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Abstract

Support vector machine (SVM) is one of the effective classifiers in the field of network intrusion detection; however,
some important information related to classification might be lost in the reprocessing. In this paper, we propose a
granular classifier based on entropy clustering method and support vector machine to overcome this limitation.
The overall design of classifier is realized with the aid of if-then rules that consists of a premise part and conclusion
part. The premise part realized by the entropy clustering method is used here to address the problem of a possible
curse of dimensionality, while the conclusion part realized by support vector machines is utilized to build local
models. In contrast to the conventional SVM, the proposed entropy clustering-based granular classifiers (ECGC) can
be regarded as an entropy-based support function machine. Moreover, an opposition-based genetic algorithm is
proposed to optimize the design parameters of the granular classifiers. Experimental results show the effectiveness
of the ECGC when compared with some classical models reported in the literatures.

Keywords: Entropy clustering-based granular classifiers (ECGC), Entropy clustering method, Support vector machine
(SVM), Genetic Algorithms (GAs)

1 Introduction
In the past decades, lots of techniques such as artificial
intelligence and mathematical methods have been ap-
plied for many applications [1–5]. With the effectiveness
in high-dimensional spaces, support vector machine
(SVM) becomes one of the most important classification
models when solving the problem of classification.
Many researchers have utilized the SVM for solving

the classification problem in the field of network intru-
sion detection. Chitrakar and Huang [6] have presented
the selection of candidate support vectors in incremental
SVM for network intrusion detection. Shams et al. [7]
have used trust aware SVM when dealing with the net-
work intrusion detection problems. Aburomman and
Reaz [8] have proposed a novel-weighted SVM multi-
class classifier for the intrusion detection system. Yaseen
et al. [9] have constructed multi-level hybrid SVM by
means of K-means for network intrusion detection.
Vijayanand et al. [10] have developed genetic-algorithm-
based feature selection in the design of SVM for solving

the network intrusion detection. Raman et al. [11] have
proposed an efficient intrusion detection system with
the aid of genetic algorithm optimized SVM. All these
studies have developed SVM based on genetic algo-
rithms or clustering methods; however, a design of SVM
with both clustering methods and genetic algorithms re-
mains open.
The entropy clustering method (ECM) [12] is a novel

clustering method based on the concept of entropy that
has been widely used in network intrusion detection. In
comparison with the conventional clustering method
such as K-means and C-Means, the ECM can obtain the
number of clustering once the features of dataset are
determined.
In the design of classification models, we require some

crucial parameters for determining the structure. As one of
the powerful optimization tools [13–17], genetic algorithms
have been applied in lots of applications. In some previous
studies [10], genetic algorithms have been successfully ap-
plied to optimize the support vector models. However, it
should be stressed that the genetic algorithm could still get
trapped in sub-optimal regions of the search space. Further-
more, the problem of finding “good” parameters in the de-
sign of the rule-based classification models remains open.
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In this study, we propose a rule-based granular classi-
fier by means of entropy clustering method and support
vector machine for network intrusion detection. The
overall granular classifier is designed by means of a serial
of rules that consist of a premise part and conclusion
part. The premise part is realized by the entropy cluster-
ing method, while the conclusion part is realized with
the aid of the support vector machine. In some senses,
the proposed entropy clustering-based granular classi-
fiers (ECGC) can be regarded as an entropy-based sup-
port function machine. Furthermore, an opposite-based
genetic algorithm (OGA) is proposed to optimize the pa-
rameters of the granular classifier.
The structure of the paper is organized as follows. Sec-

tion 2 presents the design of ECGC. Section 3 deals with
the opposite-based genetic algorithm and the optimization
of ECGC. Section 4 reports on experiments by using com-
parative studies. Finally, some conclusions are summa-
rized in Section 5.
A design of the ECGCs
In the design of ECGC, the overall classification is di-

vided into a number of rules that consist of a premise
part and conclusion part. The premise part of rules de-
termined by the entropy clustering method is to capture
“rough, major structure”; while the conclusion part (local
model) realized based on SVM is to capture “subtle, ac-
curate structure.” In this way, we construct ECGC. Such
rule-based classifiers can be expressed with some “if-
then” rules

Ri : IF x is in cluster Ci thenyi ¼ f i xð Þ ð1Þ

where R
Ri

represents the ith rule, Ci denotes the ith
cluster, i=1, ∙∙∙, n, n is equal to the number of rules,
fi(x) denotes the consequent output of the ith rule,
and pattern classifiers are described by means of some

discriminant functions fi(x). An overall design of
ECGC is described as shown in Fig.1.

1.1 Realization of premise part of rules using entropy
clustering method
In the design of ECGC, the premise part of rules is
formed by the entropy clustering method. Let G = (V,D)
be an undirected graph, where V denotes the vertex set
and D stands for the edge set. The steps of entropy clus-
tering method can be summarized as the following
steps:
[Step 1] Calculate the entropy rate E(P) by using the

following expression.

E Pð Þ ¼ −
X

i

ui
X

j

hij Pð Þ log hij Pð Þ� �
: ð2Þ

where E(P) represents ethe ntropy rate, which quanti-
fies the uncertainty of a random process P = {Pt| t ∈ T} .
Here, T denotes some index set.
[Step 2] Calculate the balancing term B(P) by using

the following formula.

B Pð Þ ¼ −
X

i

j Si j
j V j log

j Si j
j V j

� �
−NP; i

¼ 1; ::::;NPf g ð3Þ

where NP represents the number of connected compo-
nents in the graph, SP ¼ fS1; S2; :::; SNPg which means
the graph partitioning for P.
[Step 3] Set E←∅ and U←D.
[Step 4] Set a1← argmaxa∈U FðP∪fagÞ−FðPÞ , where

F(P) = E(P) + kB(P), k denotes the number of clusters.
[Step 5] If P ∪ {a1} ∈ I then set P← P ∪ {a1}; else set

U←U ∪ {a1}.
[Step 6] Repeat steps 4–5 until U =∅.

Fig. 1. An overall design of ECGC
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1.2 Construction of conclusion part of rules using support
vector machines
The conclusion part of the rules is realized by means
of support vector machines [12]. Assume that the
training dataset T is formed by the following
expression:

T ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xm; ymð Þ; :::; xn; ynð Þf g ð4Þ

Where xm represents a training sample, ym ∈ {−1, 1} is
the class label of xm, and n stands for the total number
of training samples, m = 1, 2, ..., n.
Suppose that w and b are parameters of hyperplane

functions that can be expressed as follows:

f xð Þ ¼ wxþ b ð5Þ
Then, optimal value of w and b can be calculated by

the following model:

min
p

1
2

Xn

i¼1

Xn

j¼1

ymy jpmp jK xm; x j
� �

−
Xn

k¼1

pk

s:t:
Xn

l¼1

ylpl ¼ 0;

0≤pl ≤C:

ð6Þ

where p = (p1, ......, pn)
T denotes the Lagrange multiplier

vector, C represents a penalty parameter, K stands for a
kernel function, and xm, xj, ym, yj are the mth input sam-
ple, the jth input sample, label of the mth input sample,

Fig. 2. An overall flowchart of design of ECGC
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and label of the jth input label, respectively. The steps of
the support vector machine can be summarized as the
following steps:
[Step 1] Divide the entire dataset into the training

dataset and testing dataset.
[Step 2] Estimating the parameters w and b based on

the expression (6).
[Step 3] Calculate the decision function of the support

vector machine according to the expression (5).
[Step 4] Calculate the labels of testing data based on

the decision function.
[Step 5] Obtain the classification results based on

training and testing data.

1.3 Optimization of ECGC using opposition-based genetic
algorithms
Like the other classification models, the performance of
ECGC is dramatically affected by the parameters. Here we
present an opposition-based genetic algorithm as the vehicle
for the optimization of parameters in the design of ECGC.
The mechanism of opposition-based learning (OBL) [18, 19]
has been shown to be an effective concept to enhance vari-
ous optimization approaches. Let us recall the basic concept.
Opposition-based point [19]: let P= (x1, x2, ......, xD) be a

point in a D-dimensional space, where x1, x2, ......, xD ∈R and
xi ∈ [ai, bi], ∀i ∈ {1, 2, ...,D}. The opposite point P ∪ ¼ ðx ∪1;
x ∪2; ::::::; x ∪DÞ is completely defined by its components

x^i ¼ ai þ bi−xi ð7Þ

Opposition-based optimization (OBL) [19]: let P = (x1,
x2, ......, xD) be a point in a D-dimensional space (i.e., a
candidate solution). Assume f(•) is a fitness function. Ac-
cording to the definition of the opposite point, we say
that P ∪ ¼ ðx ∪1; x ∪2; ::::::; x ∪DÞ is the opposite of site
P = (x1, x2, ......, xD). Now, if f ðP ∪Þ≥ f ðPÞ , then the point
P can be replaced with P ∪. Hence, the point and its op-

posite point are evaluated simultaneously in order to
continue with one of the highest fitness.
With the opposition concept, we develop the opposition-

based genetic operator. The overall opposition-based gen-
etic algorithm can be summarized as follows:
[Step 1] Randomly generate the population of genetic

algorithm, where the performance of ECGC is the ob-
jective function, the parameters in the design of ECGS
are considered as chromosome.
[Step 2] Update the population based on opposition-

based population operator.
[Step 2.1] Find the interval boundaries [ai, bi] in the

population set P1, where aj ¼ minðxkj Þ; bj ¼ maxðxkj Þ ,
j = 1, 2, ......, h; k = 1, 2, ......, d. Here, h denotes the size of
population, and d represents the dimension of an
individual.
[Step 2.2] For each individual, generate a new individ-

ual Xnew ¼ ðxnew1 ; :::; xnewj ; :::; xnewn Þ based on the expres-

sion xnewj ¼ aj þ bj−x j:

[Step 2.3] Obtain the opposition population set P2 by
calculating the fitness value of each Xnew.
[Step 2.4] Obtain the final population Pnew by selecting

the best h individuals based on the P1 ∪ P2.
[Step 3] Generate the new individual based on

crossover.
[Step 4] Generate the new individual based on

mutation.
[Step 5] Generate the new individual based on oppos-

ition-based genetic operator.
[Step 5.1] Find the interval boundaries [ai, bi] in the

population set P1, where aj ¼ minðxkj Þ; bj ¼ maxðxkj Þ ,
j = 1, 2, ......, h; k = 1, 2, ......, d. Here, h denotes the size of
the population, and d represents the dimension of an
individual.
[Step 5.2] For each individual, generate a new individ-

ual Xnew ¼ ðxnew1 ; :::; xnewj ; :::; xnewn Þ based on the expres-

sion xnewj ¼ aj þ bj−x j:

Fig. 3. Individual composition of OGA and its interpretation
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[Step 6] Select the new individual in the current
population.
[Step 7] Repeat steps 3–6 until the terminal condition

is satisfied.

2 A design procedure of the ECGCs
The overall design methodology of entropy-based clus-
tering granular classification is described in this section.
The design of ECGC can be summarized in the follow-
ing steps see (Fig. 2).

2.1 Step 1: Division of dataset
The original data is divided into training and testing
datasets. Training data is used to construct the model of
ECGC, while the testing data is utilized to evaluate the
performance of ECGC. Suppose that the original input–
output dataset is denoted as (xi,yi) = (x1i, x2i, …, xni,
yi), i = 1, 2, …, N, where N is the number of data points.

Let T be the number of correct classification patterns.
The classification rate (CR) can be represented as
follows

CR ¼ T
N

� 100% ð8Þ

Furthermore, let TR be the classification rate for the
training data, and TE be the classification rate for the
testing data. It is evident that TR records the objective
function (viz. performance index, PI) and TE stands for
the testing performance index (TPI).

2.2 Step 2: Design of ECGC architecture with the aid of
OGA
The overall design of ECGC can be regarded as the con-
struction of rules that comprises the premise part and
conclusion part. Here, the premise part is realized based
on the entropy-clustering method, while the conclusion
part is realized by means of SVMs. OGA is used here to
optimize the parameters not only in the entropy-based
clustering method but also in the design of SVMs. Spe-
cifically, In the ECGC, an individual is denoted as a vec-
tor comprising the number of clusters, the number of
selected input variables, the input variable to be selected,
and the parameters for each rule as shown in Fig. 3. The
overall length of the individual corresponds to the num-
ber of clusters (viz. rules) to be used.

2.3 Step 3: Check the termination criterion
As to the termination criterion, we have used two differ-
ent conditions. The first condition is that the number of
loops is not more than a predetermined number, while

Fig. 4. Performance index of ECGCs for the Iris data

Table 1 List of the parameter of the OGA

OGA parameters

Number of generations 100

Number of individuals 20

Crossover rate 0.4

Mutation rate 0.1
a1Number of input variables 2~10

Number of clusters (rules) 2~10
b1Value of w [0.5*w0,1.5*w0]
c1Value of b [0.5*b0,1.5*b0]

*a1If the number of input variables in dataset smaller than 10, then we use the
number of all input variables
*b1, c1 w0 and b0 are the results obtained by the original SVM
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the second condition is that the performance of the current
local model is worse than a predetermined value [20]. It has
stressed that the final optimal ECGC has been experimen-
tally determined based on a sound compromise between
the high accuracy and the low complexity of models.

2.4 Step 4: Final output
Report the optimal ECGC and final output.

3 Results and discussion
This section reports the experimental results of the pro-
posed ECGC models. To evaluate the performance of
the ECGC, we first experimented some benchmark ma-
chine learning data [21–26], and then applied the ECGC
in the network intrusion detection KDDCUP 99 data.
The symbols used in these experiments are listed as fol-
lows: TR denotes the performance index of training data,

while TE represents the performance index of testing
data. Furthermore, the parameters and boundaries of
OGA are summarized as shown in Table 1. (The selec-
tion of these specific values of parameters is referred to
reference [10, 27]).

3.1 Machine learning data
Some machine learning data are used to evaluate the
performance of the proposed ECGC. In these experi-
ments, datasets are partitioned into two parts: 80% of
data is considered as training data, while the rest 20% of
data is regarded as testing data.

3.1.1 Iris data
The iris flower dataset is a multivariate dataset intro-
duced by Sir Ronald Fisher as an example of discrim-
inant analysis. This is a classical dataset consisting of

Fig. 5. Performance index (TE) range from one rule to five rules for the Iris data
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150 input-output pairs, four input variables, and three
classes.
Figure 4 depicts the values of the performance index

(TR and TE) vis-à-vis the ECGCs with the increasing
rules. As shown in Fig. 4, the value of the performance
index for training data TR is increased with the increas-
ing prediction abilities of GCs. It is clear that the opti-
mal classifier could have emerged with the layer of
assigned rules (clusters). The testing performance TE in-
creases in the case of two rules, while it becomes the
same as the rules are equal to five. This tendency illus-
trates that the substantial increase of the rules improves
the prediction abilities.
Figure 5 Displays the values of performance index TE

range from one rule to five rules for the Iris data when
selecting different parameters (penalty term and Kernel
bandwidth of conclusion part). In most cases, the value
of performance index TE raises with the increasing
number of rules. This tendency demonstrates that the
number of rules is beneficial to the enhanced TE.
Table 2 summarizes the experimental results. It is

shown that the proposed ECGCs arrive at 98.25 ± 0.21
with five rules.

3.1.2 Some selected machine learning data
Five selected machine learning data are further used to
evaluate the performance of the proposed ECGC model.
Here, the selected data with different number of input

and variables are summarized as illustrated in Table 3.
Table 4 further shows the comparative results of the

proposed ECGC and some well-known machine learning
models. As shown in Table 4, the proposed ECGC

outperforms the better accuracy of classification as well
as the prediction when compared to the models reported
in the literatures.

3.2 KDDCUP99 data
In the field of network intrusion detection [27–29], some
datasets can be obtained to evaluate the performance of
models. To evaluate the performance of ECGC, here we
experiment the ECGC on the benchmark KDDCUP99
data.
The KDDCUP99 data has 5,000,000 labeled records

(viz. patterns) and 41 features (viz. input variables) pro-
vided by the Massachusetts Institute of Technology. This
dataset consists of 24 different types of attacks that are
divided into four groups: DDOS, Probe, U2R, and R2L.
According to some studies [30–32], the filtered 10%
KDDCUP99 data described as shown in Table 5 is used
when dealing with lots of network intrusion detection is-
sues. In the experiments, the dataset is partitioned into
two parts: 50% of data is utilized as training data and the
remaining 50% data is considered as testing data. More-
over, in order to compare with other models, we also
used the existing performance index [27–32]:

True positive (TP). A TP represents one correct detec-
tion of an attack of network intrusion detection;
False positive (FP). A FP denotes an indication of an

attack on traffic that should have been classified as
“normal”;
True negative (TN). A TN stands for one correct clas-

sification of “normal Traffic” of network intrusion
detection;
False negative (FN). A FN is written as a real attack

that was misidentified as “Normal” traffic;

Table 4 Description of five selected machine learning data

Data sets Glass data E-coli data Lonosphere data Diabetes data Banana data

LDA [25] 77.62 88.12 Null 76.60 76.60

SVM+LD A[25] 79.17 88.29 Null 76.58 53.03

SV M[24] 74.81 ± 0.64 87.28 ± 0.36 95.71 ± 0.02 76.76 ± 0.08 89.40 ± 0.02

KN N[22] 72.00 *Null Null Null Null

TS-KN N[22] 80.40 Null Null Null Null

The proposed ECGC 1.1. 84.26 ± 1.60 1.2. 90.77 ± 0.08 1.3. 96.60 ± 0.24 1.4. 78.12 ± 0.23 1.5. 89.56 ± 0.12

*Null represents the results of the model are unknown

Table 2 Comparison of classification rate with previous
classifiers (Iris data)

Classifier TR TE

MLP [21] – 66.4

KN N[22] – 94.6

TS-KN N[22] – 96.7

PF C[23] – 93.3

SV M[24] 95.6

Our classifier (rule = 5) 98.42 ± 0.62 98.25 ± 0.21

Table 3 Description of five selected machine learning data

Datasets Variables Patterns Classes

Glass 7 9 185

E-coli 8 7 336

Ionosphere 6 10 350

Diabetes 2 8 768

Banana 2 2 5300
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Accuracy. Accuracy is the common metric used for
assessing the overall effectiveness of a classifier.
The expression of Accuracy can be formulated as

follows:

Accuracy ¼ TP þ TNð Þ= FP þ FN þ TP þ TNð Þ ð9Þ

The experimental results of ECGC are compared with
the results of several well-known models reported in the
literatures as shown in Table 6. It is evident that the

proposed ECGC outperforms the cited approaches in
case of consistently good detection across all four types
of attack classes.

4 Conclusions
In the reprocessing, conventional support vector ma-
chines have some inevitable limitations. One fact is that
some important information related to classification
might be lost. In this study, we have proposed ECGC to
overcome this limitation. In the design of ECGC, SVMs
are explored here as local models that are considered as
the consequence part of rules, while the premise part of
rules is realized with the aid of entropy-based clustering
method. Genetic algorithm is utilized to optimize the pa-
rameters when constructing the ECGC. It is evident that
the proposed ECGC can be regarded as the extended
SVMs to some extent. Experimental results on several
well-known datasets demonstrate the effectiveness of the
ECGC, especially for the network intrusion detection
dataset. More importantly, with the proposed ECGC,

Table 6 Comparison results for the 10% KDD Cup 99 dataset

Classifier Testing samples TP/FP DDoS Probe U2R R2L Mean TP/FP ratio

FNT [27] 11,982 TP 98.75 98.39 99.7 99.09 203.84

FP 0.62 1.39 0.22 0.75

ID3 [28] 311,029 TP 99.52 97.85 49.21 92.75 756.66

FP 0.04 0.55 0.14 10.03

Naïve Bayes [29] 77,287 TP 79.2 94.8 12.2 0.1 209.01

FP 1.7 13.3 0.9 0.3

SVM [30] 15,437 TP 96.32 63.81 34.48 85.64 40.00

FP 1.63 0.94 0.05 4.4

J48 [31] 15,437 TP 96.8 75.2 12.2 0.1 148.75

FP 1 0.2 0.1 0.5

K-means [32] 311,029 TP 97.3 87.6 29.8 6.4 103.86

FP 0.4 2.6 0.4 0.1

SOM [31] 15,437 TP 96.4 74.3 13.3 0.1 125.35

FP 0.8 0.3 0.1 0.4

GAU [32] 311,029 TP 82.4 90.2 22.8 9.6 60.28

FP 0.9 11.3 0.5 0.1

OneR [32] 49,596 TP 94.2 12.9 10.7 10.7 63.80

FP 6.8 0.1 2 0.1

Bayes DT combo [29] 311,029 TP 87.9 76.23 12.33 30.6 44.68

FP 0.67 1.7 8.9 23.8

NBTree [31] 15,437 TP 97.4 73.3 1.2 0.1 40.00

FP 1.2 1.1 0.1 0.5

Naïve Baye s[31] 15,437 TP 79.2 94.8 12.2 0.1 16.90

FP 1.7 13.3 0.9 0.3

The proposed ECGC 15,437 TP 99.98 97.85 100 97.57 3055

FP 0.01 0.05 0 0.89

Table 5 Distribution for the 10% KDD Cup 99 dataset

Class Traffic type Training data Percent of total (%)

1 Normal 87,832 60.28

2 DDOS 54,572 37.51

3 Probe 2130 1.48

4 U2R 999 0.68

5 R2L 52 0.04

Total 145,585
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one can efficiently construct the optimal model (viz.
optimization of the parameters in the design of model),
which is the key issue to improve the performance when
constructing models.
For future studies, new optimization algorithm can be

included. By taking into account new optimization algo-
rithm, one can obtain optimized ECGC. Furthermore,
several objectives can be considered to construct ECGC,
one can also develop multiobjective optimized ECGC.

5 Methods/experimental
This study aims at the design of classification for net-
work intrusion detection. A granular classifier based on
entropy-clustering method and supported vector ma-
chine is constructed to overcome the shortcoming that
most of the conventional classifiers such as SVM may
lose some important information in the reprocessing.
The proposed granular classifier that is designed by
means of a serial of rules can also be regarded as an
entropy-based support function machine. Experiments
illustrate that the performance of the granular classifier
obtains “good” results in comparison with some well-
known classifiers.
It has to be stressed that, granular classifiers can further

improve the performance with the aid of opposite-based
genetic algorithm. Experimental results show that the per-
formance of granular classifier can be generally improved.
Also, the number of rules is quite effective in the final per-
formance of the granular classifiers. Generally, with the
growth of rules, the performance of granular classifiers is
gradually increasing while its complex is rising.
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