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Abstract

Nowadays, industrial video synthetic aperture radars (ViSARs) are widely used for aerial remote sensing and
surveillance systems in smart cities. A main challenge of a group of networked ViSAR sensors in an IoT-based
environment is low bandwidth of wireless links for communicating big video data. In this research, we propose a
non-linear statistical estimator for adaptive reconstruction of compressed ViSAR data. Our proposed reconstruction
filter is based on an adaptively generated non-linear weight mask of spatial observations. It can strongly outperform
several conventional and well-known reconstruction filters for three different video samples.

Keywords: Video synthetic aperture radar (ViSAR), Non-linear reconstruction filter, Adaptive weighting, Data
compression, Interpolation, Internet of Things (IoT)
1 Introduction
The interpolation process is one of the most common
processes in remote sensing image and video analysis.
Some applications of interpolation in order to estimate
unknown pixels are image compression, high-rate video
transmission, image and video watermarking, image re-
construction, restoration, and magnification. For in-
stance in [1], a modified scheme was proposed for
converting standard-definition television (SDTV) frames
to high-definition television (HDTV) standard [2] to be
used in video transmission technologies such as DVB-T.
Researches on interpolation algorithms include a wide
range of research on which some details of them are
reviewed as follows. Two most famous interpolators are
bi-cubic convolution (mainly abbreviated as BC) and bi-
linear (BL) [3]. Today, BC and BL are classified into
non-adaptive techniques in terms of local edge computa-
tion and indeed provide two linear reconstruction filters
[4]. Another main point about them is to use both
methods in image processing software tools for remote
sensing such as ENVI and ERDAS. However, we wish to
focus on newer and efficient types of interpolators enti-
tled edge-guided interpolation algorithms. Edge-guided
methods are often applicable in image and video recon-
struction problems [5]. In [6], a technique has been
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represented which estimates anything based on an as-
sumption that every image can be modeled as a locally
stationary Gaussian process. Based on this assumption,
the local covariance coefficients in low-resolution (LR)
images are estimated, and then, the interpolation process
is performed based on geometric duality between the LR
and the high-resolution (HR) covariance. A key issue of
this method that makes it unsuitable for ViSAR frames
is to consider some statistical assumptions which do not
exist in practice. In [5], a new scheme was proposed
which uses tensor tool for interpolation in order to
realize the edge-guided interpolation. This method could
outperform some existing methods.
In this research, we want to propose a new edge-guided

interpolator based on statistical estimation. Our purposed
method uses an adaptive weighting mechanism which makes
it edge-guided, non-linear, and fully greedy. Our scheme is
an extension for the method discussed in [7–9] for remote
sensing applications. In [7], a basic edge-guided interpolation
based on linear minimum mean square error estimation
(LMMSE) was introduced for benchmark images such that
some evaluations about it have been done in [10]. LMMSE
includes two phases of directional filtering using a pre-
interpolator and data fusion of two orthogonal directions.
LMMSE scheme for remote sensing images has been dis-
cussed in [9]. This interpolator is a relatively adaptive scheme
needing a pre-interpolator based on linear filtering, e.g., lin-
ear or cubic interpolation, for directional filtering. In the
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current work, we are going to propose a full-adaptive version
of LMMSE for remote sensing data of ViSAR whereas our
proposed technique does not need any pre-interpolator. In
fact, if LMMSE can outperform some linear methods like BL
or BC, it is completely natural because they have been used
as pre-interpolator in LMMSE structure (although as two
one-dimensional components), but our proposed method
which is named adaptive LMMSE (ALMMSE) can fuse dir-
ectional observation without need to any linear pre-
interpolator and however outperforms the linear interpola-
tors. Our experiments show that it is winner against five con-
ventional techniques among the most popular non-adaptive/
linear reconstruction filters.
We can also use the proposed approach for magnifying

some multispectral images such as IKONOS and Quick-
Bird images or images related to high-resolution optical
remote sensing sensors [11–13]. In addition, there are
many other applications for interpolation algorithms, e.g.,
data hiding [14–18], interpolation-based image denoising
and demosaicking [19–21], SDTV to HDTV conversion
(SD2HD) [2] in video processing, color processing [22],
information fusion [8, 9], and shadow detection [23]
which can be assisted by ALMMSE algorithm. As we men-
tioned, the main focus of this research is towards
interpolation-based image/video compression [10, 24]. For
compression, we firstly down-sample video frames to re-
duce the information size at the sender side and then re-
construct them using an interpolator at the receiver side.
Consequently, ALMMSE can be used in different processes
of remote sensing images.
The rest of this paper is organized as follows: in Sec-

tion 2, we review LMMSE details and some of its appli-
cations in digital image processing; then in Section 3, we
present our proposed scheme (ALMMSE); and finally,
we evaluate it in Section 4. Evaluations show that the
use of a locally adaptive estimation in ViSAR frames creates
better quality compared to many conventional techniques.
The last section is a dedicated conclusion on the work.
Fig. 1 General positions for underestimate pixels. There are two general po
computed by an LMMSE-based interpolator [19]: the left part shows a posi
shows another position with orthogonal directions of 45 and 135 degrees
2 Related work
LMMSE is a quartered interpolator for creating a four-time
larger interpolated image and is widely used in different ap-
plications such as enlargement (zooming) [7], noise re-
moval (denoising) [19], color demosaicking [20], and image
compression [10]. In this technique, each of non-existing
pixels will be computed based on four nearest neighboring
pixels which are previously known. Generally, a schematic
according to Fig. 1 is used for representing mechanism of
LMMSE in two scenarios with orthogonal directions.
The main shortcoming in the design of LMMSE

interpolator is to select equal weights for two corre-
sponding pixels which are in the same direction. Ac-
cording to logic of greedy algorithms, LMMSE is not
classified into full-adaptive algorithms because it con-
siders a general assumption about generality of images
in its computations. However, we can consider it as a
partially-adaptive interpolator compared to linear inter-
polators such as BL and BC. In our study, the aim is to
create a new LMMSE-based interpolator for reconstruc-
tion of a kind of compressed remote sensing data with-
out need to any pre-interpolation step.
In [21], the authors have proposed an LMMSE-based

interpolator for color demosaicking. Demosaicking is a
certain type of interpolation which is commonly applic-
able in some color images, for example Kodak dataset
[20]. The demosaicking algorithm in [20] is based on
LMMSE and strongly outperforms BL interpolator [3].
Another application of LMMSE is noise reduction. A
denoising algorithm is practically a low pass filter which
filters high frequency variations of images, or in the
other words, it reduces/removes the noises.
Most of the interpolators have mechanisms based on aver-

aging process which is equal to low pass filtering. Therefore,
LMMSE-based interpolators can be used in the noise re-
duction problems. For example in [19], an LMMSE-based
denoising algorithm has been proposed for a wide range of
digital images. Quality of the scheme is observable.
sitions for underestimate pixels (square symbol) which should be
tion with two orthogonal directions of 0 and 90 degrees, and the right
[7]
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Interpolation in spatial domain is also a way for image com-
pression, for more details about LMMSE-based image com-
pression refer to [10]. Thus, in addition to direct
applications of interpolators such as magnification,
interpolation is widely used for image restoration and re-
construction. In other researches, interpolation-based data
hiding [8, 14, 15, 18, 25] and multispectral image fusion
(pan-sharpening) [9] are carried out using it. For example
in [9], LMMSE has been applied as a magnifier for achiev-
ing better quality in pan-sharpening process of Landsat-8
images compared to a linear interpolator. Another applica-
tion for LMMSE is to do denoising for improving classifica-
tion accuracy in digital images, because noise reduces
accuracy of classifiers (a pre-process based on noise reduc-
tion algorithms is normally essential before classification).

3 Proposed method
In the proposed scheme, an interpolation without any as-
sumption regarding estimation weights is applied to
Fig. 2 The steps in estimating non-existing pixels [18]. a Original and non-exi
pixels in different directions. After doing these three steps, all the non-existing
reconstruct compressed frames [4]. In fact, there are no de-
fault weights, and all of them are computed adaptively. Our
proposed scheme adaptively estimates non-existing pixels to
keep edge information in the best way. In this section, we
discuss our ALMMSE interpolation method which is an
edge-guided scheme and uses four nearest neighbors from
two orthogonal directions to estimate targeted pixels; thus,
it has suitability for Markov random field (MRF)-based
neighborhood systems with order of 1 or 2 such as many re-
mote sensing images. An important point about ALMMSE
is to be a full-adaptive non-linear approach that does not
need any pre-interpolation compared to linear schemes
using polynomials (non-adaptive methods) and traditional
LMMSE (with a pre-interpolator).
In order to compress ViSAR frames using the pro-

posed method, we should make down-sampled versions
from HR frames (to create LR frames) with lower reso-
lution and then reconstruct the LR frames using our
interpolator. To do this, for example, we estimate 75% of
sting pixels. b, c Computing of estimated values of 75% non-existent
pixels will be reconstructed
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the removed pixels through compression (with a down-
sampling algorithm like Algorithm 1) with using only
25% of the remaining cases (sample pixels). In such ex-
periments, we can reduce the video size to be one fourth
of the original version. Therefore, we use ALMMSE as a
regular interpolation for a quartered template.
Here, we discuss details of ALMMSE interpolation using

a template according to Fig. 2a, as seen in continuation of
this section. As per Fig. 2 b, five sample pixels are shown,
and for simplicity, we utilize simple notations as Eq. (1):

xl i; jð Þ ¼ x1
xl i; jþ 1ð Þ ¼ x2
xl iþ 1; jð Þ ¼ x3
xl iþ 1; jþ 1ð Þ ¼ x4
xh 2i; 2 jð Þ ¼ x̂h

ð1Þ

To calculate the non-existing pixels in LMMSE-based
interpolated frames, i.e., x̂h(xh is an unknown ideal value
and x̂h is an estimate for xh) and all the same positions,
we use a linear combination of original pixels of LR
frame. These original pixels are nearest neighbors of the
targeted pixel according to Eq. (2) to generate an esti-
mated value (in some scenarios, two of four nearest
neighbors are also estimated pixels of a prior step). Al-
though we are using a linear combination, but since all
the interpolation weights are specified adaptively and are
not fixed, thus, the final reconstruction filter based on
ALMMSE will be non-linear [22]. In [22], the traditional
LMMSE has been discussed extensively in order to keep
the adaptivity for gray levels in every edge area. As can
be followed in [22], a general form of LMMSE (for first/
second order MRF system and using the simplest pre-
interpolator based on two 1D linear estimation (Eq. (3)
shows two directional estimates through a kind of bi-
linear)) can be written as per Eq. (4). The weights in Eq.
(4) are according to Eq. (5) and computable through
Eqs. (6–8). Therefore, the ALMMSE closed form is simi-
lar as per Eq. (9):
Table 1 Qualitative descriptions of the interpolation methods

Different features in video compression

Statistical/
polynomial

Quartered (Q)/non-
quartered (NQ)

Quality
index

Pre-interpo
needed?

ALMMSE Statistical
(non-linear)

Q (not flexible) High No

LMMSE Statistical
(non-linear)

Q (not flexible) High Yes

Bi-linear Polynomial
(linear)

Q/NQ (flexible) Adequate No

Bi-cubic
convolution

Polynomial
(linear)

Q/NQ (flexible) Adequate No

*LMMSE/ALMMSE is a quartered interpolator (3:1); thus, it does not need distance-b
x̂h ¼ wa x̂a þ wb x̂b
wa þ wb ¼ 1

ð2Þ

x̂a ¼ x1 þ x4
2

x̂b ¼ x2 þ x3
2

ð3Þ

x̂h ¼ wa
x1 þ x4

2
þ wb

x2 þ x3
2

¼ wa

2
x1 þ wb

2
x2 þ wb

2
x3 þ wa

2
x4 ð4Þ

wa;wbf g ¼ argmin
waþwb¼1

E x̂h−xhð Þ2� � ð5Þ

wa ¼ x2−xð Þ2 þ x3−xð Þ2 þ x̂b−xð Þ2
x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2 þ x̂a−xð Þ2 þ x̂b−xð Þ2

ð6Þ

wb ¼ x1−xð Þ2 þ x4−xð Þ2 þ x̂a−xð Þ2
x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2 þ x̂a−xð Þ2 þ x̂b−xð Þ2

¼ 1−wa

ð7Þ

x ¼ 1
4

X4
i¼1

xi ¼ xa þ xb
2

ð8Þ

x̂h ¼ w1 x1 þ w2 x2 þ w3 x3 þ w4 x4 ¼
X4
i¼1

wixi

X4
i¼1

wi ¼ 1

ð9Þ

Now in Eq. (9), we should compute four weights of
w1, w2, w3, and w4. To do this, there are many ways,
but we represent a full-adaptive solution inspired by
the traditional LMMSE. Our proposed ALMMSE is in-
deed a heuristic idea towards extending LMMSE to be
full-adaptive (not considering a similar weight for
collinear pixels) and with no need to a linear pre-
interpolator which makes more computational com-
plexity. For eliminating the pre-interpolation step, we
use an approximate as Eq. (10) to make Eqs. (6–7)
lator Suitability for
SAR videos

Pixel location-
based adaptivity

Gray level-based adaptivity
(edge-guided)

Yes No* Yes

Yes No* Yes

Yes Yes (for NQ) No

Yes Yes (for NQ) No

ased adaptivity. This adaptation is only applicable for NQ templates



Fig. 3 ViSAR dataset includes three different videos; one frame from each video is seen

Table 2 Results for video 1

Schemes PSNR (dB) SSIM

Bi-cubic convolution 33.52 0.9377

Bi-linear 33.75 0.9388

Lanczos-2 kernel 33.51 0.9376

Lanczos-3 kernel 33.27 0.9349

Box kernel 32.34 0.9203

ALMMSE 35.04 0.9541
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more simple and then generate a heuristic expansion
on LMMSE weights to achieve ALMMSE weights (Eq.
(11)). As shown in Eqs. (12–16), efficient weights of
ALMMSE are very similar to LMMSE weights. In fact,
we do not consider any equal weights for these four
nearest pixels, and therefore, the approach is fully
adaptive whereas LMMSE always selects the same
weights for the collinear pixels. In addition, LMMSE
has to compute some values as directional estimates of
each set of collinear pixels. We could consider an
adaptive structure which assumes each pixel as separ-
ate sample, regardless of collinearity; therefore, the
final approach does not need any pre-estimation for
directional estimates that are no longer definable.

x̂a−xð Þ2 ≈ 0
x̂b−xð Þ2 ≈ 0

ð10Þ

w1;w2;w3;w4f g ¼ argminP4

i¼1
wi¼1

E x̂h−xhð Þ2� � ð11Þ

The estimation of non-existing pixels will be repeated
to achieve all values of 75% of underestimate pixels, as
illustrated in Fig. 2c.
w1 ¼ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2
3 x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2� �

ð12Þ

w2 ¼ x1−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2
3 x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2� �

ð13Þ

w3 ¼ x1−xð Þ2 þ x2−xð Þ2 þ x4−xð Þ2
3 x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2� �

ð14Þ



Table 3 Results for video 2

Schemes PSNR (dB) SSIM

Bi-cubic convolution 35.33 0.8862

Bi-linear 35.63 0.8869

Lanczos-2 kernel 35.31 0.8859

Lanczos-3 kernel 35.02 0.8810

Box kernel 33.98 0.8521

ALMMSE 36.93 0.9149

Table 4 Results for video 3

Schemes PSNR (dB) SSIM

Bi-cubic convolution 29.49 0.5972

Bi-linear 30.02 0.6045

Lanczos-2 kernel 29.46 0.5958

Lanczos-3 kernel 29.11 0.5824

Box kernel 28.72 0.5705

ALMMSE 30.76 0.6721
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w4 ¼ x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2
3 x1−xð Þ2 þ x2−xð Þ2 þ x3−xð Þ2 þ x4−xð Þ2� �

¼ 1−
X3
i¼1

wi

ð15Þ

x ¼ 1
4

X4
i¼1

xi ð16Þ

Note that computing of the targeted pixels is firstly
based on four nearest neighbors, but in some positions
due to the existence of two estimated pixel among four
nearest neighbors, practically, the estimation procedure
has been performed by six neighbors of which four of
these six pixels are not within MRF neighborhood. In
the next section, the proposed scheme is evaluated. We
will see that the proposed scheme is effective on ViSAR
dataset.
Moreover, evaluation is performed based on objective

and subjective quality assessment metrics. In addition to
the proposed method, a pre-processing step before doing
the re-sampling process exists which contains two blocks
of down-sampling and up-sampling. Suppose that an in-
put image is a typical M ×N matrix (for simplicity, M
and N are even). Algorithm 1 and Algorithm 2 describe
these two blocks.

For more details about impacts of different models of
down-sampling and up-sampling in quartered interpola-
tors, see detailed discussions in [10]. Table 1 provides
more qualitative details of LMMSE, ALMMSE, BL, and
BC.

4 Results
For evaluation, some ViSAR frames are used which are
observable in Fig. 3. PSNR and SSIM as main metrics
are used in all evaluations. PSNR and SSIM definitions
are seen in Eq. (17) and Eq. (18), respectively, for two
entire 8-bit images x and y with the same size N1 ×
N2. In Eq. (18), ux and uy denote mean of images, σ2

x

and σ2y show variance of them, and σxy describes the

covariance between them. Re-sampling is done with
the proposed scheme (ALMMSE) and some conven-
tional methods including BL, BC, Lanczos (with par-
ameter of 2 and 3 as an approximation for sinc
function), and box kernel [3, 26]. All methods are
similar in terms of not having a pre-interpolation step,
and this makes the evaluations fair. In addition to-
wards fairness, the down-sampling processes in all
methods are the same, the up-sampling in our method
is according to Algorithm 2, and the linear methods
are according to the MathWork definition.
All simulations have been implemented using

MATLAB and show that our scheme is strongly win-
ner against non-adaptive/linear methods. Outputs of
PSNR and SSIM with complete details are listed in
Tables 2, 3, and 4, and Fig. 4 describes an average for
all videos. We observe that the proposed scheme
based on a full-adaptive approach causes a suitable
impact in real ViSAR dataset and outperforms the
other methods.

PSNR ¼ 20 log
28−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N1 � N2

XN1

i¼1

XN2

j¼1
xij−yij

� �2
r ð17Þ

SSIM ¼ 2uxuy
u2x þ u2y

� 2σxσy

σ2x þ σ2y
� σxy
σxσy

ð18Þ



Fig. 4 Average results of PSNR (dB) and SSIM
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5 Conclusions
In the recent years, data processing for IoT became
an interesting topic of research [27–30]. In our study,
we proposed ALMMSE interpolation algorithm for
the remote sensing ViSAR frames captured by im-
aging radars in an IoT-enabled radar networks of
drones and airplanes [31]. This scheme is a new
edge-guided interpolator based on non-linear statis-
tical estimation which has no assumption on local
weights and also does not need any pre-interpolator.
The main feature of the proposed method is to use
the most adaptation in comparison to another edge-
guided interpolator and conventional interpolation
techniques. We compared it with several linear inter-
polators which do not need any pre-interpolator too.
All experiments illustrate a clear consequence about
superiority of the proposed method. As a future work,
we can go ahead to propose a more accurate version
of ALMMSE with lower computational complexity.
Evaluation of this proposed method for other remote
sensing devices may determine some future directions.
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