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Abstract

The acoustic vector sensor (AVS) array is a powerful tool for underwater target’s direction-of-arrival (DOA) estimation
without any bearing ambiguities. However, traditional DOA estimation algorithms generally suffer from low signal-
to-noise ratio (SNR) as well as snapshot deficiency. By exploiting the properties of the minimum variance distortionless
response (MVDR) beamformer, a new DOA estimation method basing on matched steering vector searching is
proposed in this article. Firstly, attain the rough estimate of the desired DOA using the traditional algorithms.
Secondly, set a small angular interval around the crudely estimated DOA. Thirdly, make the view direction vary in the
view interval, and for each view direction, calculate the beam amplitude response of the MVDR beamformer, and find
the minimum of the amplitude response. Finally, the pseudo-spatial spectrum is achieved, and the accurate estimate of
the desired DOA can be obtained through peak searching. Computer simulations verify that the proposed method is
efficient in DOA estimation, especially in low SNR and insufficient snapshot data scenarios.

Keywords: Acoustic vector sensor (AVS) array, Direction-of-arrival (DOA) estimation, Minimum variance distortionless
response (MVDR), Pseudo-spatial spectrum, Steering vector

1 Introduction
An acoustic vector sensor (AVS) consists of an omnidir-
ectional acoustic pressure receiver and a dipole-like
directional particle velocity receiver [1]. AVS measures
the three Cartesian components of the particle velocity
as well as the scalar acoustic pressure at a single point in
sound field synchronously and independently [2]. Com-
pared with the standard acoustic pressure sensors, the
intrinsic directivity gives an AVS two advantages. One is
that the directly measured directional information
permits the arrays made up of acoustic vector sensors to
improve the accuracy of target detection and source
localization without increasing array aperture. The other
is that the left/right ambiguity problem, from which an
acoustic pressure sensor array always suffers, never arise.
Even a single AVS is capable of localizing a source in the
whole space [3], which is of great practical significance.
Due to the considerable performance and the huge po-

tential demands in underwater applications, AVS has

developed rapidly in theory and been widely used in
many engineering fields during the last two decades,
especially in passive DOA estimation. Since Nehorai and
Paldi first introduce the AVS array measurement model
to the signal processing research community [4], diverse
types of DOA estimation algorithms have been proposed
[5–13]. Hawkes and Nehorai adapt the MVDR (also
known as Capon) approach to AVS array [5]. Wong and
Zoltowski link the subspace-based methods, which in-
clude the estimation of signal parameters via rotational
invariance technique (ESPRIT) [6], root multiple signal
classification (MUSIC) [7], and self-initiating MUSIC [8]
to the AVS array. The wideband source localization and
wideband beamforming issues are discussed in [9, 10]
respectively. A 2-D DOA estimation algorithm using the
propagator method (PM) is proposed in [11]. Liu et al.
introduce a 2-D DOA estimation method for coherence
sources with a sparse AVS array [12]. Han and Nehorai
put forward a new class of nested vector-sensor arrays
which is capable of significantly increasing the degrees
of freedom [13]. In [14], a modified particle filtering
algorithm for DOA Tracking basing on a single AVS is

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: aoyu08@nudt.edu.cn
College of Electronic Science and Technology, National University of Defense
Technology, Changsha, China

Ao et al. EURASIP Journal on Wireless Communications and Networking
       (2019) 2019:214 
https://doi.org/10.1186/s13638-019-1536-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1536-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:aoyu08@nudt.edu.cn


proposed. With the help of an L-shaped sparsely-distrib-
uted vector sensor array, Si et al. present a novel 2-D DOA
and polarization estimation method to handle the scenario
where uncorrelated and coherent sources coexist [15].
Recently, several novel techniques such as the parallel
profiles with linear dependencies (PARALIND) model [16],
compressed sensing [17], and partial angular sparse repre-
sentation method [18] have been investigated for DOA
estimation using the AVS array.
In the practical ocean environment, the signal-to-noise

ratio (SNR) is usually quite low and the snapshot data is
usually insufficient. These disadvantages may lead to ser-
ious performance degradation for DOA estimation when
the traditional techniques are applied. To overcome these
problems, a number of new algorithms have appeared in
the literature [19, 20–26]. Ichige et al. put forward a modi-
fied MUSIC algorithm by using both the amplitude and
phase information of noise subspace [19]. A new method
for DOA estimation is proposed in [20] through iteratively
subspace decomposition. In [21], by means of signal
covariance matrix reconstruction, the noise subspace is
precisely estimated and the DOA estimation performance
is improved. With the help of the optimization method,
[22] presented a noise subspace-based iterative algorithm
for direction finding. Recently, a few new techniques were
combined with DOA estimation, such as the sparse recov-
ery algorithm [23], the sparse decomposition technique
[24], the compressive sensing theory [25], and the multiple
invariance ESPRIT [26].
In this paper, we investigate the feature of the Capon

approach in depth. The design principle of the MVDR
beamformer can be described as minimizing the variance
of interference and noise at the output of the beamfor-
mer, while ensuring the distortionless response of the
beamformer towards a selected view direction, which is
naturally hoped to equal the direction of the desired
source. However, in the case that the view direction does
not point to the desired source precisely, even a very
slight mismatch will lead the phenomenon known as
signal cancellation [27], i.e., the beamformer will misin-
terpret the desired signal as an interference and put a
null in the direction of the desired signal. Generally
speaking, signal cancellation has an unfavorable effect
on beamforming and DOA estimation, and several stud-
ies have been carried out on suppressing such effects
[28–30]. However, in this paper, we find that the signal
cancellation phenomenon can be utilized to attain a
better performance of DOA estimation by searching the
matched steering vector. What is more, differing from
all of the methods mentioned in [19, 20–26], our study
is based on the AVS array; hence, the bearing ambiguity
is removed.
The rest part of this paper is structured as follows. In

Section 2, we state the mathematical model for the

measurements of an AVS array. In Section 3, we propose
our DOA estimation algorithm, give its steps, and
analyze the relation between the presented algorithm
and the MVDR algorithm. In Section 4, we show some
computer simulation experiments and discuss about the
results. Finally, we conclude this paper in Section 5.

2 Measurement model
We consider a horizontal linear array which consists of
M acoustic vector sensors, with a uniform element spa-
cing d. Let K mutually uncorrelated narrowband point
sources with common center frequency ω be located at
azimuths φk and elevationsθk(k = 1,2,…,K) with respect
to the first sensor of the array. In addition, φk ∈ [−π, π),
θk ∈ [0, π]. In this paper, we only concern on the azimuth
estimation. Figure 1 exhibits the first AVS of the array
and the wave vector of one of the impinging signals,
which is represented as k, in the Cartesian coordinate
system. The density of the water medium ρ and the
sound speed in the medium c are assumed to be con-
stant and prior known. The AVS array is assumed to be
in the far field with respect to all sources, ensuring that
the wave fronts at the array are planar.
The acoustic pressure component of the kth source

signal at the first sensor of the array is defined as [31]

sk tð Þ ¼ pk tð Þ exp iωtð Þ ð1Þ

where pk(t) is a zero-mean complex Gaussian process,
which denotes the slowly varying random pressure enve-

lope of the kth source signal. And its variance σ2k ¼ E½
jpkðtÞj2� denotes the power of sk(t).
Let a(φk) represent the M-by-1 steering vector, which

is the array’s response to a unit amplitude plane wave
from the horizontal direction φk, of an equivalent pres-
sure sensor array, i.e., an array with all of the vector

Fig. 1 The first AVS of the array and the wave vector of the impinging
signal in the Cartesian coordinate system
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sensors being replaced by pressure sensors hypothetic-
ally. Thus, we have

a φk

� � ¼ 1; e−i2πd cosφk=λ;…; e−i M−1ð Þ2πd cosφk=λ
h iT

ð2Þ

where λ stands for the wavelength. Besides, let uk repre-
sent the 4-by-1 response vector of a single AVS to the
kth source, which is defined as

uk ¼ 1; cosφk sinθk ; sinφk sinθk ; cosθk
� �T ð3Þ

The output of the mth sensor at the moment of t is a
4-by-1 vector, which is expressed as

xm tð Þ ¼
XK
k¼1

am φk

� �
uksk tð Þ þ nm tð Þ ð4Þ

where am(φk) denotes the mth element of a(φk), and

nm tð Þ ¼ np tð Þ
nv tð Þ
� �

ð5Þ

In Eq. (5), np(t) and nv(t) represent the noise of the
acoustic pressure receiver and the particle velocity re-
ceiver respectively. Note that nv(t) is a 3-by-1 vector.
The output of the AVS array is a 4M-by-1 vector by

stacking the M 4-by-1 measurement vectors of each sen-
sor. It can be written as

X tð Þ ¼ xT1 tð Þ;…; xTM tð Þ� �T
¼ a φ1ð Þ � u1;…; a φKð Þ � uK½ �S tð Þ þN tð Þ ð6Þ

where

S tð Þ ¼ s1 tð Þ; s2 tð Þ;…; sK tð Þ½ �T ð7Þ
contains the K source signals, and

N tð Þ ¼ nT
1 tð Þ;nT

2 tð Þ;…;nT
M tð Þ� �T ð8Þ

Both the signal vector S(t) and the noise vector N(t)
are assumed to be independent identically distributed
(i.i.d.), zero-mean, complex Gaussian processes. More-
over, we assume that S(t) and N(t) are independent with
each other. They can be completely characterized by
their covariance matrices

Rs ¼ E S tð ÞSH tð Þ� 	 ¼ diag σ2k
� � ð9Þ

Rn ¼ E N tð ÞNH tð Þ� 	 ¼ IM � σ2p 0

0 σ2vI3

� �
ð10Þ

where σ2
p and σ2v represent the variances of the noise of

the acoustic pressure receiver and particle velocity re-
ceiver respectively, and IM denotes the Mth-order iden-
tity matrix.

We define the steering vector of the AVS array, which
is represented by ψ(φk) as the Kronecker product of
a(φk) and uk. That is to say

ψ φk

� � ¼ a φk

� �� uk ð11Þ

Thus, Eq. (6) can be rewritten as

X tð Þ ¼ ψ φ1ð Þ;…;ψ φKð Þ½ �S tð Þ þN tð Þ
¼ ΨS tð Þ þN tð Þ ð12Þ

The covariance matrix of the output data X(t) is

R ¼ E X tð ÞXH tð Þ� 	 ¼ ΨRsΨ
H þ Rn ð13Þ

3 Method
3.1 Signal cancellation of MVDR beamformer
Without loss of generality, we assume that among the K
source signals, one of them is the desired signal, and the
others are interference. Let ~φ represent the desired dir-
ection, which is unknown and to be estimated.
With regard to the MVDR beamforming method, the

problem of solving the optimal weight vector w can be
expressed as

min
w

wHRnw; s:t: wHψ φð Þ ¼ 1 ð14Þ

where φ denotes the view direction, and ψðφÞ represents
the corresponding view steering vector. Equation (14)
implies that signal from the view direction φ will pass
the beamformer without distortion; meanwhile, signals
from any other direction will be suppressed.
With the help of the Lagrange multiplier approach, w

can be solved as

w ¼ R−1
n ψ φð Þ

ψH φð ÞR−1
n ψ φð Þ ð15Þ

In practice, the noise covariance matrix Rn can hardly
be estimated; therefore, we replace Rn by the estimation
value of the data covariance matrix, which is

R̂ ¼ 1
N

XN
n¼1

X nð ÞXH nð Þ ð16Þ

where N denotes the number of snapshots.
Given the weight vector w, the beam response of a

beamformer is defined as

H φð Þ ¼ wHψ φð Þ ð17Þ

Plug Eq. (15) into Eq. (17), and we obtain the beam
amplitude response of the MVDR beamformer, which is
expressed as
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H φð Þj j ¼ ψH φð ÞR̂−1
ψ φð Þ

ψH φð ÞR̂−1
ψ φð Þ












 ð18Þ

Consider a desired direction-centered angular interval

Φ ¼ ~φ−Δφ; ~φþ Δφ½ � ð19Þ
as the view interval. Δφ is a small degree and stands for
the radius of Φ. Value of the view direction φ varies
within the range of Φ. If φ≠~φ , the MVDR beamformer
would treat the desired signal as an interference signal
and suppress it; thus, in the beam pattern of ∣H(φ)∣,
there will exist a steep null at the desired direction. This
phenomenon is the so-called signal cancellation. On the
contrary that if φ ¼ ~φ, according to the constraint in Eq.
(14), ∣H(φ)∣will approximately equal to one within the
range of Φ.
Here, we demonstrate the signal cancellation

phenomenon of the MVDR beamformer using a simple
computer simulation. Assume that ~φ ¼ 30∘ , Δφ = 5∘, and
Φ = [25∘, 35∘]. Let φ be 25∘, 27.5∘, 30∘, 32.5∘, and 35∘re-
spectively. For each value of φ , the beam pattern of
∣H(φ)∣ within the whole horizontal interval [−180∘,
180∘] is plotted in Fig. 2a, where the text “φview” stands
forφ. The same beam patterns within the range of Φ are
plotted in Fig. 2b.
It is evident in Fig. 2b that when φ ¼ ~φ , i.e., 30∘, we

have

j H φð Þ j ≈ 1; φ∈Φ ð20Þ
However, when φ≠~φ , there are obvious nulls around

30∘ in the beam patterns.
This characteristic of the MVDR beamformer can be

exploited in finding the desired direction. In the next
subsection, the principles of a new DOA estimation al-
gorithm is presented.

3.2 DOA estimation
In the case of φ≠~φ , define the minimum of the beam
amplitude response ∣H(φ)∣ within Φ as Hmin , which is
expressed as

Hmin ¼ min
φ∈Φ

ψH φð ÞR̂−1
ψ φð Þ

ψH φð ÞR̂−1
ψ φð Þ












; φ≠~φ ð21Þ

According to the previous analysis, as there exists a
null within Φ, thus we have

Hmin ≈ 0 ð22Þ

If φ ¼ ~φ , define the minimum of ∣H(φ)∣ within the
interval Φ as ~Hmin, which is expressed as

~Hmin ¼ min
φ∈Φ

ψH ~φð ÞR̂−1
ψ φð Þ

ψH ~φð ÞR̂−1
ψ ~φð Þ












 ð23Þ

According to the previous analysis, we have

~Hmin ≈ 1 ð24Þ

It can be concluded from Eqs. (22) and (24) that

~Hmin≫Hmin ð25Þ

Equation (25) indicates that within Φ, if and only if φ
¼ ~φ , the minimum of the amplitude response reaches
the maximum. Since ∣H(φ)∣ is determined by the view
steering vector, i.e., ψðφÞ, the above necessary and suffi-
cient condition is equivalent to the statement that the
view steering vector matches the desired steering vector:

ψ φð Þ ¼ ψ ~φð Þ ð26Þ

We can construct such a worst-case performance
optimization problem as

Fig. 2 Beam patterns of the beam amplitude responses with different view directions. a In the angular interval of [−180∘, 180∘]. b In the angular
interval of [25∘, 35∘]
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max
φ

min
φ∈Φ

ψH φð ÞR̂−1
ψ φð Þ

ψH φð ÞR̂−1
ψ φð Þ












; s:t:φ∈Φ ð27Þ

In Eq. (27), once the maximum is found, the desired
direction is found thereupon. We name this method
matched steering vector searching (MSVS) based DOA
estimation algorithm.
Equation (27) can be extended to problems involving

multiple desired sources. Assume that there are J desired
sources among all the K source signals. For the jth
source signal, the desired DOA is~φ j , and the view inter-

val isΦ j ¼ ½~φ j−Δφ; ~φ j þ Δφ� , where j = 1,2,…,J. There-

fore, the DOA estimation problem for the jth desired
signal can be described as

max
φ

min
φ∈Φ j

ψH φð ÞR̂−1
ψ φð Þ

ψH φð ÞR̂−1
ψ φð Þ












; s:t:φ∈Φ j ð28Þ

Furthermore, the maximum finding problem in Equation
(28) can be regarded as a spectrum peak searching prob-
lem. We can define the pseudo-spatial power spectrum as

PMSVS φð Þ ¼ min
φ∈Φ j

ψH φð ÞR̂−1
ψ φð Þ

ψH φð ÞR̂−1
ψ φð Þ












; φ∈Φ j ð29Þ

Then, the angles corresponding to the peaks of the
spectra are estimation values of the desired directions.

3.3 Algorithm implementation
In practice, to make the view intervals certain, first of all,
we shall get the rough estimates of the desired directions
using the traditional algorithms such as MUSIC or
MVDR. After that, we can establish the view intervals bas-
ing on the rough estimates. For the jth view interval Φj,
we sample it uniformly for L sample points and each sam-
ple point represents a view direction. The larger L is, the
larger the computing load is and the higher the estimation
accuracy is. Then, calculate the pseudo-spatial power
spectrum according to Eq. (29), and search for the peak to
acquire the accurate estimate of the desired direction. The
steps of the MSVS algorithm are listed as follows.

3.4 Relation between MSVS and MVDR Algorithm
Given the weight vector w(φ) of a beamformer and the
covariance matrix of the output data R, the output
power of the beamformer is

P φð Þ ¼ wH φð ÞRw φð Þ ð30Þ
Plug Eq. (15) into Eq. (30), and we can obtain the

beam scanning spatial spectrum of the MVDR
beamformer:

PMVDR φð Þ ¼ 1

ψH φð ÞR̂−1
ψ φð Þ

ð31Þ

In Eq. (31), R has been replaced by its estimation value

R̂ , which is defined by Eq. (16). Plug Eq. (31) into Eq.
(29), and the pseudo-spatial spectrum of the MSVS algo-
rithm can be restated as

PMSVS φð Þ ¼ PMVDR φð Þ
� min
φ∈Φ j

ψH φð ÞR̂−1
ψ φð Þ




 


;φ∈Φ j ð32Þ

Define a window function as

W j φð Þ ¼ min
φ∈Φ j

ψH φð ÞR̂−1
ψ φð Þ




 


; φ∈Φ j ð33Þ

Then, Eq. (32) can be rewritten as

PMSVS φð Þ ¼ PMVDR φð Þ �W j φð Þ; φ∈Φ j ð34Þ
Equation (34) indicates that the MSVS pseudo-spatial

spectrum can be seemed as the windowed MVDR spatial
spectrum. In particular, if W jðφÞ ≡ 1 , the MSVS algo-
rithm would turn into the MVDR algorithm.
In order to further analyze the performance of the

MSVS algorithm, we shall investigate the characteristics
of the window function W jðφÞ.
For the jth desired signal, if φ≠~φ j , according to the

preceding analysis, the amplitude response will have a
null in the direction of ~φ j. Thus, in this case,

W j φð Þ ¼ ψH φð ÞR̂−1
ψ ~φ j

� �


 


; φ∈Φ j; φ≠~φ j ð35Þ

If φ ¼ ~φ j, the main lobe of the amplitude response will

lie in the view interval Φj. In addition, as Φj is a rela-
tively narrow interval, the amplitude response can be
approximately seemed as constant within the range of
Φj. Hence, the window function can be approximately
expressed as

W j φð Þ ≈ ψH ~φ j

� �
R̂
−1
ψ ~φ j

� �


 


; φ ¼ ~φ j ð36Þ

By combining Eqs. (35) and (36), Eq. (33) can be re-
written as
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W j φð Þ ¼ ψH φð ÞR̂−1
ψ ~φ j

� �


 


; φ∈Φ j ð37Þ

Equation (37) implies that W jðφÞ can be seemed as
the modulus of the weighted inner product of the view
steering vector ψðφÞ and the desired steering vector ψð
~φ jÞ . Here, we present Theorem 1, the proof of which is

postponed into the Appendix.
Theorem 1 Assume that N denotes the number of

snapshots, M denotes the number of sensors, and N≫M.

W jðφÞ ¼ jψHðφÞR̂−1
ψð~φ jÞj;φ∈Φ j . Then, if and only if φ

¼ ~φ j , the window function W jðφÞ reaches the

maximum.
Therefore, the window function W jðφÞ always reach

the maximum in the desired direction. Since the MSVS
pseudo-spatial spectrum is windowed MVDR spatial
spectrum, the peak of the MSVS pseudo-spatial
spectrum shall be sharper, and the MSVS algorithm shall
have a higher estimation accuracy.
In the next section, we will validate the advantages of

the MSVS approach by simulation experiments.

4 Results and discussion
Here, we state some common assumptions. The array is
an 8-element uniform linear AVS array. Element spacing
d is half-wavelength. There are two source signals im-
pinging on the AVS array, and their azimuths are 30∘

and 60∘ respectively. We treat the former signal as the
desired signal, whereas the latter as interference. Both
signals have equal power. We set the view interval as
[25∘, 35∘]. As we only concern on the azimuth estimation,
to simplify the problem, assume that for all of the
sources, the elevations are 90∘ and are pre-known so that
the array and the sources are in the same horizontal
plane. The angular searching step is 0.1∘.

4.1 Cramer-Rao bound
In the case of a single source, the Cramer-Rao bound
(CRB) on the DOA parameters with an AVS array is
given in [5]:

CRB φ; θð Þ ¼ 1
2N

1
MββI

1þ 1
MββI

 �
ΓþΠð Þ−1 ð38Þ

where β ¼ σ2
s =σ

2
p is the SNR at each pressure receiver,

βI = (1 + 1/η) is the effective increase in SNR, and η ¼ σ2
v

=σ2p is the ratio of noise powers for the particle velocity

receiver and the pressure receiver. If all the noise is in-
ternal receiver noise, then η is a direct reflection of the
relative noise floors of the two types of receiver, and the
technology is available to make them approximately
equal [32], i.e., η = 1. If ambient noise is present, then
η < 1 since the particle velocity receivers filter out some

of the unwanted noise, for example, η = 1/3 for spheric-
ally isotropic noise [33]. In order to simulate the under-
water environment, we assume that η = 1/3 in the
following simulations consistently.
When the origin of the coordinate system is the array

centroid, Γ and Π in Eq. (38) are given by

Γ ¼ 4π2

M

sin2θ
X
m

rHmvφ
� �2

sinθ
X
m

rHmvφr
H
mvθ

sinθ
X
m

rHmvφr
H
mvθ

X
m

rHmvθ
� �2

2
64

3
75

ð39Þ

Π ¼ 1
1þ η

sin2θ 0
0 1

� �
ð40Þ

wherermis the position vector of the mth sensor and in
unit of wavelength. Assume that the sensors are placed
along the x-axis and the array centroid is at the origin of
the coordinate system, we have

r1 ¼ −
7
4
; 0; 0

 �T

; r2 ¼ −
5
4
; 0; 0

 �T

r3 ¼ −
3
4
; 0; 0

 �T

; r4 ¼ −
1
4
; 0; 0

 �T

r5 ¼ 1
4
; 0; 0

 �T

; r6 ¼ 3
4
; 0; 0

 �T

r7 ¼ 5
4
; 0; 0

 �T

; r8 ¼ 7
4
; 0; 0

 �T

ð41Þ

In addition, in Eq. (39),

vφ ¼ ∂h=∂φð Þ= sinθ ð42Þ

vθ ¼ ∂h=∂θ ð43Þ

where h denotes the direction vector of the source.

h ¼ cosφ sinθ; sinφ sinθ; cosθ½ �T ð44Þ

Combining Eqs. (39)–(44) under assumptions of M = 8
and θ = 90∘, Γ and Π can be calculated as

Γ ¼ π2

2

21
2

sin2φ 0

0 0

" #
ð45Þ

Π ¼ 1
1þ η

1 0
0 1

� �
ð46Þ

Plug Eqs (45) and (46) into Eq. (38), and we can obtain
the CRB on azimuth estimation in this context:
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CRB φð Þ ¼ 1
2N

1
8ββI

1þ 1
8ββI

 �
21π2 sin2φ

4
þ 1
1þ η

 �−1

ð47Þ

4.2 Simulation experiments
Firstly, we compare the spatial spectra of the proposed
MSVS algorithm and some conventional DOA estima-
tion approaches, including MVDR, PM, and MUSIC.
Figure 3 displays the spatial spectra with SNR = 15 dB

and N = 200. In Fig. 3, we can find that for all of the four
algorithms, there exist clear spectrum peaks around the
desired direction, and among them, the proposed one
has the sharpest spectrum peak.
The spatial spectra under deteriorated conditions, i.e.,

SNR = − 15 dB and N = 50 are presented in Fig. 4, from
which we can find that the spectrum peak of the PM
algorithm deviates from the desired DOA seriously. Be-
sides, the spatial spectra of MVDR and MUSIC are
nearly flat. Unlike these methods, the spatial spectrum
of the MSVS algorithm still displays a quite clear peak
around 30∘. The 3 dB bandwidth of the MSVS algorithm
is much narrower than others. This simulation experi-
ment illustrates that the proposed algorithm works
effectively even with low SNR and short snapshots. This
is due to its sensitivity to the matching degree of the
steering vectors. Specifically speaking, when φ deviates
from ~φ, the view steering vector mismatches the desired
steering vector, and the MSVS spectrum corresponds to
the null of the amplitude response within the view inter-
val, which is a very small value. However, when φ equals
~φ , the steering vectors are matched. In this case, the
amplitude response within the view interval keeps
approximately equalling a large value, causing that the

MSVS spectrum shapes a sharp peak in the desired
direction.
Next, we adopt 100 times of Monte Carlo trials to

assess the DOA estimation performances of the above-
mentioned algorithms. Besides, ESPRIT based on AVS
array is put in the comparison. Define the root mean
square error (RMSE) as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
100

X100
m¼1

φ
_

m−~φ
� �2vuut ð48Þ

where φ
_

m stands for the estimate value of the desired
DOA in the mth Monte Carlo trial.
Figure 5 shows the DOA estimation performance com-

parison of the proposed algorithm, ESPRIT, MVDR, PM,
and MUSIC approaches, and the CRB under different
SNR, with number of snapshots N equals 100. Figure 6
depicts the same comparison with different N, and the
SNR is fixed on − 25 dB.
Figures 5 and 6 illustrate that the performances of all

the algorithms degrade with SNR getting lower or N
getting smaller. However, it is clearly indicated in both
figures that the MSVS algorithm performs better than
others under every simulation condition. It can be seen
in Fig. 5 that even the SNR is as low as − 30 dB, RMSE
of the proposed algorithm is less than 1∘. Other algo-
rithms cannot achieve such a performance unless the
SNR increases at least to about − 5 dB. Figure 6 gives
similar results.
In the next two experiments, we investigate the anti-

interference capability of the MSVS algorithm. In the
previous simulations, we assume that the power of the
interference signal equals the power of the desired sig-
nal, i.e., the interference-to-signal ratio (ISR) is 0 dB.
Now, we increase the ISR to 10 dB, 20 dB, and 30 dB

Fig. 3 Spatial spectra comparison, SNR = 15 dB, N = 200

Fig. 4 Spatial spectra comparison, SNR = − 15 dB, N = 50
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successively, with other simulation conditions remaining
unchanged. The results are displayed in Fig. 7.
Then, we increase the number of the interference sig-

nals. In Fig. 8, “1 interference” corresponds to the initial
assumptions. “2 interferences” means that we add a
source signal from the azimuth of 120∘; “3 interferences”
for an added source signal from −30∘, and finally “4 in-
terferences” for an added source signal from −120∘. All
of the ISRs keep to be 0 dB.
Figures 7 and 8 illustrate that the performance of the

MSVS algorithm is basically independent of the number
and intensity of interference. This phenomenon is easy
to explain. From the analysis of Section 3, we can see
that the MSVS algorithm is essentially a MVDR-based
method. Therefore, the MSVS algorithm inherits the
strong ability to suppress the interference of the MVDR
beamformer.

5 Conclusions
A new DOA estimation algorithm basing on the
matched steering vector searching has been presented in
this paper. The paper has described the measurement
model of an AVS array. After studying on the signal
cancellation of the MVDR beamformer, we present our
algorithm, introducing its principles and steps to imple-
ment. We have also investigated the relation between
the proposed algorithm and MVDR method. Then, we
conduct the simulation experiments. It is verified that
the proposed algorithm has the sharpest spectrum peak
and can obtain the best estimation accuracy when com-
pared with the conventional DOA estimation algorithms,
especially under conditions of low SNR and short snap-
shots. What is more, the proposed algorithm has a
strong anti-interference capability. The power or num-
ber of the interference can hardly affect the performance

Fig. 5 RMSE versus SNR, N = 100

Fig. 6 RMSE versus number of snapshots, SNR = − 25 dB

Fig. 7 RMSE with different ISR, N = 100

Fig. 8 RMSE with different interference number, N = 100
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of our algorithm. In the future, we shall research the
joint azimuth angle and elevation angle estimation using
the proposed algorithm.

6 Appendix
6.1 Proof of Theorem 1

If the number of snapshots N is large enough, R̂ ap-
proximately equals R. Thus, Eq. (37) can be rewritten as

W j φð Þ ¼ ψH φð ÞR−1ψ ~φ j

� �


 


; φ∈Φ j ð49Þ

Firstly, for simplicity, assume that there exists only
one source signal, and the desired direction is ~φ1. In this
case, the covariance matrix of the output data R1 is
expressed as

R1 ¼ σ21ψ ~φ1ð ÞψH ~φ1ð Þ þ Rn ð50Þ
According to Woodbury’s inversion formula, the in-

verse of R1 can be expressed as

R−1
1 ¼ R−1

n −
σ21R

−1
n
~ψ1~ψ

H
1 R

−1
n

1þ σ21~ψ
H
1 R

−1
n
~ψ1

ð51Þ

where ~ψ1 is abbreviated for ψð~φ1Þ, and ~ψH
1 is abbreviated

for ψHð~φ1Þ. Plug Eq. (51) into Eq. (49), and we have

W 1 φð Þ ¼ ψHR−1
n
~ψ1−σ

2
1
ψHR−1

n
~ψ1~ψ

H
1 R

−1
n
~ψ1

1þ σ2
1~ψ

H
1 R

−1
n
~ψ1














¼ ψHR−1
n
~ψ1 1−σ21

~ψH
1 R

−1
n
~ψ1

1þ σ21~ψ
H
1 R

−1
n
~ψ1

 !












ð52Þ

where ψH is abbreviated for ψHðφÞ.
Rn is defined by Eq. (10); thus, its inverse is easy to

obtain:

R−1
n ¼ IM �

1
σ2p

0

0
1
σ2v

I3

2
664

3
775 ð53Þ

We abbreviate R−1
n as

R−1
n ¼ IM � Ru ð54Þ

According to Eqs. (11) and (54), we have

~ψH
1 R

−1
n
~ψ1 ¼ ~a1 � ~u1ð ÞH IM � Ruð Þ ~a1 � ~u1ð Þ
¼ ~aH1 � ~uH

1 Ru
� �� �

~a1 � ~u1ð Þ
¼ ~aH1 ~a1
� �� ~uH

1 Ru~u1
� � ð55Þ

According to Eqs. (2), (3), and (53), we have

~aH1 ~a1 ¼ M ð56Þ
and

~uH
1 Ru~u1 ¼ 1

σ2p
þ 1
σ2v

ð57Þ

Thus,

~ψH
1 R

−1
n
~ψ1 ¼ M

1
σ2
p
þ 1
σ2v

 !
ð58Þ

In Eq. (52), we represent the constant factor by a capi-
talized C:

C ¼ 1−σ21
~ψH
1 R

−1
n
~ψ1

1þ σ21~ψ
H
1 R

−1
n
~ψ1

ð59Þ

and then Eq. (52) can be rewritten as

W 1 φð Þ ¼ ψH φð ÞCR−1
n ψ ~φ1ð Þ

 

 ð60Þ

Since CR−1
n is a diagonal matrix with all of the non-

zero elements being constant, W 1ðφÞ reaches the max-
imum if and only if ψðφÞ matches ψð~φ1Þ , i.e., φ equals
~φ1.
Secondly, assume that there exist two source signals.

One is the desired signal, with the azimuth angle ~φ1, and
the other is an interference signal with the azimuth
angle φ2. In this case, the covariance matrix of the out-
put data R2 is expressed as

R2 ¼ R1 þ σ22ψ2ψ
H
2 ð61Þ

By using Woodbury’s inversion formula, the inverse of
R2 can be expressed as

R−1
2 ¼ R−1

1 −
σ22R

−1
1 ψ2ψ

H
2 R

−1
1

1þ σ22ψ
H
2 R

−1
1 ψ2

ð62Þ

Plug Eq. (62) into Eq. (49), and we have

W 1 φð Þ ¼ ψHR−1
1
~ψ1−σ

2
2

ψHR−1
1 ψ2

1þ σ22ψ
H
2 R

−1
1 ψ2

ψH
2 R

−1
1
~ψ1













ð63Þ

According to Eqs. (51) and (59), we have

ψH
2 R

−1
1
~ψ1 ¼ ψH

2 CR
−1
n
~ψ1 ð64Þ

Here, we assume that~φ1andφ2are far apart, leading the
weighted inner product of the corresponding steering
vectors to be a very small value, that is

ψH
2 CR

−1
n
~ψ1 ≈ 0 ð65Þ

Plug Eq. (65) into Eq. (63), and we have

W 1 φð Þ ≈ ψHR−1
1
~ψ1



 

 ð66Þ
Therefore. W 1ðφÞ still reaches the maximum if and

only if φ equals ~φ1. Similarly, we can deduce that if there
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are K source signals, and the interference signals are far
apart from the desired signal in direction, the window

function would always be expressed by jψHR−1
1
~ψ1j.

This completes the proof of Theorem 1.
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