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Abstract

Over the past years, with the development of hardware and software, the intelligent sensors, which are deployed in
the wearable devices, smart phones, and etc., are leveraged to collect the data around us. The data collected by the
sensors is analyzed, and the corresponding measures will be implemented. However, due to the limited computing
resources of the sensors, the overload resource usage may occur. In order to satisfy the requirements for strong
computing power, edge computing, which emerges as a novel paradigm, provides computing resources at the edge
of networks. In edge computing, the computing tasks could be offloaded from the sensors to the other sensors for
processing. Despite the advantages of edge computing, during the offloading process of computing tasks between
sensors, private data, including identity information and address, may be leaked, which threatens personal security.
Hence, it is important to avoid privacy leakage in edge computing. In addition, the time consumption of offloading
computing tasks affects the using experience of customers, and low time consumption makes contributions to the
development of applications which are strict with time. To satisfy the above requirements, a time-efficient offloading
method (TEO) with privacy preservation for intelligent sensors in edge computing is proposed. Technically, the time
consumption and the offloading of privacy data are analyzed in a formalized way. Then, an improved of Strength Pareto
Evolutionary Algorithm (SPEA2) is leveraged to optimize the average time consumption and average privacy entropy
jointly. At last, abundant experimental evaluations are conducted to verify efficiency and reliability of our method.
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1 Introduction
Nowadays, in order to make the world more intelligent
and more informative, smart phones, autonomous vehi-
cles, unmanned aerial vehicles, etc. are developed for the
convenient lives of human beings [1, 2]. Many acces-
sories make up these products, and one of the important
accessories is the sensor [3, 4]. With the developments
of hardware and software, the sensors become more and
more intelligent. Nowadays, the intelligent sensor, which
is a detecting device, senses themeasured information and
transforms the sensed information into required forms
to meet the requirements of transmission, process, and
storage. In addition, the intelligent sensors have different
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types, including gas sensor, humidity sensor, and radiation
sensor, and each type sensor has its own function [5–7].
The accuracy of analyzing the results is based on the

information volume, which is collected from different
intelligent sensors [8, 9]. In order to guarantee the preci-
sion tomake corresponding judgements, different types of
intelligent sensors are deployed in various products and
areas to collect all sorts of data based on their functions
[10, 11]. However, due to the limited computing resources
of sensors, the sensors cannot process all the collected
data. Fortunately, edge computing, which emerges as a
novel computing paradigm, provides computing resources
at the edge of the networks. In edge computing paradigm,
the computing tasks of sensors could be offloaded to the
other sensors for processing. In this way, the efficiency of
processing the collected data is greatly improved [12–14].
Despite the benefits, the time consumption is a weak

point of edge computing. Though the delay, which is
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caused by the time consumption, in edge computing per-
forms better than that in traditional cloud computing,
the time consumption still makes effects on the using
experience of the customers and the development of the
industries with strict time limitation [15, 16]. For example,
the sensors used in autonomous vehicles are strict with
time. If the delay cannot meet the restrictions, traffic acci-
dents will happen, and the safety of the passengers cannot
be guaranteed [17, 18]. On a condition that the time con-
sumption is low, more applications and features could be
developed and put into industry [19]. Therefore, during
the task offloading between sensors, how to minimize the
time consumption is an important problem to be solved.
In addition, it is possible that the privacy information

in the computing tasks is leaked during the transmis-
sion. Nowadays, the personal information is significant
to everyone, and people have a strong awareness of pri-
vacy protection [20–22]. However, based on the present
privacy-protecting techniques leveraged in edge comput-
ing, the privacy leakage can hardly be avoided [23, 24].
It is more likely that customers have the possibility to be
harassed and endanger personal safety when the personal
sensitive information in the computing tasks, which are
offloaded between sensors in edge computing, is leaked
[25, 26]. Besides, the data collected by the sensors are full
of the privacy information of customers and have affected
all the aspects in our lives, including the critical infrastruc-
tures (e.g., emergency systems), daily life (e.g., transporta-
tion), and personal information (e.g., address). On this
condition, more sound privacy and security mechanisms
need to be considered comprehensively.
The benefit from the edge computing paradigm is that

the services of the intelligent sensors could be offloaded
the other sensors for processing. In this way, the burden of
processing a large quantity of services produced by all the
sensors in real time could be eased. However, during the
transmission of the services, the time consumption and
privacy protection are two important aspects which need
to be improved. On the one hand, the time consumption
affects the using experience of customers and the devel-
opment of the industries which are strict with time. The
long-time consumption leads to the waste of time and
the displeasure of customers. On the other hand, if the
content of the offloading data is stolen during the trans-
mission process, the private information in the tasks may
be leaked. Therefore, how to release the privacy and secu-
rity problems is waiting to be solved for the intelligent
sensors in edge computing.
In this paper, the main contributions are listed as

follows:

• Analyze the data offloading problem, which is
defined as a multi-objective optimization problem,
with the time consumption and the privacy entropy.

• The improving Strength Pareto Evolutionary
Algorithm (SPEA2) is leveraged to make optimization
of the time consumption and privacy entropy at the
same time. Then, simple additive weighting (SAW)
and multiple criteria decision-making (MCDM)
methods are adopted to obtain the optimal schedule
strategy.

• Systematic experiments are carried out to
demonstrate the effectiveness and efficiency of our
proposed method.

The reminder of this paper is organized as follows. In
Section 2, the mathematic modeling and the formula-
tion are described. Section 3, a time-efficient offload-
ing method with privacy preservation, named TEO, is
developed for intelligent sensors in edge computing. In
Section 4, simulation experiments and comparison anal-
ysis are presented. In Section 5, related work is summa-
rized. Finally, in Section 6, conclusion and future work are
outlined.

2 Systemmodel and problem formulation
In this section, basic definitions and concepts for sensors
in edge computing with privacy preservation are intro-
duced. In addition, the time consumption and privacy
entropy are also analyzed. Key terms and descriptions are
shown in Table 1.

2.1 Resource model
The edge computing paradigm has the ability to satisfy
the calculating problems of sensors in edge computing,
which cannot avoid the privacy leakage during the trans-

Table 1 Key parameters and descriptions

Terms Descriptions

N The number of sensors

MD The set of sensors,MD = {md1,md2, . . . ,mdN}
mdn The nth sensor in MD

N The number of computing tasks

K The total types of divided data

CT The set of computing tasks, CT = {ct1, ct2, . . . , ctN}
SD The set of divided data in computing tasks,

SD = {
sdn,1, sdn,2, . . . , sdn,K

}

sn ,k The size of transmitted data with the kth type for ctn

pn,k The probability of transferring kth type data for ctn

tn,k The time of kth data transmission for ctn

ctn,k The calculation time of kth type data

V1 The data transmission rate between sensors

V2 The data calculation rate of sensors

T The average time of data transmission
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mission of computing tasks between sensors. In addition,
the data transmission rate in edge computing is denoted
as V, and T represents the average time of data trans-
mission. Figure 1 describes the system framework for
data offloading of intelligent sensors in edge comput-
ing. In this framework, we consider there are N sensors,
denoted as MD = {md1,md2, . . . ,mdN }, and M com-
puting tasks corresponded with the sensors, denoted as
CT = {ct1, ct2, . . . , ctN }, in this scenario. In each com-
puting task, there are K types of divided data, and the
probability of transferring kth type data is denoted as pk.
In addition, the data transmission rate in edge computing
is denoted as V, and T represents the average time of data
transmission.

2.2 Time consumption model
During the offloading of computing tasks, the time con-
sumption is an important value, which needs to be taken
into consideration. The time consumptionmainly consists
of the time consumed by the transmission and the calcula-
tion of the services offloaded from the intelligent sensors.
Calculating the time consumption of ctn is based on the
size of transmitted data with the kth type for ctn and the
possibility of transferring kth type data.
The possibility of offloading the types of data is accord-

ing to the Poisson distribution. The possibility of offload-
ing kth type data in ctn is denoted as pn,k, and pn,k is
calculated by

pn,k = λctn,k

ctn,k!
e−λ, k = 0, 1, 2, . . . ,K . (1)

The transmission time of kth type data is calculated by

tn,k = 1
V1

sn,k. (2)

The transmission time of each computing task is calcu-
lated by

tn =
K∑

k=1

pn,ktn,k,n = 0, 1, 2, . . . ,N . (3)

The calculation time of kth type data is calculated by

ctn,k = 1
V2

sn,k. (4)

The calculation time of each computing task is based on
the possibility of offloading kth type data and the time of
kth type data, which is calculated by

ctn =
K∑

k=1

pn,kctn,k,n = 0, 1, 2, . . . ,N . (5)

Finally, the average time consumption of the computing
tasks is calculated by

T = 1
N

·
N∑

n=1

(tn + ctn). (6)

2.3 Privacy entropy model
To avoid the privacy leakage during the offloading of the
computing tasks, the privacy entropy is leveraged to pro-
tect the privacy data. The computing tasks are divided into
several types data to measure the uncertainty of the com-
puting tasks. The larger the privacy entropy is, the more
confusing the computing tasks are. Therefore, the contain
of the computing tasks is safe.
All of the computing tasks are denoted as CTn =

{ctn,1, ctn,2, . . . , ctn,k}, where ctn,k represents the comput-
ing tasks in mdn, pn,k represents the probability of offload-
ing kth type data in mdn. In addition, the relationship
between CTn and Pn is described by.

Fig. 1 A framework of data offloading for intelligent sensors in edge computing
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(
CTn
Pn

)
=

(
ctn,1 ctn,2 · · · ctn,k
pn,1 pn,2 · · · pn,k

)
. (7)

The privacy entropy of each computing task is calcu-
lated by

H(Xn) = −
K∑

k=1

pn,klog2pn,k. (8)

The privacy entropy of computing tasks is the summary
of each computing task, which is calculated by

H(X) =
N∑

n=1

H(Xn). (9)

At last, the average privacy entropy of the computing
tasks is calculated by

H = 1
N

H(X). (10)

2.4 Problem definition
In this paper, our goal is to minimize the time consump-
tion of the computing tasks in (6) and maximize the
privacy entropy in (10). The problem is formalized as
follows

maxH(X), min T . (11)

s.t .
K∑

k=1

pn,k = 1. (12)

The constraint is shown in (12), which represents the
probability of all the divided data equals one.

3 Data offloadingmethod for intelligent sensors
in edge computing

In this paper, a multi-objective optimization problem
is proposed to improve the time consumption and pri-
vacy entropy. Compared with traditional algorithms such
as genetic algorithm (GA), weighted coefficient method,
SPEA2 has been widely employed to work out the opti-
mization problems due to its parallel processing mech-
anism, global optimization, and good robustness. In
addition, SPEA2 investigate on the calculation of the fit-
ness of each individual, and SPEA2 leverage clustering to
reduce the extra points. Therefore, SPEA2 is leveraged
to find the optimal strategy. Finally, SAW and MCDM
methods are used to obtain the optimal solutions.

3.1 Encoding
First, the number of the divided types of the computing
tasks, which are waiting to be offloaded, is encoded in this
section. In SPEA2, the gene represents the number of the
computing tasks. All the genes make up the chromosome

which represents the solution of the optimization prob-
lem. In addition, the chromosome is encoded in integer in
this paper as shown in Fig. 2. Six genes, which correspond
with the number of divided computing tasks, make up the
sample chromosome. For example, the fourth gene is 6,
and this gene indicates that the fourth computing task of
the sensor is divided into six types.

3.2 Fitness functions and constraints
In this paper, the fitness functions include two categories:
the time consumption (6) and the privacy entropy (10).
The fitness functions are leveraged to evaluate the pros
and cons of individuals. Based on the fitness functions, the
optimal strategy could be obtained. As is shown in (11),
our proposed method aims to make optimization of the
time consumption and privacy entropy. Besides, the con-
straint is shown in (12). The constraint means that all the
probabilities of the divided data should be equal to 1.

Fig. 2 An example of encoding operation
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In Algorithm 1, the average time consumption of data
could be calculated at last. The sn,k, V1, and V2 need to be
input into this algorithm. The transmission time of each
computing task is calculated by line 3, and the calcula-
tion time of each computing task is calculated by line 4.
Then, all the time consumption of the computing tasks is
calculated by line 5, and the average time consumption of
computing tasks is calculated by line 6 (Figs. 3 and 4).
In Algorithm 2, the average privacy entropy for all the

offloading tasks is calculated at last. The pn,k needs to
be input into this algorithm. The privacy entropy of each
computing task is calculated by line 3. Then, all the pri-
vacy entropy of computing tasks is calculated by line 4,
and the average privacy entropy for all the offloading tasks
is calculated by line 7.

3.3 Initialization
In this part, some paraments need to be determined. The
paraments are the size of population SP, the probability of
crossover PC, the probability of mutation PM, the size of
archive SA, and the number of iterations NI.

3.4 Selection
In this operation, the individuals, who have with better
fitness, are selected from the evolutionary group into the
mating pool. The following crossover and mutation oper-
ations just obtain the individuals from the mating pool to
generate better populations.

3.5 Crossover and mutation
The crossover operation, which has two procedures, is to
combine two parental chromosomes to generate two new
chromosomes. The first procedure is to pick a crossover
point randomly form one to the number of genes in chro-
mosome. The second procedure is to change the two
chromosomes at this crossover point. Fig. 3 illustrates an
example of crossover operation.
If the offspring chromosome cannot perform better

than their parental chromosome but is not the global

Algorithm 1 The Average Time of Data Transmission
Obtaining
Require: sn,k, v
Ensure: T
1: for n = 1 to N do
2: for k = 1 to K do
3: Calculate tn by formula (3)
4: Calculate ctn by formula (5)
5: T = tn+ctn
6: end for
7: end for
8: T = T/N
9: return T

optimal solution, the premature convergence will take
place. The mutation operation is utilized to guarantee the
individual diversity. In addition, the probability of each
mutated gene is the same. Fig. 4 illustrates an example of
mutation operation.

3.6 Schedule selection using sAW and mCDM
In this paper, the positive criterion is privacy entropy,
and the negative criterion is time consumption. With the
increase of the positive criterion, the method will per-
form well. Otherwise, with the increase of the negative
criterion, the method will perform badly. The probabil-
ity composition set is denoted as PC, and each probability
strategy in PC affects the time consumption and the pri-
vacy entropy. The time consumption value is denoted as
TT = (TTi,j , 1 ≤ i ≤ Q), and the privacy entropy value
is denoted as PE = (PEi,l , 1 ≤ i ≤ Q). The scaling value
of the negative criterion of time consumption is denoted
as TTi,j , and the scaling value of the positive criterion of
privacy entropy is denoted as PEi,l . In addition, TTi,j and
PEi,l are calculated by

TTi,j =
{

Nmax−Ni,j

Nmax−Nmin ,if Nmax − Nmin �= 0
1 ,if Nmax − Nmin = 0

}

, (13)

PEi,l =
{

Pi,l−Pmin

Pmax−Pmin ,if Pmax − Pmin �= 0
1 ,if Pmax − Pmin = 0

}

, (14)

where Nmax, Nmin, Pmax, and Pmin represent the maxi-
mum time consumption, the minimum time consump-
tion, the maximum privacy entropy, and the minimum
privacy entropy, respectively.
Finally, based on the formulas (13) and (14), the utility

value is calculated by

UVi = TTi,j · wt + PEi,l · wp, (15)

where wt and wp represent the weight of the transmission
time and the privacy entropy in the probability composi-
tion, respectively.
Based on the above analysis, the utility value of each

strategy is calculated. Then, the MCDM method is lever-
aged to select the best one in the utility value. The com-
position of the number of the computing tasks, which has
the maximum utility value, is the optimal strategy.

3.7 Method review
This paper aims to make optimization of the time con-
sumption and privacy entropy for the data offloading of
intelligent sensors in edge computing. SPEA2 is leveraged
to solve this problem because SPEA2 performs well
in multi-optimization problems. At first, the offloading
probability of each divided data needs to be encoded.
Afterwards, the fitness functions and the constraints
should be listed for our optimization problem. Then,
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Fig. 3 An example of crossover operation

the premature convergence will be avoided by using the
crossover and mutation operations, and new individuals
will be generated. At last, the optimal transmission prob-
ability of the divided data will be obtained after leveraging
the SAW and MCDMmethods.

4 Experimental evaluation
In this section, comprehensive and abundant simulations
and experiments are conducted to make evaluations of
the performance of our proposed edge computing offload-
ing method TEO. More specifically, simulation setups
are introduced, including the statements of comparative
methods and simulation parameter settings. Afterwards,
the influence of different computing task scales on
the time consumption and privacy entropy performance
between the compared methods and TEO method is
evaluated.

4.1 Experimental context
In this experiment, the server is based on DELL lati-
tude7390, and the configurations are listed as follows:
i7 CPU, 256 G solid-state drive and 8 GB memory. The
power of the server and VM set as 64 W and 6 W, respec-
tively. In Table 2, three basic parameters, which are used
in our experiment, are listed in it. In order to ensure the
effectiveness of the experiments, five different numbers of
divided computing tasks are set to generate five different

Fig. 4 An example of mutation operation

scale datasets, and the computing task scales are set as 5,
10, 15, 20, and 25, respectively.
In order to carry out the comparison analysis, one basic

method is selected to compare with our TEOmethod. The
comparative method is Benchmark: The computing tasks
is divided to K data. The probability of transferring kth
data is equal, and the probability of transferring all the
data equals 1 too.

4.2 Comparison of the time consumption
Technically, the transmission time and the calculation
timemake up the time consumption. Based on the analysis
of the experiment data, as the number of the comput-
ing tasks increases, the time consumption will increase,
and the growth rate increases faster in both of the two
methods. The time consumption in our proposed method
is 0.64, 1.52, 2.42, 3.34 and 4.41 (s), and the time con-
sumption in Benchmark is 0.98, 1.78, 2.94, 3.98 and
5.3 (s) when the number of computing tasks is 5, 10,
15, 20 and 25, respectively. It is concluded that thetime
consumption in our proposed method performs bet-
ter than that in Benchmark, and the difference of the
time consumption between the two methods is shown in
Fig. 5.

4.3 Comparison of the transmission time
The transmission time mainly depends on the transmis-
sion rate between sensors. Therefore, in order to opti-
mize the transmission time, the technique of improving

Algorithm 2 The Average Privacy Entropy for Offloading
Tasks Obtaining
Require: pn,k
Ensure: H
1: for n = 1 to N do
2: for k = 1 to K do
3: Calculate H(Xn) by formula (8)
4: H(X)+ = H(Xn)

5: end for
6: end for
7: H = H(X)/N
8: return H
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Table 2 Parameter settings

Parameter description Value

The number of divided computing tasks {5, 10, 15, 20, 25}
The transmission rate between sensors 120 Mb/s

The calculation rate of sensors 480 Mb/s

The size of divided computing tasks (m) [1,50]

the transmission rate needs to be investigated further. In
Fig. 6, the difference of the transmission time between the
two methods is just a bit. With the increase of the com-
puting tasks, the gap between the two methods becomes
clearer. The transmission time in our proposed method is
0.51, 1.13, 1.84, 2.53 and 3.28 (s), and the time consump-
tion in Benchmark is 0.75, 1.33, 2.18, 2.95 and 4.02 (s)
when the number of computing tasks is 5, 10, 15, 20 and
25, respectively. The difference of the transmission time
between the two methods is shown in Fig. 6.

4.4 Comparison of the time consumption
The calculation time depends on the calculation rate of
sensors. On this condition that the processing ability
of the sensors is improved, the calculation time will be
improved too. Based on the analysis of Fig. 7, the calcu-
lation time is less than the transmission time. Same as
the transmission time, with the increase of the computing
tasks, the difference of the calculation time between the
two methods becomes clearer too. The calculation time
in our proposed method is 0.14, 0.39, 0.59, 0.81 and 1.13
(s), and the time consumption in Benchmark is 0.23, 0.45,

Algorithm 3 Time-Efficient Data Offloading Method
with Privacy Preservation
Require: N
Ensure: P
1: for n = 1 to N do
2: n = 1
3: while n <= N do
4: Crossover and mutation operation
5: for the individuals in the population do
6: Calculate the time of data transmission by

formula (1)-(6)
7: Calculate the information entropy by (7)-(10)
8: end for
9: Selection operation to ensure the child gener-

ation
10: n = n + 1
11: end while
12: Evaluate utility function to pick out the optimal

schedule strategy P
13: end for
14: return P

0.76, 1.03 and 1.29 (s) when the number of computing
tasks is 5, 10, 15, 20 and 25, respectively. The difference of
the calculation time between the two methods is shown in
Fig. 7.

4.5 Comparison of the privacy entropy
In this experiment, the privacy entropy indicates the prob-
ability of causing the privacy leakage. With the increase
of the privacy entropy, the safety of the migration is
upgraded. The high privacy entropy makes the comput-
ing tasks more dispersed, which protects the safety of the
important data in the tasks. In Fig. 8, with the increase
of the tasks scales, the privacy entropy will increase, and
the growth rate in the two methods is almost linear.
However, the difference of the privacy entropy between
the two method is almost same. The privacy entropy of
our proposedmethod is 15.8, 30.96, 46.16, 61.35 and 76.28
and the privacy entropy in Benchmark is 15, 30, 45, 60
and 75 when the number of computing tasks is 5, 10,
15, 20 and 25, respectively. Though the privacy entropy
is quite the same, our proposed method performs bet-
ter in terms of the time consumption. The difference of
the privacy entropy between the two methods is shown in
Fig. 8.

4.6 Comparison of the average time consumption
In this experiment, the average time consumption is cal-
culated by the number of computing tasks and the trans-
mission rate. The low time consumption indicates that
the time consumption of each computing tasks is saved.
From the analysis of the average time consumption, the
average time consumption in our proposed method is
lower than that in Benchmark. The average time con-
sumption of our proposed method is 0.06, 0.15, 0.25, 0.35,
and 0.44 s when the number of computing tasks is 5, 10,
15, 20, and 25, respectively. The difference of the average
time consumption between the two methods is shown in
Fig. 9.

4.7 Comparison of the average privacy entropy
In this experiment, the average privacy entropy is cal-
culated by the total privacy entropy and the number
of computing tasks, and it represents the complexity
of each computing task. The high value of the aver-
age privacy entropy also indicates the high-level safety
of the transmission as the value of the privacy entropy.
From the analysis of the average privacy entropy, it is
concluded that our proposed method performs better
than the Benchmark. The average privacy entropy of
our proposed method is 1.6, 3.21, 4.81, 6.42, and 8.02
when the number of computing tasks is 5, 10, 15, 20,
and 25, respectively. The difference of the average pri-
vacy entropy between the two methods is shown in
Fig. 10.
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Fig. 5 Comparison of the time consumption

Fig. 6 Comparison of the transmission time

Fig. 7 Comparison of the calculation time
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Fig. 8 Comparison of the privacy entropy

Fig. 9 Comparison of the average time consumption

Fig. 10 Comparison of the average privacy entropy
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authentication handover, the platform is to share the secu-
rity information between the related access points. In [43],
Eiza et al. formulated a novel system model, and this
model is leveraged in 5G-enabled vehicular network. This
system model could offer users with privacy-aware, reli-
able, and real-time video service. In [44], Norrman et al.
introduced a method, which set up a pseudonym between
user equipment and home network, to make protection
of the IMSI in 5 G. In [45], Shen et al. aimed to optimize
the task acceptance rate while avoiding the privacy leak-
age of participants by leveraging edge nodes. In addition,
they proposed a privacy-preserving task allocation frame-
work (P2TA) to improve the edge computing-enhanced
MCS. In [46], Lu et al. formulated a lightweight privacy-
preserving data aggregation scheme in the fog computing-
enhanced IoT framework. In [47], Gai et al. aimed to
solve the conflict problem between the computing effi-
ciency and privacy protection. Besides, they proposed a
new approach to offer safe transmission based on the
multi-channel communication technology.
To the best of our knowledge, few studies and researches

have verified the performance of edge computing. In addi-
tion, due to the importance of the transmission time and
privacy security, it is necessary to consider both of them.
The greater the privacy entropy is, the more confusing
the computing tasks are. Thus, this paper uses the privacy
entropy to address the privacy problem while minimizing
the transmission time of computing tasks.

6 Conclusion and future work
In recent years, edge computing has emerged as an impor-
tant paradigm to provide strong computing power for
mobile devices and sensors. Guaranteed by the edge com-
puting, many novel technologies have been introduced to
improve the quality of the services. Edge computing has
the advantages of processing the computing tasks effec-
tively to provide real-time services. In order to minimize
the time consumption and maximize the privacy entropy,
a time-efficient offloading method (TEO) with privacy
preservation is proposed for sensors in edge computing.
First, the computing tasks of sensors, which are waiting
to be offloaded, are divided into several types. Each type
data has different probability values to offload these tasks.
Then, a time-efficient offloading method is proposed. In
this method, SPEA2 is leveraged to make optimization
of the time consumption and privacy entropy jointly, and
SAW and MCDM methods are used to find the optimal
offloading strategy. The experimental evaluations verify
the reliability of our proposed method.
For future work, we will adjust and extend our proposed

method to the real-world scenario. In addition, we will
try to analyze the energy consumption; thus, we improve
the time consumption, privacy protection, and energy
consumption at the same time.

Abbreviations
MCDM: Multiple criteria decision-making; SAW: Simple additive weighting;
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
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