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Abstract

systems.

Resource Description Framework (RDF) is a data representation of the Semantic Web, and its data volume is growing
rapidly. Cloud-based systems provide a rich platform for managing RDF data. However, there is a performance
challenge in the distributed environment when RDF queries, which contain multiple join operations, such as network
reshuffle and memory overhead, are processed. To get over this challenge, this paper proposes a Spark-based RDF
query architecture, which is based on Semantic Connection Set (SCS). First of all, the proposed Spark-based query
architecture adopts the mechanism of re-partitioning class data based on vertical partitioning, which can reduce
memory overhead and spend up index data. Secondly, a method for generating query plans based on semantic
connection set is proposed in this paper. In addition, some statistics and broadcast variable optimization strategies are
introduced to reduce shuffling and data communication costs. The experiments of this paper are based on the latest
SPARQLGX on the Spark platform RDF system. Two synthetic benchmarks are used to evaluate the query. The
experiment results illustrate that the proposed approach in this paper is more efficient in data search than contrast

Keywords: Semantic Web, RDF, Basic graph pattern, Distributed SPARQL query processing

1 Introduction

Due to the rapid development of semantic web and
knowledge graph, the amount of data represented by the
Resource Description Framework (RDF) [1] has exploded.
RDF is a set of knowledge representation model proposed
by W3C to describe the content and structure of network
resources. Typically, search engines add semantic infor-
mation to web pages to return accurate query results to
users and building large knowledge bases to support smart
applications.

SPARQL (SPARQL Protocol and RDF Query Language)
[2], recommended by W3C, is one of the standardized lan-
guages for RDF data retrieval and query. The SPARQL
query statement contains multiple triple patterns, each of
which contains one or more variables, and the same vari-
able can exist in multiple triple patterns at the same time.
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The purpose of our query is to match variables to values
from a large number of RDF data.

Over the past decade, due to the relatively small amount
of data, RDF data storage and some complex query oper-
ations can be handled on a single machine. This usually
refers to the operation of traditional RDF data manage-
ment systems, such as RDF-3X [3], Hexastore [4], and
SW-Store [5]. Nowadays, as the amount of RDF data
grows, the processing of large-scale RDF data cannot be
supported by a single machine. Therefore, both academia
and industry begin to explore the scheme of distributed
processing by dividing the data into multiple compute
nodes and adopting distributed RDF query, e.g., [6, 7],
Spark, can be used [8]. In a distributed environment,
SPARQL statements are divided into sub-queries based on
the multiple triple patterns they contain, that is, one triple
pattern is one sub-query. Each sub-query is evaluated and
the end result is the intersection of multiple sub-queries.
However, the data is distributed among multiple nodes. it
may be necessary to exchange data between nodes during
query evaluation. Therefore, SPARQL queries that contain
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a large number of intermediate results incur communica-
tion costs that affect query performance.

In this paper, we demonstrate that the system primar-
ily considers querying for large-scale RDF data efficiently
in the distributed environment. In addition, we mainly
consider the following two problems:

® Storage part, how to reduce memory overhead
through partition and index data and achieve a
balance between data preprocessing and fast
indexing. Different storage and query algorithms
directly affect the query efficiency of RDF data.

e Query part, how to reduce SPARQL query processing
costs and communication costs. SPARQL query can
be viewed as iterative matching and join issues for
sub-queries on distributed platforms.

The contributions of this paper are summarized as
follows:

e Unlike most existing systems that use a set of
permutations of triples (subject, property, object)
indexes, a VP-based storage schema is introduced
which is for management massive RDF data by
further partitioning rdf : type predicate based on
vertical partitioning (VP) [9]. This strategy is
designed to minimize the size of the input data to
achieve the goal of reducing memory overhead and
supporting the fast indexing.

e Cost estimation and optimization query strategies are
presented in this paper. SCS generates query plan and
uses broadcast variables method to avoid lots of
communication costs. These optimization methods
improve the performance of our system.

e We perform an experimental evaluation by
comparing this system and two other systems that
query RDF data on the distributed platform. We
tested the performance of the system on LUBM [10]
data sets and WatDiv [11] data sets via standard
benchmark queries. The results prove the
effectiveness of this system.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 mainly introduces
basic concepts RDF and SPARQL. Section 4 presents
system architecture. In Section 5, we propose a novel
data partitioning method. Query processing is covered in
Section 6. Section 7 reports the experimental analysis.
Finally, we conclude this paper in Section 8.

2 Related work

In recent years, the academic community has done a lot
of research work on the RDF data query system. It can
be roughly divided into a centralized system running on

(2019) 2019:256 Page 2 of 10

a single machine and a distributed system running on a
cluster.

RDEF-3x [3] creates six indexes permutations based on
triple (subject, predicate, object) and stores all RDF data
under the six indexes. In addition, the statistics of the
entity are collected to avoid the cost of self-joining.
However, storing six indexes will cause unnecessary data
redundancy, and the efficiency of the query is directly
related to the size of the main memory. Vertical parti-
tioning (VP) is one of data representations for RDF data
proposed by SW-store [5]. The triple table is vertically
partitioned into # tables, where # is the number of dif-
ferent predicates. In each predicate, a two-list generated
with a row is a pair of subject-object values joined by pred-
icate. With this strategy, it provides good performance
for queries with bounded predicates. However, it does
not consider the use of special class predicates to achieve
finer-grained data, so selectivity is not efficient.

HadoopRDF [12] divides native RDF data into POS
index or PSO index and, in addition, classifies predi-
cates based on their attributes of the object. In SPARQL
query process, it links the results of multiple triple pat-
terns together through a large number of iterative oper-
ations to produce the final result. But the flaws in the
Hadoop platform itself cause a lot of intermediate results
to be written back to disk, and the greedy algorithm
used by the system itself produces unnecessary interme-
diate results. H2RDF+[13] uses the Hbase database and
creates six index tables to store all RDF data. It also main-
tains index statistics to estimate the selectivity of the
triple pattern. Based on the above, in SPARQL query pro-
cess, H2RDF+ can automatically select whether to execute
the query on a single node or on the cluster. However,
reading and writing intermediate results to Hbase in dis-
tributed mode, which consumes a lot of cost. SPARQLGX
[14] is RDF query system based on Spark platform. In
terms of data storage, it adopts VP method for data par-
tition and then stores the data into HDFS. In addition,
the query optimization of the system is to read all the
data for statistics. However, during the query process, the
amount of associated data is limited, and excessive statis-
tics can cause poor query performance. S2RDF [15] uses
the Spark SQL [16] interface to perform SPARQL queries.
First, it adopts VP method for data partition and then
performs semi-join processing on these VP tables, and
finally generates multiple tables named ExtVP. The above
data operation can speed up matching of each triple pat-
tern. During the query process, this system will convert
each triple pattern of the query into a corresponding sin-
gle SQL statement, and the final result is the intersection
of the results of each SQL query. However, the data pre-
processing step creates significant data loading overhead,
which may be two orders of magnitude larger than our
solution.
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3 Preliminary
3.1 RDF
RDF is a set of knowledge representation model proposed
by W3C to describe the content and structure of net-
work resources. It helps search engines to understand the
relation of these resources. The underlying structure of
the data model is simple and flexible. Any expression in
RDF is a collection of triples , including a subject(s), a
predicate(p), and an object(o). Subject is a fact. Predicate
indicate the relationship between fates, and object may be
an entity or literal value, or it may be a class.

Based on this structure, RDF data can be represented as
directed graph. RDF graph is a finite set of RDF triples.
Figure 1 shows an example of RDF graph.

3.2 SPARQL
SPARQL is one of the standardized languages for RDF
data retrieval and query. Its syntax is similar to the syntax
of a relational query. SPARQL query usually contains mul-
tiple triple patterns (TPs). A set of triple patterns forms a
basic graph pattern (BGP). Each tuple contains variables
represented as ?v, and information is then queried based
on the associated variables for each TP. We summarize the
query process as follows: First, match the binding values
for each TP, then implement the join of the intermediate
results, and finally, generate the final SPARQL results. For
example, the SPARQL query statement is shown in Fig. 2.
The SPARQL query graph corresponding to the above
SPARQL query is shown in Fig. 3.
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4 System architecture

In this section, we will introduce the system architecture.
With the rapid growth of RDF data, it is difficult for a
single machine node to support data processing. The dis-
tributed system has the advantages of low cost, strong
fault-tolerance, good stability and expansibility. So, we
propose a large-scale RDF data query system based on
Spark. Figure 4 shows the architecture of our system. On
the whole, the system architecture includes four aspects:
data preparation module, persistent data module, query
parser module, and distributed processing module.

In this system architecture, the data preparation mod-
ule is designed to convert RDF data in the form of XML
into n-triple format, further divide classes and relation-
ships based on vertical partition, and generate relational
index files and class index files. The persistent data mod-
ule is responsible for loading the index files divided
by the above modules into HDFS. The details of the
above two modules are described in Section 5. The query
parser module is used to generate a query plan based on
the SCS optimization strategy, including the triple pat-
terns join order, and the broadcast variable information.
Based on the parsing information, we loaded the corre-
sponding index files from HDEFS into Spark distributed
memory and persisted them. The distributed process-
ing module performs local matching and iterative join
operation according to the query plan and finally gener-
ates the query result. More details will be introduced in
Section 6.
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SELECT ?name
WHERE {
?m <bornln> ? city .
?m <bornOnDate> ?bd .
? city <foundingYear> “1718" .
}
Fig. 2 SPARQL query statement

?m <hasName> ?name .

5 Data partitioning
In a distributed environment, data partitioning plays a
significant role in efficient SPARQL queries. The most
straight forward representation of RDF in a relational
model is a named triple table with three columns. Gen-
erally, for efficient query, it creates a series of indexes
because query evaluation can be represented as a series
of joins on a large table. For example, well-known system
RDF-3X[3], this system creates six indexes permutations
based on triple. However, this indexing approach can take
up several times the storage space. This can result in mem-
ory overhead due to the size of its index files is still large.
Many cloud-based systems [17] use VP that it introduced
by Abadi et al. in [9] such as [14, 15, 18]. It uses a two-
column table instead of three-column table for every RDF
predicate and the predicate for the file name. In addi-
tion, subject and object are the two columns of data in the
index file. The number of predicates in the data set is usu-
ally small. Therefore, when SPARQL query includes this
predicate, we can quickly retrieve the index file.

Different data partitioning and query algorithms
directly affect the efficiency of SPARQL query. In this
paper, we propose several design goals:

e Reduce the time required to convert raw data to
target data while ensuring finer-grained partitioning
schema.

e Reduce the size of input data to avoid the overhead of
memory.

e Speed up retrieval of related index files.

Take the LUBM benchmark as an example, which con-
tains 355,823 triples. Figure 5 shows the number and

Fig. 3 SPARQL query graph
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proportion of each predicate. We can see that the num-
ber of predicate of rdf:type is at most. Therefore,
further partitioning of this predicate will speed up the
related indexes. Thus, we introduce a storage schema for
management massive RDF data by further partitioning
rdf : type predicate based on VP. In general, VP uses
a two-column table for every RDF predicate, e.g., work
for(s,0). On this basis, we further divide the triples with
predicate of type. According to the triple’s object repre-
senting a specific class, we divide them into small class
files. Tables 1, 2, and 3 show the partitioning of the type
predicate into smaller index files (class index files). We
stored the partitioned data into the file system of Hadoop
(HDES)[19].

This data partitioning method allows the system to
quickly match each triple pattern by selecting the rele-
vant small index file when executing the SPARQL query,
which reduces the cost of reading indexes and avoids the
overhead of memory. In addition, the data compression
performance is excellent because the data is not stored in
the triple form. We will save two thirds of the RDF data
storage space.

6 Query processing

In this section, we will introduce the cost estimation
and then triple patterns matching based on Spark, and
finally, the query optimization strategies based on the cost
estimation.

6.1 Cost estimation

From the above introduction, we can divide SPARQL
query into two aspects: triple patterns matching and join
intermediate results. So, we define the first part as parse
TPs, and the second part as join IRs. The cost of pars-
ing TP includes the cost of reading related index files
and matching TP. The cost of joining IRs includes shuffle
communication costs and computing costs.

n n
Cost = Y _ Parser (TP;)+Y _ Join (IR;_1, Match (TP;))
i=1 j=2

(1)

Parse (TP;) = Read (TP;) + Match (TP;) (2)

Join (IR1,IR;) = Shuffle (IR, IR;)+Compute (IR}, IRy)
(3)

2<i<m

join (IR;_1, Match (TP))),
IR,-:{””‘( i—1, Match (TP;)) =
1 =

Match (TP;),

where,
n = number of TP.
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Fig. 4 System architecture
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TP; = the ith triple pattern in query.

Read (TP;) = load the relevant index file.

Match (TP;) = the result of matching TP;.

Shuffle (IR3,IRy) = the data that needs to be moved in a
distributed environment.

Compute (IR3,IR;) = implement the join operation.

IR; = the IR of TP;.

Equation 1 estimates the overall cost of a SPARQL query.
Equation 2 specifically estimates cost of parsing triple pat-
terns. Equation 3 represents the cost of performing join
operation. Equation 4 represents iterative computation of
IRs. Therefore, from the perspective of total cost estima-
tion, we reduce the cost of loading data and TP matching

through data partitioning. In addition, the larger the size
of the matching result, the higher the cost of the join, so
we can reduce the connection cost by reducing the size of
IRs and data communication costs.

6.2 Triple patterns matching

Spark [20] is a in-memory cluster computing system.
Compared to map-reduce-based systems [21-23], our
SPARQL query systems based on Spark does not need
to write intermediate results back to disk, which causes
a large number of disk I/O problems. Instead, they are
cached in memory to avoid disk I/O costs. The exam-
ple showed in preliminary Section 2, the BGP contains
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Table 1 Sample of predicate type
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Table 3 Spilt2

Predicate:type Indexname:City
Harvard University ~ New York
MIT University ~ Los Angeles
Cambridge University — Beijing
New York City
Los Angeles City
. Algorithm 1: Triple Matching Algorithm
BeU‘”g Clty Input: tp:(s,p,0)

a set of TPs. For this, the purpose of SPARQL query
is to find the values of all variables. Since each TP is a
sub-query, so SPARQL query operation can be viewed as
TPs matching and sub-query iterative join. Calculating the
binding for all variables means matching the variables in
each triple pattern separately. Jena ARQ [24] is used to
parse SPARQL query to generate the corresponding triple
patterns. Each triple contains constants and variables, in
which the variables contain ? of special characters. When
the predicate is not a variable, we can obtain the relevant
data of each tuple according to our previous data parti-
tioning strategy, and further filtering-related data based
on whether the subject and object are constants and using
common operators in Spark. Then, we will count the size
of the matching result and use it in the next optimization
strategy.

For example, in the former Section 2 showed, the tuple
{?city (foundingYear) 1718.}, where foundingYear and 1718
are constants, human reads the index file in the file sys-
tem based on the fact that the predicate foundingYear, and
then filter the related data just read based on the fact that
object mean a number of 1718. After each triple pattern
is matched to the result, iterative join according to query
plan we will describe in detail in the query optimization
section.

The triple matching algorithm is showed in Algorithm 1.
From general viewpoint, line 1 through line 8 represent
the case where the predicate is constant, and 9 through 10
represent the case where the predicate is variable. Line 2
through line 6 consider the special case where the predi-
cate is type. Line 11 through line 16 represent triples that
are filtered by the given subject or object.

Table 2 Spilt1

Indexname:University

Harvard
MIT
Cambridge

Output: IR
1 if p is not variable then
2 if p is rdf:type then
s if 0 is not variable then
a | tq = spark.textFile(o.txt);
5 else
6 | tq = spark.textFile(p.tat);
7 else
B | tq = spark.textFile(p.tat);
o else
10 | tq= spark.textFile(T.txt);

11 if s is not variable then
tq = tq.Filtercase(subject, object) => subject.equals(s);
13 size = lq.count;
14 if o is not variable then
15 tq = tq.Filtercase(subject, object) => object.equals(o);
16 size = tq.count;
17 new IR(tq, size);
18 return IR

6.3 Query optimization

In the cost estimation, we mentioned reducing the cost of
join by reducing the size of the results in the process and
data communication. Due to BGP query contains multiple
triples, we join them based on shared variables. But in the
process of query, different connection order has different
efficiency on query result. Therefore, we propose a SCS
optimization strategy to generate the join order in the RDF

query.

6.3.1 Semantic connection set
The join order of SPARQL sub-queries has a significant
impact on query performance, so the semantic connection
set (SCS) optimization method needs to be built. The SCS
contains multiple intermediate results (IRs) obtained after
multiple TP matches and then sorted in ascending order
based on the size of matching result. The size of IRs in the
initial set is statistical in Subsection 6.2, and then, the two
smaller intermediate results that contain common vari-
ables are selected to join first, and the generated results
are added to the set. Remove the previously connected
IRs and sort by size. Iterate join through the intermediate
results until only one result remains in the set, which is
the final result of the SPARQL query. Finally, we return the
columns of interest to the user. We use the SCS method
to generate an optimized query plan to improve the per-
formance of RDF queries. This approach will reduce the
IR size to reduce I/O cost and reduce the total number of
connection comparisons to improve system performance.
As shown in Algorithm 2, line 2 represents the smallest
IR from the set of semantic connection. Line 3 to line 6
indicate that the matching results in the set that contains
the same variable and the smallest IR are extracted. Lines
8 through 10 represent the two result sets that implement
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the join operation and remove it from the set, after that

the join result is loaded into the connection set.

Algorithm 2: Connection Set Algorithm

Input: List(IRs)
Output: Query Result

1 while list.size > 1 do
2 | IR = list.minby( getSize);
s | canJoin = list. filter(rdd =>

rdd.ne(IRy)&&rdd.getV ar Set.intersect(I R1.getV arSet).non Empty);
if canjoin.isEmpty then
| print("can not join into one”);
IRy = cangjoin.minby(_getSize);
broadcast(IRz);
join = IRy .join(IRa);
o | listdelete(IRy, IR2);
10 list.add(join);

® N0 e

11 QueryResult = list.head.getTriple;
12 return Query Result

In addition, in line 7 of the algorithm, we use the method
of broadcasting variables to reduce the network cost in
data communication. When doing the join intermediate
result operation, we compress the data of the smaller
result set A and broadcast it to the node of the result set
B and make a local connection. This operation can reduce
a certain amount of network communication cost caused
by data shuffle.

7 Experiments
In this section, we will describe the performance evalu-
ation of the SCS. The experiment is implemented on a
cluster with five machines. Each node with an Inter Xeon
E5-2670 CPU @2.6GHz,4 cores, 16GB RAM running
Ubuntu 16.04.5 LTS with the software Scala2.11.1 [25],
Hadoop2.7.3, and Spark2.1.0. A variety of experimental
data sets are proposed in [26]. In our experiment, we used
two synthetic benchmarks, LUBM [10] and WatDiv [11],
to evaluate our system and two other comparison systems,
and we evaluated the query response time on the above
data sets with standard WatDiv and LUBM queries to pre-
vent some queries absence of a final result. In addition,
the BGPs in the SPARQL query can have different shapes.
According to the position of the variables in the TPs, they
can be divided into linear (L), star (S), and snowflake (F).
Similar to our system and typical RDF query engines
based on distributed environments are HadoopRDF,
S2RDF, and SPARQLGX. Graux et al. [14] shows that

SPARQLGX performs better in both the preprocess-
ing and query stages than S2RDF. In addition, the
data partitioning methods used by the SPARQLGX and
HadoopRDF systems are similar to those in this paper, so
our experimental results will be compared with them.

Figures 6 and 7 illustrate the load time of the two data
sets. Notably, SPARQLGX method is the fastest among
three of them no matter the type of data sets. The load-
ing time of HadoopRDF and SCS is very close. This is
because SPARQLGX only uses VP to process data, and
HadoopRDF and SCS continue to process data based on
this. In addition, the loading time of the three systems
under the WatDiv data set is longer than that under the
LUBM data set, because the WatDiv data set contains
more predicates and is more time-consuming to process.

Relative to the load time of the data, we are more con-
cerned about the response time of the query. Next, we
compare the three systems based on the response time of
the three query types.

For the data set LUBM100 with 12 million tuples of data,
the experimental results of our execution of the standard
query are shown in Fig. 8.

The numbers after the letters, such as L3, represent
a triple pattern in a SPARQL query that contains the
corresponding numbers. The performance comparison
between the three systems is shown in Fig. 8, In the
L3 query phase, because the shape of BGPs is not com-
plicated and the number of triple patterns that need
to be connected is small, the HaoopRDF system with
better algorithm efficiency is lower in response time
than SPARQLGX. However, as the number of connec-
tion tasks increases, the disadvantages of Hadoop frame-
work are gradually revealed. The query response time of
HadoopRDF is higher than that of two systems based on
Spark.

In short, we can see that our system is superior to
the other two systems in query response time regard-
less of the query type or the number of triples contained.
There are three reasons for this: (i) memory computing:
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Spark framework is based on memory calculation, which
processes the data much faster than Hadoop. For exam-
ple, Spark puts the intermediate data into memory, so
the iterative operation is efficient. But MapReduce saves
the results to disk, which affects the overall speed. (ii)
Finer-granined partitioning schema: our system matches
a TP by inputting a smaller index file than SPARQLGX,
which reduces the size of intermediate results. (iii) Opti-
mal query plan: during the execution of the query plan
by HadoopRDEF, many unnecessary IRs were generated
because the joining selectivity was not considered, but
our system optimized the query plan based on the SCS
to reduce the IR size and thus reduce the cost of the join
operation. In addition, compared with SPARQLGX, the
broadcast variables added to the query plan algorithm
developed by our system can avoid a large amount of
communication costs, thereby improving query efficiency.

For the data set WatDivlOM with 10 million tuples of
data, the experimental results of our execution of the
standard query are shown in Fig. 9.

As shown in Fig. 9, we can see that our system has
better efficiency than SPARQLGX and HadoopRDF in all
the types of standard queries. In addition, the difference
between LUBM and WatDiv data sets is the number of
predicates, where LUBM contains 17 different predicates
and WatDiv 86 different predicates. In this system, the
data with predicate rdf : type is further divided, as shown
in the Fig. 10, in which WatDiv divides more index files
than LUBM. Therefore, when evaluating queries under
the same size data set, the intermediate results produced
under the LUBM data set may be larger than the interme-
diate results produced by the WatDiv data set.

8 Conclusion

In this paper, we introduce the SCS, an RDF query pro-
cessing engine based on Spark. We present a schema for
further partitioning data with predicate of rdf:type
based on VP to avoid the overhead of memory and speed
up indexing. Then, the intermediate results size affects
the performance of the system, so, a SCS method is built
to handle the query process in a distributed environment.
We propose a cost model and other optimization strate-
gies to specify the query order to speed up the response
time. For future work, we will increase the filtering of
extraneous RDF data to further reduce the amount of data
read and investigate more efficient query join algorithm.
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