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Separation characteristics between time
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Abstract

Understanding the intrinsic characteristics of wind power is important for the safe and efficient parallel function
of wind turbines in large-scale wind farms. Current research on the spectrum characteristics of wind power focuses
on estimation of power spectral density, particularly the structural characteristics of Kolmogorov’s scaling law. In
this study, the wavelet Mallat algorithm, which is different from the conventional Fourier transform, with compactly
supported characteristics is used to extract the envelope of the signal and analyze the instantaneous spectral
characteristics of wind power signals. Then, the theory for the change in the center frequency of the wind power
is obtained. The results showed that within a certain range, the center frequency decreases as the wind power
increases by using enough wind farm data. In addition, the center frequency remains unchanged when the wind
power is sufficiently large. Together with the time domain characteristics of wind power fluctuation, we put forward
the time-frequency separation characteristics of wind power and the corresponding physical parameter expressions,
which corresponds to wind speed’s amplitude and frequency modulation characteristics. Lastly, the physical
connotation of the time-frequency separation characteristics of wind power from the perspective of atmospheric
turbulent energy transport mechanism and wind turbine energy transfer mechanism is established.

Keywords: Power of wind turbine, FFT, Mallat, Instantaneous power spectrum, Time domain fluctuation, Time-
frequency separation, Turbulent energy transport, Turbine energy transform

1 Introduction
Currently, utilizing wind energy to its complete potential
has been the goal of energy development in all countries
worldwide, especially in China. Although this initiative
had a slow start, it has rapidly developed [1–3]. How-
ever, the variable output brings new challenges to the
safe and efficient operation of the power system [4–6],
especially in China. The structural differences of energy
have resulted in an increasing number of high-power
coal-fired units to perform deep and variable load oper-
ation and consequently increasing the probability of fault
occurrences [7, 8]. Therefore, understanding wind power
characteristics is extremely important to understand not
only the requirements of wind farm sits but also for the

real-time scheduling and optimization control of new
energy power systems [9, 10].
In general, the uncertain characteristics of wind energy

include randomness, volatility, and intermittency. The
study on the time domain characteristics is an important
aspect in exploring the variable wind power fluctuations.
In [11–13], a model was developed for the fluctuations
in wind power, which was based on measured data, and
the model accuracy was verified. Because wind turbines
channel wind to generate winder power, studying the
characteristics of wind speed is fundamental. In [14], a
large number of actual wind speed data was used for the
range of wind speed fluctuations in wind farms to
correct the quantitative characterization model to de-
velop and improve it as per the IEC standard. On this
basis, literature [15] further evaluated the frequency
modulation capability and explored the application of
the quantitative characterization model for a range of
wind speed fluctuations. In [16], a modeling strategy that
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can quantitatively describe the rate of wind speed fluctu-
ation based on a variable differential model was pro-
posed. Therefore, the understanding of intermittent
quantitative description models is also the basic concern
of this study [17, 18]. In [19], the quantitative
characterization model of the intermittency of wind
speed based on abrupt changes in the duty cycle from
the intermittent nature of atmospheric turbulence was
developed. Moreover, this method can be applied to the
intermittent quantitative characterization of wind power
[20]. In addition, although the wind power prediction
model is constantly improving, because of the uncertainty
of wind power, and incorporating some intrinsic character-
istics of wind power, the model accuracy can still improve
and the actual prediction error is inevitable [21]. There-
fore, many scholars are also analyzing the error [22–24].
The power spectral density of a random signal is used

to describe the relationship between the energy charac-
teristics of a signal and the frequency. Therefore, the
power spectrum analysis of wind power is also an im-
portant aspect of wind power characteristics research.
Further study has been carried out very early, especially
in the analysis of the spectral characteristics of wind. In
1941, a former Soviet Union mathematician named
Andrei N. Kolmogorov proposed the Kolmogorov hy-
pothesis [25]. When the Reynolds number is sufficiently
large, there is a region with a high wave number, in
which the turbulence satisfies local uniformity and isot-
ropy. In addition, the turbulence characteristics are only
determined by the energy dissipation rate and the mo-
lecular viscosity coefficient. There is also an inertial sub-
region in the local isotropic region, where the turbulence
characteristics are only determined by the energy dissi-
pation rate. Based on this assumption, Kolmogorov came
up with the famous “− 5/3 law.” After this, many domes-
tic and overseas scholars have verified and improved the
Kolmogorov’s “− 5/3 law” [26, 27]. The results show that
the energy spectrum of the near-surface turbulence sat-
isfies the Kolmogorov spectral distribution theory under
certain conditions. However, there is a deviation in the
exponent values around − 5/3 because of different geo-
graphical and climatic factors. Nevertheless, the energy
spectrum exponentially decreases in a certain frequency
domain. The energy spectrum characteristics of the wind
turbine output power are studied further on this basis
[28, 29]. In [30], wind farm power fluctuations and
spatial sampling of turbulent boundary layers are pre-
sented. The experimental results show that the fre-
quency spectrum of the total wind farm power follows a
power law with a slope between − 5/3 and − 2, and up to
frequencies lower than seen for any individual turbine
model. However, the results of the above research state
that the conventional power spectrum characteristics,
i.e., the variation law of wind power signal’s frequency,

were compared and analyzed with those of the structural
characteristics of the Kolmogorov scaling law. Moreover,
the above studies consider the time domain and the
frequency domain in isolation.
In addition, the IEC standard improved the linear

turbulence model for wind farm turbines’ integrated fa-
tigue loading by combining ambient turbulence and
wakes [31]. In fact, this is the amplitude modulation
(AM) effect. In [32], experiments in the wind tunnel re-
vealed the AM effect of all three velocity components.
The center frequency is another vital parameter to de-
scribe wind speed uncertainty as well, which is usually
estimated for classical wind speed power spectrum [33].
In the signal processing field, there are three kinds of
modulation, including AM, FM (frequency modulation),
and PM (phase modulation) [34]. And the current re-
search is also focused on the scale rate of the wind speed
frequency spectrum without combining the time domain
with frequency domain.
In this study, the difference in the characteristics

between the time domain and frequency domain of wind
power signal is studied. This paper is organized as
follows. In Section 2, we introduced methods for obtaining
and analyzing transient spectral features and analyzed the
principles and advantages of the Mallat algorithm with
compact support. In Section 3, we used the wavelet Mallat
algorithm to extract the envelope of the signal and analyze
the instantaneous spectral characteristics of the actual
wind power data. Combined with the time-domain uncer-
tainty of wind power fluctuation time-frequency separ-
ation characteristics we gave the corresponding physical
parameter expressions, including wind speed correspond-
ing characteristics. In Section 4, it shows that the physical
connotation of time-frequency separation characteristics
of wind power from the perspective of atmospheric turbu-
lence energy transport mechanism and wind turbine
energy transfer mechanism.

2 Method
2.1 Power spectrum estimation based on Fourier
transform [28, 30, 35]
The wind signal is an indeterminate random signal. Ac-
cording to the stochastic process theory, statistics such
as mean, mean square, correlation function, and power
spectral density function can be used to describe the
characteristics of a random process or a random signal.
Moreover, the spectrum characteristic analysis of the
actual signal can be performed by using the Fourier
transform method.
Since an arbitrary function x(t) can be decomposed into

the sum of an infinite number of sinusoidal signals of dif-
ferent frequencies, this is similar to the phenomenon in
which white light is refracted by prisms and dispersed into
light of different colors. Comparing the Fourier transform
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with the refractive index of light, it is apparent that
the Fourier transform method is equivalent to the tri-
angular prism in the spectral analysis. The signal x(t)
is equivalent to a beam of white light. In addition,
after x(t) is analyzed by using Fourier transform, the
“spectrum” of the resulting signal is equivalent to the
spectrum, as shown in Fig. 1.
Power spectrum estimation (PSD) is an important re-

search subject matter in digital signal processing. PSD
can be divided into classical PSD (non-parametric esti-
mation) and modern PSD (parameter estimation). Clas-
sical PSD includes correlation function, period diagram,
Bartlett, and Welch period diagram methods. Modern
PSD includes the maximum entropy spectrum analysis
(AR model), Pisarenko harmonic decomposition, Prony
extraction pole method, Prony spectral line decompos-
ition, and Capon maximum likelihood.
When applying PSD to discrete sampling, the general

solutions for the two types of errors and the trend term
problem are as follows:

(1) After sampling, the spectral function Sn is changed
to ST(n):

ST nð Þ ¼
Z ∞

−∞
S fð Þ sinπT n− fð Þ

π n− fð Þ df ð1Þ

The modified spectrum ST(n) has a false high-
frequency component. In general, the higher T is, the
closer ST(n) is to the true spectrumSn. The smaller T is,

the larger the difference is between ST(n) and Sn, and
the greater the impact of leakage is. Therefore, the
spectrum can be smoothed by a suitable energy window
W(n), which is a weighted average method to reduce
leakage.

(2) Two aspects of distortion occur when sampling
at equal intervalsΔt as sampling intervals: On the
one hand, the spectrum will reduce from (−∞,∞)
to ð− n f

2 ;
n f

2 Þ,j n j ≥ n f

2 , and nf ¼ 1
Δt. On the other

hand, the spectrum becomes a folding spectrum in
the reduced range, and the aliasing frequency is
n f

2 ¼ 1
2Δt. Therefore, we generally choose the appropriate

Δt (Δt < 1
2nc
, where nc is the highest frequency and Δt is

the sampling interval) to avoid aliasing.
(3) The trend term is a problem that must be carefully

considered in the turbulence analysis. It usually
needs to eliminate the large-scale influence through
low-pass mathematical filtering because the correl-
ation function and spectrum obtained by detrending
or non-detrending is significantly different in the
low-frequency part.

The Welch periodogram method based on the im-
proved periodic graph method solves the above problem
well, and it is also the most commonly used PSD
method. The specific method steps are as follows:

(1) Segment the random sequence so that each piece of
data has partial overlap.

Fig. 1 Schematic of the spectral obtained using the characteristics analysis method
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Let X(j), j = 0, ..., N − 1 be a sample of a second-order
random sequence. We take separate line segments at a
starting point L and length L, which may be overlapping.
Let X1(j), j = 0, ..., L − 1 be the first line segment; then,
X1(j) =X(j), j = 0, ..., L − 1; likewise, X2(j) =X(j +D), j = 0, ...,
L − 1. At last, XK(j) =X(j + (K − 1)D), j = 0, ..., L − 1. Suppose
there are K line segments: X1(j), ..., XK(j), which cover the
entire record, i.e., (K − 1)D + L =N as shown in Fig. 2.

(2) Smoothing each segment of data with a suitable
window function and finally averaging the segments
to obtain the desired power spectrum.

We calculate its modified periodogram for each length
L. We select a data window W(j), j = 0, ..., L − 1 to form
a sequence X1(j)W(j), ..., XK(j)W(j). Furthermore, we take
these sequences A1(n), ..., AK(n) that are transformed by
the finite Fourier.
Here,

Ak nð Þ ¼ 1
L

XL−1
j¼0

Xk jð ÞW jð Þe−2kijnL ð2Þ

and i2 = − 1. Finally, the correction period K is
obtained:

Ik f nð Þ ¼ L
U

Ak nð Þj j2; k ¼ 1; 2; :::;K ð3Þ

Here, f n ¼ n
L ; n ¼ 0; :::; L2, and U ¼ 1

L

PL−1
j¼0

W 2ð jÞ.
The spectral estimate is the average of these periodic

graphs, i.e.,

P̂ f nð Þ ¼ 1
K

XK
k¼1

Ik f nð Þ ð4Þ

Now, we can prove

E P̂ f nð Þ� � ¼
Z 1

2

−1
2

h fð ÞP f − f nð Þdf ð5Þ

Here, hð f Þ ¼ 1
LU jPL−1

j¼0
W ð jÞe2πifjj

2

and
R 1

2

−1
2
hð f Þdf ¼ 1.

Thus, we obtain a spectral estimate P̂ð f Þ whose area of
the composite spectral window is uniform and the width
is 1/L.
When using Fourier to analyze a random signal, the

local features of the time domain signal cannot be char-
acterized and the Gibbs effect is produced. At the same
time, it does not work well for both the abrupt and non-
stationary signals.

2.2 Wavelet Mallat algorithm with compact
support [36, 37]
The wavelet transforms (WTs) can analyze the signal
with a set of basic functions whose analysis width is con-
stantly changing. This change adapts to the basic re-
quirement that different resolutions are required in
different frequency ranges for signal analysis. Moreover,
wavelet analysis has the chrematistics of time domain
and frequency domain localization, multiresolution, and
adjustable time-frequency window, which is obviously an
effective time-frequency multi-scale analysis tool for sig-
nal processing. Therefore, the envelope of the desired
frequency range signal can be extracted by the wavelet
envelope analysis method without the need of a filter. At
the same time, the Mallat wavelet algorithm has more
advantages than other wavelet algorithms.
Let x(t) ∈ L2(R), ψ(t) ∈ L2(R), and ψ(t) satisfy the admis-

sible condition:

Cψ ¼
Z þ∞

−∞

ψ̂ ωð Þj j2
j ω j dω < þ∞ ð6Þ

Then, the continuous WT is defined as

Fig. 2 Description of record segmentation (RS)
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WTx a; bð Þ ¼
Z þ∞

−∞
x tð Þψ t−b

a

� �
dt; a≠0 ð7Þ

Or the inner product can be denoted as

WTx a; bð Þ ¼ x;ψa;b

D E
ð8Þ

where a is the scale parameter, which controls the ex-
pansion and contraction of the wavelet function, and b
is the translation parameter, which controls the transla-
tion of the wavelet function. The scale a corresponds to
the frequency (inverse ratio) and the shift amount b cor-
responds to the time. ψa, b(t) meets ψa;bðtÞ ¼ 1ffiffi

a
p ψðt−ba Þ .

In addition, ψa, b(t) is finitely supported in the time do-
main. Then, the dot product of ψa, b(t) and s(t) is calcu-
lated. The WT is also finitely supported in time domain
and achieves the time domain positioning function. ψ̂a;bðωÞ
has a band-pass characteristic, i.e., it is finitely supported
around the center frequency in the frequency domain.
Moreover, after calculating the dot product of ψ̂a;bðωÞ and
S(ω),S(ω) will also reflect the local features at the center fre-
quency of the window, thus achieving the desired frequency
positioning function. Thus, we can obtain the instantaneous
power spectrum characteristics of the signal.
When applying WT, we usually use the dispersion

process. Simultaneously, in order to attain the resolution
of time and frequency using the WT variable, it is neces-
sary to change the values of a and b. In practical applica-
tions, it is usually achieved by using binary dynamic
sampling: a0 = 2, b0 = 1. Now, the discrete wavelet is

ψ j;k tð Þ ¼ 2− j=2ψ 2− jt−k
� � ð9Þ

This is the binary wavelet. However, the discrete wave-
let still has a certain degree of redundancy. We require
that the wavelet cluster {ψj, k} can be an orthogonal
basis, thus achieving non-redundant expansion and re-
construction. Frequency domain equal resolution is an
inherent characteristic of short-time Fourier transform,
and multi-resolution is an inherent characteristic of WT.
However, the multi-scale analysis theory provides the
most effective way to solve this problem. In simple
terms, the multi-scale analysis theory is to represent the
x(t) function with a series of approximation function
limits in space L2(R). A series of gradually refined ap-
proximation functions are obtained by the smooth ap-
proximation of function x(t) under different scale
conditions. Therefore, it is called multi-scale analysis.
Multi-scale analysis in space L2(R) can be understood

by constructing a subspace sequence {Vj, j ∈ Z} in space
L2(R) that makes it have monotonicity (Vj ∈Vj − 1, ∀ j ∈ Z),
approximation property (closef∪þ∞

j¼−∞ V jg ¼ L2ðRÞ , ∩þ∞
j¼−∞

V j ¼ f0g), elasticity (ϕ(t) ∈Vj⇔ ϕ(2t) ∈Vj + 1), translation
invariance (ϕ(t) ∈Vj⇔ ϕ(t − 2jk) ∈Vj k ∈ Z), and existence

of Riesz bases (∀ϕ(t) ∈V0, so that {ϕ(t − 2−jk), k ∈ Z} can
constitute the Riesz base of V0).
Theorem: If Vj(j ∈ Z) represents an approximation of

multiple scales in space L2(R), there must be a unique
function ϕ(t) ∈ L2(R):

ϕ j;k ¼ 2− j=2ϕ 2− jt−k
� �

; k∈Z ð10Þ

The function must represent a standard orthonormal
basis in Vj. ϕ(t) is called a scaling function.
Simultaneously, define the wavelet subspace formed by

the wavelet function ψ(2−jt) as

W j ¼ close ψ j;k : k∈Z
n o

; j∈Z ð11Þ

In the process of constructing an orthogonal wavelet
basis, we should ensure that

V j−1 ¼ V j⊕W j; ∀ j∈Z ð12Þ

V j⊥W j ð13Þ

It is true to all j ∈ Z. The ⊕ in the formula represents
“orthogonal sum.” Here, the subspaces Vj and Wj can be
regarded as the complementary subspace of Vj − 1. Wj

that represents the orthogonal complement of Vjon Vj − 1

is called wavelet space of scale j. It is clear that V0 =
V1⊕W1 = V2⊕W2⊕W1 =… = VN⊕WN⊕WN − 1⊕
⋯⊕W2⊕W1. If xj ∈Vj is an approximation of the func-
tion x ∈ L2(R) with a resolution of 2−j and dj ∈Wj is the
approximation error, then the above equation can be
expressed as

x0 ¼ x1 þ d1 ¼ x2 þ d2 þ d1 ¼ …
¼ xN þ dN þ dN−1 þ…þ d2 þ d1 ð14Þ

If x ≈ x0, the above formula can be written as

x ≈ x0 ¼ xN þ
XN
i¼0

di ð15Þ

This implies that any one of the signals x ∈ L2(R) can
be completely reconstructed by the approximation of the
signals and the approximation error of the signals at dif-
ferent scales.
The Mallat algorithm is based on the above ideas in

multi-scale analysis. Assuming function f(t) ∈Vj − 1, the
function can be expanded in space Vj − 1 as

f tð Þ ¼
X
k

c j−1;k2
− jþ1ð Þ=2ϕ 2− jþ1t−k

� � ð16Þ

Decompose f(t) and then project onto the Vj and Wj

spaces. Thus,
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f tð Þ ¼
X
k

c j;k2
− j=2ϕ 2− jt−k

� �

þ
X
k

d j;k2
− j=2ψ 2− jt−k

� � ð17Þ

cj, k represents the scale factor on the j scale and dj, k
represents the detail coefficient on the j scale. In
addition, the following conditions need to be satisfied

c j;k ¼ f tð Þ;ϕ j;k tð Þ
D E

¼
Z
R

f tð Þ2− j=2ϕ 2− jt−k
� �

dt ð18Þ

d j;k ¼ f tð Þ;ψ j;k tð Þ
D E

¼
Z
R

f tð Þ2− j=2ψ 2− jt−k
� �

dt ð19Þ

After a series of derivations,

c j;k ¼
X
n

h n−2kð Þc j−1;n
d j;k ¼

X
n

g n−2kð Þc j−1;n
ð20Þ

This is the pyramid algorithm of the Mallat
decomposition.
Similarly, the reconstruction algorithm of Mallat is

c j−1;m ¼
X
k

c j;kh n−2kð Þ þ
X
k

d j;kg n−2kð Þ ð21Þ

According to the above theory, the center frequency of
the wind power signal can be obtained by using the
compactly supported wavelet to extract the envelope.
And compared with the Fourier transform method,

wavelet transforms the time and space-frequency
localization analysis, which through the telescopic trans-
lation operations (functions) of signal gradually multi-
scale refinement. Ultimately, it achieves high-frequency
time segment and the low frequency in the frequency
segment, which can automatically adapt to the require-
ment of time-frequency signal analysis. And it focuses
on the arbitrary signal details to solve the difficult prob-
lem of Fourier transform. Therefore, wavelet transform
becomes an important breakthrough in scientific
methods following Fourier transform.

3 Discussion and results
3.1 Instantaneous spectral characteristic extraction of
wind power
We use the 1-year measured data of a wind farm in
Inner Mongolia, China. The wind farm has 100 wind
turbines of Vestas V80-2000 with a rated power of 2000
kW, and the sampling period is 5 s.

First, based on the output power signal of the single
wind turbines, we performed conventional power spec-
tral density estimation and extracted the power
spectrum with instantaneous characteristics of the sig-
nal. As shown in Fig. 3, the result we achieved is similar
to the result we obtained using the Welch periodogram
algorithm (based on the Fourier transform algorithm).
Moreover, the result is in agreement with the classic
Kolmogorov “− 5/3 law” [28]. Therefore, it shows the ra-
tionality of extracting the instantaneous spectral charac-
teristics of wind power signals based on the compactly
supported wavelet Mallat algorithm. We analyzed the
data of several other wind turbines in this wind farm
and obtained consistent results.
On this basis, we obtained the law for the change in

center frequency and average power, as shown in Fig. 4.
It can be seen that the center frequency tends to be con-
stant as the power of the wind turbine increases. Fur-
thermore, power spectral density estimation is
performed on the measured wind power of all wind tur-
bines of the wind farm and the obtained results are con-
sistent. It shows that this characteristic is also adapted to
the entire farm power signal.

3.2 Time and frequency separation characteristics of wind
power
Similarly, we explore the joint characteristics of wind
power in the time and frequency domains because few
people associate the time domain and frequency domain
of wind power. We used the multi-resolution wavelet
Mallat algorithm to analyze the measured wind power
data in the time domain. We could obtain the depen-
dents between the uncertainty part and average power in
the wind power signal, which can be used to describe
the quantitative characterization model [14, 15]:

Iw ¼ σw

W
ð22Þ

Here, σw represents the standard deviation of wind
power and W represents the average wind power. Iw
represents the fluctuation range of real-time wind power
fluctuations near the average of the wind power output.
As showed in Fig. 5, we will achieve a single-machine

(full-farm turbines) three-parameter power law universal
model by the result based on power generation signals
of multiple turbines. Moreover, as the average power of
single (full-field) wind turbine increases, the wind power
fluctuation intensity tends to substantially be unchanged.
And The detailed data processing and calculation fitting
process can refer to [14, 15].
It can be seen from Figs. 3 and 4 that the wind power

has a time-frequency separation characteristic, which
can be described by the following formula:
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Fig. 3 Energy spectrum of wind power

Fig. 4 Relationship between spectral characteristic and average power
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S f ; tð Þ ¼ σ2 P tð Þ	 

S0

f
.
f 0

� �
ð23Þ

f is the real-time frequency of wind speed, t is the
time, and f0 is the center frequency.
The wind power spectrum characteristics have many

practical applications, one of which is shown in [15].
However, in [15], the conventional statistical power
spectrum is used. In addition, the application of instant-
aneous power spectrum can be studied.

3.3 Energy conversion mechanism of wind turbines
As shown in Fig. 6, the wind turbine power signal is an
energy conversion made by the wind speed driven by
complex turbulence. Therefore, we must first under-
stand the spectral characteristics of wind speed in order
to understand its physical mechanism.
According to the above method, we analyzed the four

quarters of the wind speed data of this wind farm and
obtained the dependency relationship between the
hourly average wind speed and the wind speed of the
turbulence. Furthermore, we analyzed the instantaneous

Fig. 5 Relationship between wind power uncertainty and the average value

Fig. 6 Schematic of the wind turbine energy conversion process [29]
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Fig. 7 Relationship between spectral characteristic and average wind speed
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Fig. 8 Relationship between wind speed’s average value and its corresponding fluctuation part
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spectrum characteristics of the wind speed and obtained
the relationship between the center frequency and the
hourly average wind speed, as shown in Fig. 7. Within a
certain range, the center frequency of the wind speed in-
creases as the wind speed increases. However, the center
frequency f0 remains unchanged when the wind speed is
sufficiently large. That is to say, f0 also has the modula-
tion effect, which is defined as frequency modulation
(FM) effect.
In fact, based on the research of Leithead, W.E, Wel-

fonder used the wind speed data of two wind fields for
one month each to further improve the spectrum char-
acteristic model and noticed the influence of the average
wind speed on frequency, i.e., as the wind speed in-
creases, the frequency also increases [38].

GF iωð Þ ¼ V F

1þ iωT
_

F

� �5=6
ð24Þ

Here, V F ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Bð12;13Þ
T
_

F
T

r
, T

_

F ¼ L
νω
, and νω represent the

average wind speed, L represents the scale of turbulent
length, Bð12 ; 13Þ is the specified beta function, T is the finite

sampling time, and f 0 ¼ 1
.
T
_

F
is the center frequency.

Therefore, the wind speed has local characteristics, and
the spectral characteristics have special characteristics be-
cause of the influence of the complex underlying surface.
This is closely related to the energy transport mechanism
of atmospheric turbulence. As the wind turbine has cutin
and cutoff wind speeds, the center frequency and average
of the wind speed change characteristic, as shown in Fig.
7. And the actual complex conditions changed the turbu-
lence structure. As a result, the wind turbine can output
the power signal characteristics, as shown in Fig. 4, by
conversion of wind turbine energy, as shown in Fig. 6.
However, the relationship between wind speed’s aver-

age value and its corresponding fluctuation part in Fig. 8

Non-stationary

Energy containing vortex region Inertia sub-region Dissipation region

Dissipation

Inertia conveying
Inertia 

conveying

Fig. 9 Cascade transport mechanism of turbulence flow energy [39, 40]

Fig. 10 The full development of wind turbulence [19]
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does not change by conversion of wind turbine energy
shown in Fig. 6. And there is an amplitude modulation
(AM) relationship between wind power’s average value
and its corresponding uncertainty in Fig. 5. So, the sep-
aration characteristics between time domain and fre-
quency domain of wind power signal corresponds to the
amplitude and frequency modulation characteristics of
wind speed in wind power farm.
In addition, the whole wind farm data calculating re-

sults show that wind farm power output also has similar
AM character. In the future, more cases will be further
studied from the perspective of full farm power.

3.4 Atmospheric turbulent energy transport mechanism
In general, the spectrum of the turbulent motion of the
atmospheric boundary layer includes the energetic re-
gion of large-scale turbulence, the inertial sub-region of
small-scale turbulence, and the dissipative region. The
uncertainty of wind speed fluctuations is caused by tur-
bulence. Turbulence consists of eddies with large differ-
ences and various scales. The energy of the largest scale
turbulence eddy region comes directly from the Reyn-
olds stress work in the mean flow field and the buoyancy
work in the atmospheric boundary layer. The energy ob-
tained from outside by the large-scale turbulence eddy is
transferred to the secondary turbulence eddy in stages
and finally dissipated on the smallest scale turbulence
eddy. In the process of cascade transmission, the small-
scale vortices reach a statistical equilibrium state and no
longer depend on the external conditions that generate
turbulence, and thus form a so-called local uniform iso-
tropic turbulence. Figures 9 and 10 show the cascade
transport mechanism of turbulence energy flow, and the
downward arrow indicates the dissipation of the turbu-
lent energy.
Therefore, the time-frequency separation characteris-

tics of the wind power signal are derived from the trans-
mission and conservation of turbulence energy.

4 Conclusions
The power spectrum characteristics of the active power
of wind power are an important manifestation of the
wind power fluctuation characteristics. In addition, the
instantaneous power spectrum characteristics are im-
portant for real-time scheduling and optimal control of
new energy power systems. We studied the relationship
between the time domain and frequency domain of wind
power by calculating and analyzing the measured data
of the wind farm. The following conclusions were
observed:

(1) The Mallat algorithm based on wavelets with
compact support realized the instantaneous spectral
characteristics of wind power big data. Moreover,

the obtained power spectrum is in agreement with
Kolmogorov’s “− 5/3 law.”

(2) We observed variations in the center frequency as
the wind power changes; the center frequency tends
to be constant as the wind turbine power increases.
Combining the dependence of the wind power
mean and the variance of the opposite, we obtained
the time-frequency separation characteristics of
wind power and gave an explanatory expression.
And the wind power’s separation characteristics be-
tween time domain and frequency domain corres-
pond to wind speed’s amplitude and frequency
modulation characteristics.

(3) Combined with the dual mechanisms of wind
turbine energy conversion and atmospheric
turbulence operation, we obtained the physical
connotation of wind power time-frequency separ-
ation. As the atmospheric turbulence is increasing
within a certain wind speed range, the center fre-
quency increases with the increase of wind speed.
However, when the wind speed is sufficiently large,
i.e., when the atmospheric turbulence increases to a
certain extent, the center frequency remains basic-
ally unchanged.

In the future, we can study the spectral characteristics
of wind farms in different regions with varying latitudes
and longitudes because the energy transfer mechanism
of atmospheric turbulent is significantly affected by the
latitude and longitude, underlying surface, and topog-
raphy. Thus, it lays a foundation for the safe and
efficient grid-connected operation of large-scale wind
power.
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