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Abstract

Interference is the main performance-limiting factor in most wireless networks. Protocol interference model is
extensively used in the design of wireless networks. However, the setting of interference range, a crucial part of the
protocol interference model, is rather heuristic and remains an open problem. In this paper, we use the stochastic
geometry and the direct approach to obtain the associated feasibility distributions. After that, we use the binary
hypothesis testing to achieve the Bayes risk under binomial point process (BPP) and Poisson point process (PPP),
respectively. According to the first derivative of the Bayes risk, we provide the equation to achieve the optimal
interference range for minimum Bayes risk. We extend the method proposed by Wildman et al. to a more general
situation. Furthermore, we show that for infinite PPP, those two methods converge to the same results. Several
numerical results for wireless networks under BPP, finite PPP, and infinite PPP are given. Simulation results show that in
the finite wireless network, the BPP method performs better than the PPP method.
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1 Introduction
Interference range is a crucial part of the protocol inter-
ferencemodel. Under the protocol interferencemodel, the
transmission between the reference receiver and the ref-
erence transmitter is successfully received, when there is
no interference transmitter within the interference range
of the reference receiver [1]. In the last two decades, inter-
ference range is widely used in wireless networks, such as
ad hoc networks [2–5], wireless mesh networks [6–10],
sensor networks [11, 12], cellular networks [13, 14],
and WiMAX networks [15]. The setting of interference
range has a large effect on the performance of wireless
networks [10, 11, 16, 17]. In wireless networks based
on the IEEE 802.11 standard, interference range is usu-
ally set to be twice as large as the transmission range
[7, 8, 18, 19]. In CSMA-based wireless networks, the inter-
ference range is set equal to the carrier sensing range
[4, 6, 9, 20]. Several works [2, 4, 21–23] set the interference
range by restricting the signal-to-interference-and-noise
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ratio (SINR) to a threshold. In their works, only one inter-
ference transmitter is considered when calculating the
SINR. The interference ranges in the mentioned literature
are set without fully considering the effect of the net-
works. However, the optimal interference range may be
a function of network parameters, and the casual setting
of the interference range will depress the performance of
wireless networks. The setting of the interference range is
rather heuristic and remains an open problem [24].
Several works have further studied the setting of the

interference range. Hasan and Andrews [25] study the
optimal interference range (guard zone) to maximize
transmission capacity in CDMA-based wireless ad hoc
networks. Iyer et al. [26] study the minimum interference
range under the additive interference model, the cap-
ture threshold model, and the interference range model,
respectively. Zhou et al. [15] deduce the probability den-
sity of the ratio between the interference range and the
one-hop distance. The randomness of the ratio is due to
the random thermal noise. Besides, they only consider
one interference transmitter. Shi et al. [24] discuss the
bounds for themaximum interference range. They deduce
the lower bound of the maximum interference range with
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the maximum transmission range, and the upper bound
with the maximum range that a band can be reused.
Their work gives the span ofmaximum interference range.
However, the exact value of the interference range remains
unknown.
Zhang et al. [27] propose the physical-ratio-K (PRK)

interference model as a reliability-oriented instantiation
of the protocol model. Furthermore, they study the effect
of K on the reliability and throughput. Hasan and Ali
[28] present the optimal interference range (guard zone)
expression that maximizes the density of successful trans-
missions under an outage constraint.Wildman andWeber
[29] study the optimal interference range to minimize the
Bayes risk of the protocol interference model in wireless
Poisson networks. In [30], they also investigate the inter-
ference range to maximize the correlation of the physical
interference model and protocol interference model in
Poisson networks. The authors use the binary hypothe-
sis testing to achieve the interference range for minimum
Bayes risk. However, their works are only suitable for
Poisson networks. The Poisson point process has two defi-
ciencies when modeling finite networks. The first one is
no consideration of the network boundary. The second
one is the allowance of unbounded nodes in a finite area.
The optimal interference range for finite network needs
further study.
In this paper, our main contribution is proposing a

method of setting the optimal interference range which
is applicable for a more general situation. We employ
the binary hypothesis testing framework to outline the
relationship between the physical and protocol interfer-
ence model. The optimal interference range is configured
to minimize the Bayes risk of the protocol interference
model.
The first contribution of this paper is proposing a

method to achieve the optimal interference range for
binomial wireless networks.We adopt the direct approach
to obtain the associated feasibility distributions for wire-
less networks under BPP. Furthermore, we calculate Bayes
risk with those distributions and deduce the optimal inter-
ference range to minimize the Bayes risk.
Next, we derive the optimal interference range for finite

and infinite Poisson wireless networks. Furthermore, we
demonstrate that the optimal interference range found by
Wildman et al. [30] is the special case of the infinite PPP.
Finally, we present several numerical results of Bayes

risks, receiver operating characteristic (ROC), and area
under curve (AUC) under BPP, finite PPP, and infinite PPP.
Our results reveal that the BPP method and the finite PPP
method achieve smaller optimal interference range than
the infinite PPPmethod. In the finite wireless network, the
BPP method performs better than the PPP methods.
The rest of this paper is organized as follows. In

Section 2, we introduce the wireless network model,

including the propagation model, physical interference
model, and protocol interference model. In Section 3, we
introduce the binary hypothesis testing and Bayes risk. In
Section 4, we provide the feasibility distributions under
binomial wireless networks and Poisson wireless net-
works, respectively. In Section 5, we deduce the Bayes risk
and optimal interference range. In Section 6, we give some
numerical results for BPP and PPP. Section 7 concludes
this paper. Finally, for clarity, long proofs are presented in
the Appendix.

2 Networkmodel
We consider a network, in a two-dimensional region A,
with a reference receiver RX0, a reference transmitterTX0,
and M interference transmitters TX1, · · · ,TXM. Assume
that all interference transmitters are active and consist of
a point process in a snapshot. In this paper, we concen-
trate on analyzing the performance (the Bayes risks) of the
networks at a snapshot with stochastic geometry tool. For
the analyzing of the long-term metrics, queuing theory
should also be incorporated [31]. Without a loss of gener-
ality, due to the stationarity of the point process, we may
take the reference receiver to be at the origin. The distance
is normalized by the distance from TX0 to RX0, denoted
by d0 = 1. Let di denote the distance fromTXi to RX0. The
area of the network region is denoted by |A|. As the power
allocation is not considered in this paper, we assume that
all transmitter’s power Pi for all i ∈ {0, · · · ,M} is the same.

2.1 Propagation model
Our signal propagationmodel considers the path loss with
Rayleigh fading. The signal received by RX0 from TXi,
denoted by PRi, is

PRi = Pihid−α
i (1)

where hi is the i.i.d. unit-mean exponential shadowing fac-
tor for all i ∈ {0, · · · ,M}, α > 2 is the path loss exponent.
The value of α is typically between 2 and 8 as in [32]
and [33].

2.2 Physical interference model
Under physical interference model, transmission from
TX0 is successfully received by RX0 if the SINR is no less
than a defined SINR threshold β , which can be expressed
as follows:

SINR = h0

SNR−1 +
M∑

i=1
hid−α

i

≥ β (2)

where SNR is the average signal-to-noise ratio. The inter-
ference range is mainly affected by interference, and we
mainly interest in the effect of interference in this paper.
As wildly assumed in [25–34], we calculate the noise with
the average. Remember that distance is normalized by d0,
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and the SNR−1 is achieved by dividing the transmitter
power P0 with the average noise.
Let random variables H = 1 {SINR ≥ β} represent the

physical model feasibility, denoted by H1, of the transmis-
sion from TX0 to RX0. The indicator 1A has the value 1 for
all elements of A and the value of 0 for all elements not in
A. The physical model failure is denoted by H0.

2.3 Protocol interference model
Under protocol interference model, a transmission from
TX0 to RX0 is successful, if there are no interference trans-
mitters within the interference range of RX0, denoted by
RI . Let random variables D = 1 {di ≥ RI ,∀i �= 0} repre-
sent the protocol model feasibility, denoted by D1, of the
transmission fromTX0 to RX0. The protocol model failure
is denoted by D0.

3 Binary hypothesis testing and Bayes risk
In wireless networks, the physical interference model is
considered as a more realistic description of the effects of
interference [35]. Appropriate setting of the interference
range of the protocol interference model can maximize
the similarity between the two models. The appropri-
ate setting here means to set the interference range to
be the optimal interference range which maximizes the
similarity. In this paper, we employ the binary hypothe-
sis testing framework in [36] to describe the relationship
between the two models. The minimum Bayes risk maps
the maximum similarity. The optimal interference range
to maximize the similarity between the two models is
equivalent to minimize the Bayes risk.
In the binary hypothesis testing, the two hypotheses

(null hypothesis H0 and alternate hypothesis H1) repre-
sent the possible outcomes (failure and success) under
the physical interference model. The two decisions (D0
and D1) represent the possible observations (failure and
success) under the protocol interference model. For this
binary hypothesis testing problem, four possible cases can
occur:
(1) Decide D0 when H0 is true.
(2) Decide D0 when H1 is true.
(3) Decide D1 when H0 is true.
(4) Decide D1 when H1 is true.
In order to use the Bayes’ criterion, we assume that a

cost is assigned to the possible decisions. We can define
Cij

(
i, j = 0, 1

)
as the cost associated with the decision Di,

when hypothesis Hj is true. In particular, the costs for this
binary hypothesis test problem are C00 to case (1), C01 to
case (2), C10 to case (3), and C11 to case (4). The goal in
our Bayes’ criterion is to determine the optimal interfer-
ence range to minimize the average cost E[C], also known
as Bayes risk r in [29]. Denote P

(
Di

∣
∣Hj

)
as the joint prob-

ability that we decide Di when the hypothesis Hj is true.
The Bayes risk is

r = E [C] =
∑

i,j
CijP

(
Di,Hj

)
(3)

The costCij may be chosen to be particular network per-
formances. In this paper, we use the uniform cost model
(C00 = C11 = 0 and C01 = C10 = 1) for simplicity. This
assumption is reasonable, as there is no cost of similarity
when the two models make the same decision, as in [29]
and [30]. From Bayes’ rule, the Bayes risk can be expressed
as follows:

r = P (D0,H1) + P (D1,H0)

= P (H1) + P (D1) − 2P (H1|D1)P (D1) (4)

where P (H1) and P (D1) are the probabilities of phys-
ical and protocol feasibility distribution, respectively.
P (H1 |D1 ) is the conditional feasibility distribution of
physical model given successfully received of the protocol
model. Those feasibility distributions will be deduced in
the following section.

4 Feasibility distributions
Based on the networkmodel and according to the stochas-
tic geometry, we provide the feasibility distributions of
binomial and Poisson wireless networks.

4.1 Binomial wireless networks
Assume that M interference transmitters are indepen-
dently and uniformly distributed over A. A is a circle
center at the origin with radius of R. Thus, the inter-
ference transmitters are drawn from a BPP of density
λ = M

/(
πR2) . We denote the BPP by �M. According to

the coverage probability of [34] and the standard results
in stochastic geometry [37], following three distributions
can be obtained.

Lemma 1 The feasibility distribution of the physical
model under BPP is

PBPP (H1) = e−ζ

(

1 + �(R)

R2

)M
(5)

where ζ = β
/
SNR , � (x) = 2

β
� (x) − x2,

� (x) = ∫ x
0

tα+1

1+β−1tα dt

=
(
xα+2

α+2

)

2F1
([
1, 2

α
+ 1

]
; 2

α
+ 2,− xα

β

)
,

and 2F1 is the Gauss hypergeometric function,
2F1 ([a, b] ; c, x)
= 	(c)

	(b)	(c−b)
∫ 1
0 vb−1(1 − v)c−b−1(1 − xv)−adv,

and 	 (·) is the gamma function.

Proof This result follows from [34], by setting the exclu-
sion zone radius (the area of no active interference trans-
mitters) rin to be zero and the transmitting probability
(the active probability of interference transmitters) p to be
one. In the physical interference model, there is no loca-
tion constraint for the transmitters, and it is reasonable
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to set rin to be zero. For the simplicity of derivation, we
set the transmitting probability to be one, as in [29] and
[30]. When considering transmitting probability, the fea-
sibility distribution can also be calculated. More complex
and challenging cases with spatio-temporal traffic, where
p is decided by a stochastic process, can be investigated
by combining stochastic geometry and queuing theory
as in [38].

Lemma 2 The feasibility distribution of the protocol
model under BPP is

PBPP (D1) =
(

1 − R2
I

R2

)M

(6)

Proof According to [37], for a binomial point process
with M points in a compact set A, the void probabilities
of a point process are the probabilities of there being no
point of the process in given test sets B:

P (N (B) = 0) = (vd (A) − vd (B))M

vd(A)M
(7)

where N (B) is the number of point in B, vd (B) is the
volume of B.
The feasibility distribution of the protocol model under

BPP, denoted by PBPP (D1), is the probability of there being
no point of interference transmitter in the interference
range of the reference receiver. The interference range in
this paper is the circle centered at the reference receiver
with radius RI . Substitute the interference range for B, πR2

I
for vd (B), and πR2 for vd (A) achieves Lemma 2.

Lemma 3 The conditional feasibility distribution of
physical model given successfully received of protocol
model under BPP is

PBPP(H1|D1) = e−ζ

(

1 + �(R) − � (RI)

R2

)M
(8)

Proof Similar to the proof of Lemma 1, this is achieved
by setting the exclusion zone radius rin to be RI and the
transmitting probability p to be one. Here, we set the
exclusion zone radius to be RI , means there being no
interference transmitter in the interference range.

Other distributions, derived from H and D, are express-
ible in terms of PBPP (H1 |D1 ) ,PBPP (H1), and PBPP (D1).

4.2 Poisson wireless networks
Assume that the interference transmitters are drawn from
a PPP, denoted by �, with density λ over A. A is a cir-
cle center at the origin with a radius of R. The number
of interference transmitters M within region A is Poisson
with mean E [M] = λπR2. The feasibility distributions

can be obtained by taking the expectation of the three
distributions in BPP with respect toM.

Lemma 4 The feasibility distribution of the physical
model under PPP is

PPPP (H1) = exp {−ζ + λπ� (R)} (9)

Proof Similar to the proof of Lemma 1, this result fol-
lows from [34], by setting the exclusion zone radius rin to
be zero and the transmitting probability p to be one.

Lemma 5 The feasibility distribution of the protocol
model under PPP is

PPPP (D1) = exp
{−λπR2

I
}

(10)

Proof From [37] we know, in a homogeneous Poisson
point process with density λ, the void probabilities of a
point process are the probabilities of there being no point
of the process in given test sets B:

P (N (B) = 0) = exp {−λvd (B)} (11)

where N (B) is the number of point in B, vd (B) is the
volume of B.
The feasibility distribution of the protocol model under

PPP, denoted by PPPP (D1), is the probability of there being
no point of interference transmitter in the interference
range of the reference receiver. The interference range in
this paper is the circle centered at the reference receiver
with radius RI . Substitute the interference range for B, and
πR2

I for vd (B) achieves Lemma 5.

Lemma 6 The conditional feasibility distribution of
physical model given successfully reception of protocol
model under PPP is

PPPP (H1|D1) = exp {−ζ + πλ� (R)

− πλ� (RI)} (12)

Proof Similar to the proof of Lemma 3, this result fol-
lows from [34], by setting the exclusion zone radius rin to
be RI and the transmitting probability p to be one.

Other distributions, derived from H and D, are express-
ible in terms of PPPP (H1 |D1 ), PPPP (H1), and PPPP (D1).

5 Optimal interference range
Combining the binary hypothesis testing and the fea-
sibility distributions for binomial and Poisson wireless
networks, we obtain the Bayes risk for protocol inter-
ference model under the physical interference model. By
studying the first derivative of the Bayes risk, we achieve
the equation for optimal interference range for mini-
mum Bayes risk in binomial and finite Poisson wireless
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networks. Furthermore, the Bayes risk and optimal inter-
ference range in infinite Poisson wireless networks can be
found by taking the limit of those in the finite Poisson
wireless networks as R → ∞.

5.1 Binomial wireless networks
Proposition 1 The Bayes risk in binomial wireless

networks, denoted by rBPP, under the uniform cost model is

rBPP = PBPP (H1) + PBPP (D1)

− 2PBPP (H1 |D1 )PBPP (D1)

= e−ζ

(

1 + �(R)

R2

)M
+

(

1 − R2
I

R2

)M

− 2e−ζ

(

1 + �(R) − �(RI)

R2

)M

×
(

1 − R2
I

R2

)M

(13)

Proof The result is immediate from (4) and substi-
tuting feasibility distribution expression from (5), (6),
and (8).

Theorem 1 (Optimal interference range for minimum
Bayes risk) Under the uniform cost model, the optimal
interference range for minimum Bayes risk in binomial
wireless networks always exists. When ζ ≥ log 2, the opti-
mal interference range is R. This can hardly be set as inter-
ference range, as only the reference transmitter is allowed to
transmit. When ζ < log 2, the optimal interference range
is the unique solution to

eζ
(
1 + (� (R) − �(RI))

/
R2 )−M =

2 − 2βR
(
R2 − R2

I
)

RI
(
β + Rα

I
) (
R2 + �(R) − � (RI)

) (14)

Proof The proof is in Appendix A

5.2 Finite poisson wireless networks
Proposition 2 The Bayes risk under finite PPP, denoted

by rPPP, under the uniform cost model is

rPPP = PPPP (H1) + PPPP (D1)

− 2PPPP (H1|D1)PPPP (D1)

= exp {−ζ + λπ� (R)} + exp
{−λπR2

I
}

− 2 exp {−ζ + λπ� (R)

− λπ
(
�(RI) + R2

I
)}

(15)

Proof Similar to Proposition 1 by substituting feasibility
distribution expression from (9), (10), and (12).

Theorem 2 (Optimal interference range for minimum
Bayes risk) Under the uniform cost model, the optimal
interference range forminimumBayes risk under finite PPP
is the unique solution to

β + Rα
I

2Rα
I

= exp {−ζ + λπ� (R) − λπ� (RI)} (16)

The solution exists if and only if

ζ < log
((
2Rα

)
/
(
β + Rα

))
(17)

Proof The proof is in Appendix B.

5.3 Infinite poisson wireless networks
For the PPP on the entire plan, the corresponding results
can be obtained from the PPP over a finite region A by
taking the limit as R → ∞. The results are as follows.
The feasibility distributions of infinite PPP are similar to
those of finite PPP by replacing � (R) to lim

R→∞� (R) =
−2πβ2/α csc (2π/α)/α csc (2π/α) /α.
The Bayes risk is

rinfPPP = exp
{
−ζ − 2λπ2β2/α csc (2π/α)/α csc (2π/α) /α

}

+ exp
{
−λπR2I

}
− 2 exp {−ζ

− 2λπ2β2/α csc (2π/α)
/

α

− λπ
(
� (RI) + R2I

)}

(18)

Corollary 1 (Optimal interference range for minimum
Bayes risk) Under the uniform cost model, the optimal
interference range for minimum Bayes risk under infinite
PPP is the unique solution to

β + Rα
I

2Rα
I

= exp
{−ζ − 2λπ2β2/α csc (2π/α)/α

− λπ� (RI)} (19)

The solution exists if and only if

ζ < log 2 (20)

Proof This result follows from Theorem 2 by taking the
limit as R → ∞.

Corollary 2 For two dimension networks, when the
reference transmitter is at unit distance from the receiver
and uniform cost model is adopted, the Bayes risk and the
optimal interference range under infinite PPP are the same
with those in [30].

Proof The proof is in Appendix C.
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6 Numerical results
In our simulation, we use the similar environment param-
eters of [30]. Notice that distance is normalized to the
distance from TX0 to RX0, and the transmitter density
is one hundred times of that in [30]. Numerical results
for Bayes risk, optimal interference range, receiver oper-
ating characteristic (ROC), and area under curve (AUC)
for both BPP and PPP are shown as follows. The pro-
posed methods can be adopted to achieve the interference
range for wireless networks. We utilize the ROC and AUC
to evaluate the performance of each method. The ROC
is used to show the tradeoff between type I (false rejec-
tion PI = P (D1 |H0 ) ) and type II (false acceptance PII =
P (D0 |H1 ) ) error rates. The AUC is the area under the
ROC curve and is a useful numerical value to evaluate the
performance of the proposed method.

6.1 Bayes risks and first derivatives
The Bayes risks and the first derivatives under BPP, finite
PPP, and infinite PPP are shown in Fig 1. In order to show
the difference of the three point processes, we set the area
to be a disk of radius R = 10. When the area is sufficiently
large, the results of BPP and finite PPP converge to those
of infinite PPP. The density of interference transmitter is
λ = 2 × 10−2. The path loss exponent is α = 3. The SINR
threshold is β = 5. We first investigate the case without
noise, where the power of background noise is set to be 0,
and the SNR is infinite, i.e., SNR = +∞.
Figure 1a shows the Bayes risks decrease firstly then

increase with the increment of the interference range.
The minimum Bayes risks are achieved at the optimal
interference range. From the numerical results, we know
that there is a unique optimal interference range which
can minimize the Bayes risk for BPP, finite PPP, and infi-
nite PPP, respectively. For BPP, the optimal interference
range is RBPP

I = 2.00. For finite PPP, the optimal interfer-
ence range is RPPP

I = 2.02. For infinite BPP, the optimal
interference range is Rinf PPP

I = 2.11. This indicates the
BPP has the smallest optimal range, which allows more
transmitters to be active simultaneously. Besides, with
small interference range, the Bayes risk of BPP is almost
the same as the Bayes risk of finite PPP, and obviously
smaller than that of infinite PPP. Thismeans, for finite net-
works with small interference range, using the infinite PPP
method will overestimate the Bayes risk.
As shown in Fig 1b, with the growth of interference

range, the first derivatives turn from negative to posi-
tive. For 0 < RI < 10, there is a unique zero point,
which acts as the optimal interference range, for the
BPP, finite PPP, and infinite PPP, respectively. It can be
found that the first derivative of the BPP is the first to
reach the zero point, and follows the first derivative of
the finite PPP, and the last is the first derivative of the
infinite PPP.

Fig. 1 Bayes risks and the first derivatives under BPP, finite PPP, and
infinite PPP. a Bayes risks (SNR = + ∞). b The first derivatives of Bayes
risks. c Bayes risks (SNR = 7)



Ouyang et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:247 Page 7 of 12

When SNR is sufficiently large
(
SNR >

β
log 2

)
, similar

results can be achieved. For the case with large noise(
SNR ≤ β

log 2

)
, we set SNR = 7 as an example in Fig 1c. It

is obvious that the Bayes risks are monotonously decreas-
ing, and the optimal interference ranges for the mini-
mum Bayes risks are at the maximum network radius R.
This indicates that only the reference transmitter can be
active, which is inefficiency for a practical network. Con-
sequently, the Bayes methods cannot be directly applied
to the network with heavy noise, and more effort should
be taken in this aspect.

6.2 Parameters influence the optimal interference range
Figure 2 shows the optimal interference range influenced
by parameters (λ,β ,α), under BPP, finite PPP, and infinite
PPP. The area is a disk of radius R = 10. The power of
background noise is set to be 0, and the SNR is infinite,
i.e., SNR = +∞.
Figure 2a shows the optimal interference ranges

increase with the density λ growing from 2 × 10−3 to
2 × 10−1. The settings of other parameters are α = 3
and β = 5. This is quite hard to understand. As the
physical feasibility decreases with λ, in order to minimize
the Bayes risks, the protocol feasibility must likewise be
decreased by increasing RI or λ. Notice that, in order to
minimize the Bayes risks, only increasing λ is not enough,
and it must be additionally increased by expanding RI . It
is quite obvious that the optimal interference range of BPP
and finite PPP are smaller than that of infinite PPP. As
in infinite PPP, the network radius is infinite, which leads
to more interference compared with BPP and finite PPP.
In order to minimize the risk, a relatively larger interfer-
ence range is needed for infinite PPP. Besides, the optimal
interference range of BPP is slightly lower than that of
finite PPP.
Figure 2b shows the optimal interference ranges

increase with the SINR threshold β growing from 0.5 to
50. The settings of other parameters are λ = 2× 10−2 and
α = 3. This is because the physical feasibility decreases
with SINR threshold β , and the protocol model feasibil-
ity must be decreased by increasing RI . Similar to Fig. 2a,
the optimal interference range of BPP and finite PPP are
smaller than that of infinite PPP, and the optimal inter-
ference range of BPP is slightly lower than that of finite
PPP.
Figure 2c shows the optimal interference ranges

decrease with the path loss exponent α growing from
2 to 8. The settings of other parameters are λ =
2 × 10−2 and β = 5. Bigger path loss exponent
means higher power attenuation, which leads to lower
interference and higher protocol feasibility. In order
to minimize the Bayes risks, the protocol feasibility
must likewise be increased by decreasing RI . Again,

Fig. 2 Optimal interference range influenced by parameters. a
Optimal interference range vs. densityλ. b Optimal interference range
vs. SINR threshold β . c Optimal interference range vs. path loss
exponent α
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the optimal interference range of BPP and finite PPP
are smaller than that of infinite PPP, and the optimal
interference range of BPP is slightly lower than that of
finite PPP.
Those simulation results indicate the optimal interfer-

ence range should be appropriately chosen according to
the network parameters. The casual setting of the inter-
ference range will raise the Bayes risk and depress the
performance of wireless networks.

6.3 ROC and AUC compare
Figure 3 compares the ROC and AUC of BPP, finite PPP,
and infinite PPP. The path loss exponent is α = 3. The
SINR threshold is β =5 and SNR = +∞. Figure 3a
shows the ROC curves travel from bottom-right to top-
left, as the interference range RI grows. The network

Fig. 3 ROC and AUC compare. a ROC for BPP, finite PPP, and infinite
PPP. b AUC for BPP, finite PPP, and infinite PPP

radius is R = 10. The density of interference transmitter is
λ = 2 × 10−2. The ROC of BPP is in the lowest place
and close to the ROC of finite PPP. It is obvious that the
ROC of both BPP and finite PPP is under that of infinite
PPP, which means the BPP and finite PPP methods have a
lower error rate than the infinite PPP method. That is to
say, the BPP method and the finite PPP methods perform
better in the finite networks. Figure 3b shows the AUC of
BPP, finite PPP, and infinite PPP vary with the different
network radiuses. The network radiuses range from 10 to
200, and the density of interference transmitter is set to be
λ = 2 × 10−2, λ = 1 × 10−1, and λ = 3 × 10−1. From
the simulation results, we know the AUC of BPP and finite
PPP is smaller than the AUC of infinite PPP when the net-
work radius is small. With a larger network radius, those
AUCs are nearly the same. Those results indicate that the
BPP method and the finite PPP method have better per-
formance in small networks and have similar performance
to infinite PPP in large networks. Furthermore, when λ =
1 × 10−1 and λ = 3 × 10−1, there is an obvious advan-
tage of the BPP method over the finite PPP method. That
is to say, the BPP method performs better than the PPP
methods in small networks with high node density. When
λ = 2 × 10−2, the AUC of finite PPP and infinite PPP
are nearly the same. This implies that the two PPP meth-
ods have the same performance in wireless networks with
large density.

7 Conclusion
In this paper, we provide methods to achieve the opti-
mal interference range for minimum Bayes risk, under
the assumptions of both binomial and Poisson wireless
networks. For Poisson wireless networks, both finite and
infinite networks are concerned. Following that, several
numerical results are provided. Simulation results show
that in the finite wireless network, the BPP method per-
forms better than the PPP methods. The analytical and
numerical results may assist in the more accurate and
effective use of the protocol interference model.
In future work, it is of interest to relate the risk

with what a user of networks may care, e.g., through-
put, delay, and reliability. This may directly indicate the
effect of interference range setting on the network per-
formance. Additionally, networks with medium access
control (MAC) protocol (e.g., ALOHA and CSMA),
unsaturated traffic(e.g., spatio-temporal traffic), and more
fading factors (e.g., Rician and Nakagami) need further
studied.

Appendix
Appendix A
Proof of theorem 1
Proof The first derivative of rBPP to interference range

RI is
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drBPP

dRI
= M

(

1 − R2
I

R2

)M−1 (

−2RI
R2

)

− 2e−ζ

(

1 − R2
I

R2

)M−1

×
(

1 + �(R) − �(RI)

R2

)M−1

×
(

M
(

2βRI

R2 (
β + Rα

I
)

) (

1 − R2
I

R2

)

+
(

1 + �(R) − �(RI)

R2

)

M
(−2RI

R2

))

= M
(

1 − R2
I

R2

)M−1 (

−2RI
R2

)

× e−ζ

(

1 + �(R) − �(RI)

R2

)M

×
(

eζ
(

1 + �(R) − �(RI)

R2

)−M
− 2

+ 2β
(
R2 − R2

I
)

(
β + Rα

I
) (
R2 + �(R) − �(RI)

)

)

(21)

In order to analyze the first derivative, the following two
functions are defined.

f1 = eζ
(
1 + (� (R) − �(RI)) /R2)−M

f2 = 2 − 2β
(
R2−R2I

)

(β+Rα
I )(R2+�(R)−�(RI ))

(22)

The first derivative of rBPP to interference range RI can
be expressed as follows:

drBPP

dRI
= g1 (RI)

(
f1 − f2

)
(23)

where g1 (RI) = Me−ζ
(
− 2RI

R2

) (
1 − R2I

R2

)M−1
h (RI), and

h (RI) =
(
1 + �(R)−�(RI )

R2

)M
. It is easy to know that

g1 (RI) < 0 for all RI , as h (RI) > 0 (� (x) is monotonous
decreasing). The monotonicity of rBPP can be easily
decided by analyzing f1 − f2.
For 1/f1, the first derivative is

(
1/f1

)′ = Me−ζ

(

1 + �(R) − �(RI)

R2

)M−1

×
(

2βRI

R2 (
β + Rα

I
)

)

(24)

≥ 0

From (24), we know 1/f1 is monotonously increasing,
and f1 is monotonously decreasing. The limiting values are
lim
RI→0

f1 = eζ
(
1 + � (R) /R2)−M, and lim

RI→R
f1 = eζ .

For f2, the first derivative is

f2′ = ((
β + Rα

I
) (
R2 + �(R) − �(RI)

))−2

× (
4βRI

(
β + Rα

I
) (
R2 + �(R) − �(RI)

)

+ 2β
(
R2 − R2

I
) (

αRα−1
I

(
R2 + �(R)

− �(RI)) + 2βRI))

≥ 0 (25)

From (25), we know f2 is monotonously increasing, and
the limiting values are lim

RI→0
f2 = 2−2R2/

(
R2 − �(R)

)
and

lim
RI→R

f2 = 2.

In summary, f1 is decreasing from eζ
(
1 + �(R)

R2

)−M

down to eζ , and f2 is increasing from 2 − 2R2
R2−�(R)

up to 2.
It is clear that f1 and f2 have a unique intersection, which
minimizes the Bayes risk, if and only if eζ < 2 , i.e.,
ζ < log 2. That is to say, when ζ < log 2, the opti-
mal interference range is achieved at f1 = f2. Denote
the point f1 = f2 by RBPP

I . When RI < RBPP
I , f1 > f2,

drBPP
dRI < 0, and rBPP is monotonously decreasing. When
RI > RBPP

I , f1 < f2, drBPP
dRI > 0, and rBPP is monotonously

increasing. As a consequence, the minimum Bayes risk
rBPP is achieved at RBPP

I , which is the optimal interference
range of BPP. If ζ ≥ log 2, f1 will always be bigger than
f2, and drBPP

dRI ≤ 0 is tenable for all RI ∈ [0,R]. Under
this situation, the optimal interference range forminimum
rBPP is R.

Appendix B
Proof of theorem 2
Proof The first derivative of rPPP to interference range

RI is

drPPP

dRI
= exp

{−λπR2
I
}
(−2λπRI)

− 2 exp
{−c − λπ

(
�(RI) + R2

I
)}

×
(

−2λπRα+1
I

β + Rα
I

)

(26)

= exp
{−λπR2

I
}
(

−4λπRα+1
I

β + Rα
I

)

×
(

β + Rα
I

2Rα
I

− exp {−c − λπ� (RI)}
)

where c = ζ − λπ� (R) is a variable that irrelevant to
RI . Similar to the Appendix A, we define the following two
functions to analyze the derivative.

f3 = β+Rα
I

2Rα
I

f4 = exp {−c − λπ� (RI)}
(27)
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The first derivative of rPPP to interference range RI can
be expressed as follows:

drPPP

dRI
= g2 (RI)

(
f3 − f4

)
(28)

where g2 (RI) = exp
{−λπR2

I
}
(

−4λπRα+1
I

β+Rα
I

)

< 0, for all

RI . The monotonicity of rPPP can be easily decided by
analyzing f3 − f4.
For f3, the first derivative is

f3′ = −αβ

Rα+1
I

< 0 (29)

From (29), we know f3 is monotonously decreasing, and
the limiting values are lim

RI→0
f3 = +∞ and lim

RI→R
f3 = β+Rα

2Rα .

For f4, the first derivative is

f4′ = exp {−c − λπ� (RI)}
(
2λπβRI
β + Rα

I

)

≥ 0 (30)

From (30), we know f4 is monotonously increasing, and
the limiting values are lim

RI→0
f4 = e−c and lim

RI→R
f4 =

exp {−c − λπ� (R)} = e−ζ .
In summary, f3 is decreasing from +∞ down to

(β + Rα)/(2Rα) , and f4 is increasing from e−c up to
e−ζ . It is clear that f3 and f4 have a unique inter-
section, which minimizes the Bayes risk, if and only if
ζ < log ((2Rα)/(β + Rα)) .That is to say, when ζ <

log ((2Rα)/(β + Rα)), the optimal interference range is
achieved at f3 = f4. Denote the point f3 = f4 by RPPP

I .
When RI < RPPP

I , f3 > f4, drPPP
dRI < 0, and rPPP is

monotonously decreasing. When RI > RPPP
I , f3 < f4,

drPPP
dRI > 0, and rPPP is monotonously increasing. As a
consequence, the minimum Bayes risk rPPP is achieved at
RPPP
I , which is the optimal interference range of PPP. If

ζ ≥ log ((2Rα)(β + Rα)) , f3 will always be bigger than f4,
and drPPP

dRI ≤ 0 is tenable for all RI ∈ [0,R] . Under this sit-
uation, the optimal interference range for minimum rPPP
is R.

Appendix C
Proof of corollary 2
Proof We show the coincidence of the Bayes risk and the

optimal interference range in turn.

Bayes risk
For two dimension network, when the reference transmit-
ter is at unit distance from the receiver and uniform cost

model are adopted, the Bayes risk in [30] is

rinfPPP = exp
{−2λπ2β2/α csc (2π/α)/α

}

+ exp
{−λπR2

I
}

− 2 exp
{−2λπ2β2/α csc (2π/α)/α

− ζ − λπβ2/αI
(
Rα
I /β , 2/α

)}
(31)

where I (u, v) = v
∫ u
0 tv/(1 + t)dt .

This is achieved from [30] by letting n = 2, rt = 1, r0 =
RI , η = 1/SNR, c01 = c10 = 1, and c00 = c11 = 0. The only
different between (31) and (18) is the last part of the third
exponent. To prove the coincidence of (31) and (18), we
only have to demonstrate β2/αI

(
Rα
I /β , 2/α

) = �(RI) +
R2
I . The proof is as follow:

β2/αI
(Rα

I
β
,
2
α

)

= β2/α 2
α

∫ Rα
I /β

0

t2/α

1 + t
dt

= β2/α 2
α

∫ RI

0

(
β−1uα

)2/α

1 + β−1uα

×
(

α

β

)

uα−1du

= 2
β

∫ RI

0

uα+1

1 + β−1uα
du

= �(RI) + R2
I (32)

Optimal interference range
For two dimension network, when the reference transmit-
ter is at unit distance from the receiver and uniform cost
model are adopted, the optimal interference range in [30]
is the unique solution to

1
2

(

1 + β

Rα
I

)

= exp
{−2λπ2β2/α csc (2π/α) /α

− ζ + λπR2
I

− λπβ2/αI
(
Rα
I /β , 2/α

)}
(33)

This solution exists if and only if

ζ < log 2 (34)

This is achieved from [30] by letting n = 2, rT = 1, rO =
RI , ζ = 1/SNR, c01 = c10 = 1, and c00 = c11 = 0. Recall-
ing (32), we can easily prove the right hand side of (33)
coincides with that of (19). The equality of the left hand
sides is obvious. The condition that optimal interference
range exists (34) is the same as (20).
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