BS-SM matching algorithms achieve the lowest fair-
ness among all schemes. In addition, the different schemes
achieve relatively greater fairness in Scenario 2 than in
Scenario 1. This is because Scenario 2 considers a poten-
tially greater number of user combinations over each
channel, which in turn maximizes proportional fairness
across a greater number of users per channel. Hence, this
confirms that the SP-PF-SINR-MAX maximizes propor-
tional fairness among all network users.
In Fig. 6, the average number of associated users per

base station of the SP-PF-SINR-MAX (U-SM) algorithm is

illustrated. One can see that for Scenario 1 (2), base station
BS3 is associated with 4 users about 90.79% (93.47%) of
the time, which is greater than base stations BS1 and BS2.
More importantly, BS3 is always associated with at least 3
users under both scenarios. In Fig. 7, the average number
of associated users per base station of the SP-PF-SINR-
MAX (BS-SM) is illustrated. As before, for BS3, the aver-
age numbers of associated users for Scenarios 1 and 2 are
82.88% and 84.07%, respectively, which are greater than
those of BS1 and BS2. By comparing Figs. 6 and 7, base
stations BS1 and BS2 under the SP-PF-SINR-MAX (BS-
SM) algorithm are associated with four users more often
than the SP-PF-SINR-MAX (U-SM) algorithm, under both
scenarios. An opposite observation can be made for base
station BS3.
Figure 8 illustrates the percentage of user unassignment

under the U-SM and BS-SM algorithms when combined
with the SP-PF-SINR-MAX for both scenarios. Evidently,
U1 andU8 are the two users with the highest percentage of
unassignment, and this is because they are farthest from
their respective base stations as well as not being in the
overlapping region of other base stations. It is also note-
worthy that although user U6 is located at the cell edge
of all three base stations, the percentage of it being unas-
signed is at most 2%, under both scenarios. This is due
to the fact that it can be allocated a channel by any of
the three base stations, since it falls within the overlap-
ping region of all three base stations. Additionally, all users
exceptU1 andU8 are assigned to a channel and associated
with a base station at least 90% of the time, under both
scenarios.

(a) (b)

Fig. 5 Jain’s fairness index: a Scenario 1 and b Scenario 2
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Average number of associated users—SP-PF-SINR-MAX (U-SM) algorithm. a BS1 (Scenario 1). b BS2 (Scenario 1). c BS3 (Scenario 1). d BS1
(Scenario 2). e BS2 (Scenario 2). f BS3 (Scenario 2)

Figure 9 demonstrates the percentage of channel assign-
ment of usersU3,U4,U5,U6, andU9 under both matching
algorithms (with SP-PF-SINR-MAX) under Scenario 1.
Specifically, one can see that user U3 is paired only with
the channels of base stations BS1 and BS3 (i.e., in C1

and C3). As for user U6, it is paired with all channels,
since it falls within the overlapping region of all three base
stations. Similar observations can be made to the other
users. To summarize, it has been verified that all users can
only be paired with the channels corresponding to cells

(a) (b) (c)

(d) (e) (f)

Fig. 7 Average number of associated users—SP-PF-SINR-MAX (BS-SM) algorithm. a BS1 (Scenario 1). b BS2 (Scenario 1). c BS3 (Scenario 1). d BS1
(Scenario 2). e BS2 (Scenario 2). f BS3 (Scenario 2)
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(a)

(b)

Fig. 8 Percentage of user unassignment: a Scenario 1 and b Scenario 2

where they are located. Similar observations are made for
Scenario 2 in Fig. 10.
Figure 11a and b illustrate the average number of iter-

ations of each stable matching algorithms (with SP-PF-
SINR-MAX) under Scenarios 1 and 2. It is evident that
both algorithms require almost the same number of iter-
ations under the two scenarios. More importantly, the
BS-SM algorithm requires more iterations than its U-
SM counterpart algorithm. In addition, for our simulated
network scenario in Fig. 2, |C1| = |C2| = |C3| = 3,
and |U1| = |U2| = |U3| = 6. Based on Remarks 5,
8, and 13, and for Scenario 1, the execution of the solu-
tion procedure locally at each base station requires a
total of 63 iterations, of which 45 iterations involve the
solution of a convex optimization problem, which can
be solved within polynomial-time complexity. As for sce-
nario 2, each base station involves at total of 123 itera-
tions of the solution procedure, of which 105 iterations
involve the solution a convex optimization problem. In
turn, both SP-PF-SINR-MAX (U-SM) and SP-PF-SINR-
MAX (BS-SM) algorithms can be executed efficiently and
with lower computational complexity than the C-J-UA-

CA-PA scheme. On the other hand, in Fig. 11c, the
percentage of identical stable matchings of the proposed
stable matching algorithms is illustrated. Particularly, it
can be seen that for Scenario 2, the percentage of iden-
tical matchings is slightly less than that of Scenario 1.
This is due to the fact in Scenario 2, there are more
user combinations than in the case of Scenario 1, which
results in identical matchings occurring slightly less often.
In all, increasing the maximum number of users that can
be assigned a channel reduces the possibility of having
identical matchings for both stable matching algorithms.
This also explains the discrepancies in the resulting aver-
age SINR, average number of associated users with each
base station, and percentages of user unassignment and
channel assignment of the proposed stable matching
algorithms.
In summary, the proposed algorithmic solutions have

been shown to yield comparable performance to the C-
J-UA-CA-PA scheme in terms of average SINR per user
and network SINR-based fairness. Additionally, the pro-
posed algorithms have been shown to efficiently associate
users with base stations and assign them to channels.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9 Percentage of channel assignment—Scenario 1. a U3 (U-SM). b U3 (BS-SM). c U4 (U-SM). d U4 (BS-SM). e U5 (U-SM). f U5 (BS-SM). g U6 (U-SM).
h U6 (BS-SM). i U9 (U-SM). j U9 (BS-SM)

More importantly, the proposed solution procedure can
be executed locally at each base station to determine
the proportional fairness maximizing power allocation
and preference lists, while the stable matching algo-
rithms can be efficiently executed among the base stations
to perform user association and channel assignment
with minimal communication overheads and signaling,
and with the added merit of network stability. In other

words, the proposed SP-PF-SINR-MAX (U-SM) and SP-
PF-SINR-MAX (BS-SM) algorithms offer a reasonable
trade-off between average SINR, fairness, complexity,
and stability.

7 Conclusions
In this paper, the problem of joint user association

and channel assignment with proportional fairness
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10 Percentage of channel assignment—Scenario 2. a U3 (U-SM). b U3 (BS-SM). c U4 (U-SM). d U4 (BS-SM). e U5 (U-SM). f U5 (BS-SM). g U6

(U-SM). h U6 (BS-SM). i U9 (U-SM). j U9 (BS-SM)

SINR-based power allocation in downlink multi-cell
NOMA networks has been studied. Particularly, a low-
complexity iterative solution procedure has been devised
to determine the optimal power allocation for pro-
portional fairness SINR-based maximization over each
channel within each cell. Moreover, two many-to-one
polynomial-time complexity matching algorithms have
been proposed to associate users with base stations

and perform channel assignment. To validate the effi-
cacy of the proposed solution procedure and sta-
ble matching algorithms, extensive simulation results
have been presented, which illustrate that the proposed
algorithms efficiently yield comparable SINR per user
to the C-J-UA-CA-PA scheme as well as maximizing
proportional fairness and satisfying QoS constraints.
Finally, the proposed algorithms have been shown to
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(a) (b)

(c)

Fig. 11 Average number of iterations for a U-SM, and b BS-SM, and c Percentage of identical matchings

efficiently assign channels to cell-edge users and espe-
cially those within the overlapping region of multiple
cells.
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