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Abstract

Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current
battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV
charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and
efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and
distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic
pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.
In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series
behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is
a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The
behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel
intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and
correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of
Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging
infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging
frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging
efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the
deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation
and the deployment plan regarding to the arrangement and distribution of charging piles.
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1 Introduction
With the advantage of fuel efficiency and greenhouse gas
(GHG) reduction, electric vehicles (EVs) have been tak-
ing an increasingly greater share in the private and com-
mercial automobile market. Given the current battery
technology, charging problem is still the bottleneck of
the progress of EV industry. Thus, it is necessary to
build and deploy a wide-area charging infrastructure
which embraces fast charging piles, battery swapping
stations, and individual charging points for slower EV
battery charging [1]. The convenience and utilization of
charging infrastructure is the key to EV operations.
Plug-in EVs are also ideal for fleet managers due to

better energy efficiency, lower cost, and fewer oper-
ational resources to maintain and manage. More and
more motor vehicle fleets are investing in EVs and plan-
ning to convert vehicle fleet to battery powered. Rapid
growth in the demand of electricity may bring higher
peak demand at the distribution level of the charging
grid of EV. While the widespread adoption of EVs brings
potential social and economic benefits, the impact of EV
charging cannot be overlooked.
The unsuitable deployment and arrangement of char-

ging infrastructure may cause potential transformer
overloads, feeder congestion, and undue circuit faults.
Carefully designed plan should be made to achieve bal-
anced and robust operation of smart grid according to
the amount and distribution of EVs, charging pile loca-
tion, and availability information etc. [1]. Smart grid can-
not only intelligently deliver electricity but also manage
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power facilities taking advantage of real-time informa-
tion exchanging, routing, and sharing between providers
and consumers [2]. Smart grid helps exchange supply
and demand information to achieve balanced and
smooth operation of the system. Inappropriate charging
plan makes charging procedure more difficult and time
consuming. On the other hand, optimized and well-
organized charging service may reduce traffic jam and
extra traffic volume [3].
Dynamic traffic simulation models are frequently used

to support decision-making on charging. Mobility mod-
eling and simulation of EV charging are useful in analyz-
ing how to deploy the charging piles in certain area and
how EVs find the best charging pile in that area. Such
models and simulation methods are necessary essentially
because the real world data about EV use is scarce due
to the low adoption levels to date [3]. In the Internet of
Vehicle (IoV), interconnected vehicles can share infor-
mation about the charging experience and traffic condi-
tion to help achieving better charging plan. Different
charging scheduling algorithm and deployment of char-
ging service can be verified and optimized according to
the simulation result. With the aid of simulation where
the simulated mobile EV charges and discharges as the
real entities, more and more innovative design of IoV
can be verified and optimized with low cost and high
trustworthiness before they are deployed in the real
world.
Many research activities are visible on mobility and

scheduling of EVs and the optimal deployment and ar-
rangement of charging piles to evaluate and enhance the
designs of such an EV-induced smart grid. EVs and
charging pile have mutual impact on each other. A well-
organized smart grid helps to increase the efficiency of
grid and enhances the experience of travelers.
Some work regarding the EV charging are focused on

the supply side, such as transmission level or distribu-
tion level. Authors in [4] considered case studies with
different EV charging patterns and estimated the max-
imum number of EVs that a distribution network can
accommodate based on an N-1 contingency condition.
With advanced sensing and control technologies, the de-
velopment of demand response charging can be more
creative and flexible with many more possible options.
In [5], coordinated charging distribution level is pro-
posed to minimize the power losses and to maximize the
main grid load factor.
Some studies focus on the demand side in terms of

the impact of the behavior of EVs on the charging effi-
ciency and utility. The mobility of vehicle may pose rad-
ical impact on the energy consumption of EVs and
pattern of load of charging pile at the supply side of the
grid. A smart grid should be adapted to the complex and
dynamic distribution and density of EVs. What’s more, a

smart grid should support and facilitate the EVs with
more effective and economical traveling plans. There are
lots of works on the mobility simulation of EVs. Seine
Aval Véhicule Électrique (SAVE) is France’s biggest trial
program of all-electric mobility, ultimately involving 100
EVs and 150 charging piles [6]. The MATSim [7] is an
agent-based travel demand simulation framework to
simulate large-scale traffic scenarios. In [8], the authors
proposed an energy consumption models and a comput-
ing method for different mobility modes are put forward
to calculate the energy consumption, based on discus-
sion of the influence factors of energy consumption
under different driving mode, for example is acceler-
ation, constant speed, deceleration, and idle speed. The
SAE J1772 [9] series define the standard for electric con-
nectors and their charging system architecture, including
physical, electrical, communication protocol, and per-
formance requirement.
In this paper, we develop a simulation platform to

model the entities of smart grid such as mobile EVs and
charging piles. The key properties and behaviors that are
related to the mobility and energy exchange process are
abstracted and mirrored to the simulated EVs, and the
digital entities may move and charge just as the twin of
the real-world EVs. By introducing a mobility model
with digital twin, we simulate their behaviors and inter-
actions to study the efficiency and quality of the char-
ging pile and EVs from both supply side and demand
side. The simulation platform can help optimize the
charging scheduling and navigation algorithm. It also
provides support for planning of locations of charging
piles and strategies of commercial operational services.
In the flowing sections, we construct the models of

EVs and charging piles according to different profiles
and configurations. Then we introduce models of differ-
ent transportation behaviors such as destination choices
and route choices in daily routine to simulate the sce-
narios in day-to-day traffic conditions. By simulating
over a certain period of time in a given area where a
large-scale fleet of EVs is scattered and charging facilities
are equipped.

2 Methods of mobility modeling
In this paper, we introduce the EV model with digital
twin to simulate the realistic EV in the real world. The
digital twin EV is modeled with the same physical and
electrical profiles and traffic characteristic as the
correspondent EV in terms of mobility pattern, travel
demand, energy consumption, and supply. The move-
ment of digital twin EV is fine controlled by a series of
driving operations such as steering, accelerating, and
braking to impose direct control to the movement of
EVs. The digital twin EVs consume exactly the same en-
ergy as the real-world EVs do according to energy
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consumption model based on electrical profile of EV.
The digital twin EV is also scheduled according to ran-
domized travel agenda and different charging plan to
simulate the time-varying travel intent and charging ac-
tivities of EV drivers.
By using this method, we can simulate the realistic

and reasonable moving trajectory of vehicle and can
synthesize smooth trajectories such as all kinds of pos-
sible curves instead of zigzag arbitrary traces as most
other mobility models do. Via analysis of experiment
data collected by the simulation such as driving distance,
charging frequency, charging cost, waiting time, travel
times, average charging speeds, queue lengths, departure,
and arrival patterns, we can evaluate the efficiency of a
charging policy on both EV and charging pile sides in
different scenarios.

2.1 Mobility modeling of digital twin EV
It is necessary to establish realistic mobility models of
EVs as if they are in original moving environment. The
digital twin EVs, thus, are modeled as what they are in
real world. The EV mobility model is composed of three
main components: modules of energy consumption, mo-
tion synthesis, and travel agenda. The energy consump-
tion model simulates the process of charging and
discharging according to the driving mileage and char-
ging schedule. The motion synthesis model simulates
the driving process of EVs by updating the time series in
different geo-locations and coordinates of EVs to get
realistic trajectory and mileage. The travel agenda model
is used to simulate the diaries of drivers to impose traffic
load and charging demand to the system. The motion
synthesis model can navigate EVs to different interesting
sites assigned by agenda model, and the energy con-
sumption model maintains and monitors the status of
charging (SOC) of EV batteries to make the charging
choice. The key of digital twin design is to simulate its
real-world counterpart precisely.

1. Energy consumption model

An EV has specific electrical and physical profile such
as battery size, available energy, Miles Per Gallon equiva-
lent (MPGe), charging power, and speed. In the simula-
tion scenarios, to make the digital twin EV consume the
equivalent energy as the real EV, we introduce the en-
ergy consumption module to the EV mobility model.
We record the length of trajectory of EVs and estimate
the energy consumption to update the SOC of EV bat-
teries. Leveraging dynamic simulation of EV discharging
process, the EVs can make charging decision to prevent
the battery from being depleted completely.
To calculate the energy consumption, the energy effi-

ciency and power of EVs should be quantified according

to the profile. For fuel vehicles, the energy cost is evalu-
ated in terms of fuel consumption within certain diving
mileage. The calculation of fuel energy unit per miles is
common in Europe and Asia to reflect the power used
by EVs, and it is expressed in the metric system as liters
per 100 km. Instead of energy unit per miles, miles per
unit of energy such as MPG is used in America. Accord-
ing to the US Environmental Protection Agency, passen-
ger vehicles sold in the USA had the highest fuel
economy rating of 23.8 MPG. As 1 mile is equal to 1.609
kilometers (km) and 1 gallon is equal to 3.785 l, so 23.8
MPG means 10 kilometer per liter, or 10 liters per 100
kilometer.
For EVs, the MPGe figure reflects the energy effi-

ciency, and it is how the Environmental Protection
Agency (EPA) converts the figure into a term that’s
correspondent to MPG used by fuel vehicles. Labels on
EVs often show their all-electric fuel economy in the
MPGe format. For example, the Prius is rated at 95
MPGe; the Accord is rated at 115 MPGe. However, con-
sumers are probably most accustomed to buying electric
energy from charging pile in kilowatt-hours (kWh).
kWh/100 kilometer is a commonly used measure of effi-
ciency and the most important operating-cost figure for
simulation of EV battery. So we should convert the
MPGe to kWh/100 kilometer [3, 6].
This calculation is based on the EPA’s formula of

33.7 kWh being equivalent to 1 gallon gasoline en-
ergy. The EPA uses an established energy standard of
115,000 BTUs (Heat is measured in British Thermal
Units) per gallon of unleaded gasoline, where 1 BTU
is about 1055 J. Since 1 J is 1 W s, 1 kWh is 3.6 MJ.
Then 1 kWh is equal to 3.6/1055 = 3412.32 BTU [1,
3, 6]. To create the same amount of heat which 1
gallon of gasoline generates, 115,000/3412.32 = 33.701
kWh of electricity is needed equivalently. For ex-
ample, the 2014 Ford Focus Electric with an EPA
combined fuel efficiency rating of 105 MPGe is driven
on a combined (city/highway) MPG cycle, it requires
100/105 × 33.7 = 32.09 kWh of electricity to travel
100 miles (32 kWh/100Mile or 320Wh/Mile). Accord-
ing to this formula, we can calculate the battery usage
dynamically when EVs are driving in the simulation
scenarios. Table 1 shows the converted MPGe figures
of EVs to Wh/Mile which is used to calculate the en-
ergy consumption in simulation.
Based on the energy calculation, energy consumption

model of EVs can deduct correspondent energy cost
from the total budget of batteries according to the
mileage of the journey in the simulation. This energy
consumption model only shows the average level of the
EVs, and the energy cost for given mileage may vary dra-
matically due to the behavior of EVs such as acceleration
and condition of the road.
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3 Travel agenda model
The characteristic mobility and related synthesized tra-
jectories of a batch of EVs may pose great impact on the
energy consumption and charging demand, and then are
key to the trustworthiness of the EV charging simula-
tion. Moreover, in order to make the journey of EVs
more realistic, we introduce agenda model to the mobil-
ity model based on public daily traffic survey data. The
events in the agenda are generated on a random basis in
time and space, described as event start time, deadline,
dwell time, queuing time, service time, leaving time, pa-
tronage frequency, service type, location, accommodat-
ing population, priority, and profits, etc. For example, an
EV driver may go to a small restaurant near working
place at 11:00–12:00 for 2–4 times every week with
medium priority and has lunch there for about 40 min
after 10 min of ordering and waiting. Event generator in-
serts a task item into the EV’s agenda list with randomly
varied properties based on the event description. The
EVs execute the task according to the current status of
task load and energy budget. If the EVs are available at
that time without other higher priority tasks such as
charging and repairing to handle, it navigates there and
detains for certain time before it picks up the next task
to execute. In this event-driven process, the EVs create
time series behaviors and generate continuous and real-
istic trajectory as a EV may behave in the real world.
To reflect the variety of EVs’ behavior, we define six

types of agenda templates to reflect different typical
travel patterns such as travel patterns of routine prone,
shopping prone, weekend prone, night shift prone, busy
prone, and lazy prone. All the modeled EVs have
presumed agenda to follow and drive to a series of
points of interest in the simulation while satisfying the
energy budget constraint by periodical charging. The
mobility and the charging schedule of EVs impose
correspondent impact to the daily traffic and charging
demand on the charging piles. By simulating traffic and
charging load in a large scale of interconnected EVs, we
can evaluate the performance of different proposed al-
gorithms of charging scheduling and charging pile
deployments.

2. Motion synthesis model

In this paper, we introduce a fine controlled motion
synthesis method to simulate the moving process of
EVs. We model the EV’s motion as how EVs are con-
trolled and operated by a driver on moving [8, 10]. The
motion synthesis model abstracts the primitive motions
of EVs as time series behavior such as steering, acceler-
ating, and braking. This microscopic mobility model de-
livers a convincing trajectory with more practical and
accurate mileage and energy consumption. Each EV is
modeled as visual object with physical and geometric
properties such as vehicle body size, current moving dir-
ection, and orientation (the orientation of the head of
vehicle). Each EV is assigned with operation and motion
parameters such as steer angel and range, speed, and ac-
celeration for the monitoring of EV safety [11, 12]. The
mobility of the dynamic moving is controlled by basic
operations of EVs such as steering, braking, and acceler-
ating. The time varied position of an EV is expressed as
function of these operation parameters.
In the motion synthesis model, to get accurate trajec-

tory of EVs, the space coordination system should be
mapped between device screen and the real field of sce-
nario [13–15]. The time coordination system should be
mapped between computer system time and the time of
scenario to be simulated. Let λ be the space scale and τ
be the time scale. λ denotes the amount of scenario
miles that are mapped to a computer screen pixel, and
with the unit of mile/pixel. τ denotes the amount of sce-
nario hours that are mapped to a computer millisecond,
and with the unit of h/ms. Then the speed of EVs can
be denoted as moving speed of EVs on screen. The ve-
hicle velocity v in unit of mile/h can be mapped to
screen speed s in unit pixel/s with a transmission ratio
of τ/λ. We have s = v∙τ/λ [16]. For example, given τ =
0.001(1 computer second for 1 h in simulated scenario),
and λ = 0.3 (1 computer pixel for 0.3 mile in simulated
scenario), speed of 30 mile/h can be mapped to screen
speed of 30 × τ/λ = 10 pixel/s.
To simulate the moving process of EVs, the dynamic pos-

ition and direction of EVs should be calculated according
to the mobility parameter and the EV profile [17]. Given
the position of EV at time t is (x, y), the position and direc-
tion of EV at t + Δt (Δt is the interval slot of refreshing)
can be obtained by a parametric equation as follows [18]:

Table 1 Covert labeled MPGe of EVs to Wh/Mile

Vehicle Brand kWh/100 Miles Wh/Mile Gallon/100 km km/liter Liters/100 km MPGe

2008 Ford F150 truck5e 240.72 2407.24 4.44 5.96 16.78 14

Fuel Cell Vehicle 96.29 962.90 1.78 14.90 6.71 35

Focus EV 32.10 320.97 0.59 44.69 2.24 105

2015 Tesla Model S 70D 30.64 306.38 0.57 46.82 2.14 110

Nissan Leaf 30.36 303.62 0.56 47.25 2.12 111

Plug-in Prius in EV mode 23.90 239.02 0.44 60.02 1.67 141
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x0 ¼ xþ v � τ

λ
� Δt � cos θ � π
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� �

y0 ¼ xþ v � τ
λ
� Δt � sin θ � π

180
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where x′ and y′ is the coordinate of EV after next re-
fresh time slot given the current position (x, y).
As to the vehicle direction and orientation angle θ in

degree, it also varies as moving with certain vehicle
wheel steer angle α in degree. Let θ′ be the vehicle dir-
ection angle at time at t + Δt.
If the vehicle moves with fixed wheel steer angle α, the

vehicle of cause moves in a circle with a steering radius
R. Let vehicle body length be L, if the steer angle α is 0,
the vehicle drives straight and the R is ∞, and if the α is
± π/2 or ± 90°, the front wheels are vertical to the ve-
hicle body, the vehicle drives in a circle with R equal to
L. Assuming the angular velocity (in radian) is ω, and
α is kept the same during Δt, the change of vehicle
orientation after Δt is correspondent to the arc angle be-
tween the point (x, y) and (x′, y′), i.e. Δθ ¼ ωΔt 180π in de-

gree. We have θ0 ¼ θþ ωΔt 180π
As ω ¼ S

R, where steering radius R is related to the ve-
hicle body length and vehicle wheel steer angle α . Then

we have θ
0 ¼ θþ v∙ τ

RλΔt
180
π .

So we can present the radius as R = L/sinðα∙ π
180Þ , and

we have:

θ0 ¼ θþ v � τ
λ
� Δt � sin α � π

180

� �
� 180
π

ð2Þ

The velocity of the EV is also time-varying and the ve-
hicle velocity v can be calculated as:

v0 ¼ vþ Δt � A ð3Þ
where A is the acceleration of EV.
During moving, the EVs adjust the steer wheel and

change acceleration dynamically, the mobility model can
calculate and update the time-varying position and
orientation of vehicle according to Eqs. (1), (2), (3). An
EV then can move from current position to a new pos-
ition on screen at a fine updating interval and generate
smooth and realistic trajectory. The time series behavior
of an EV is the basis of traffic generation in the simula-
tion of a large-scale charging scenario. Due to the math-
ematical simplicity of the approach and the fact that
relatively few control parameters are required, the mo-
tion synthesis model is easy to be used in simulation
platform and can achieve high performance especially in
scenarios with large scale of EVs [19].
In the simulation, when an EV is assigned to a task ac-

cording to the travel agenda model, the EV is navigated
automatically to the destination related to the task. A
direct and straight way to approaching to the target is
U-Turn algorithm. In this algorithm, when EV is

assigned to a new target, it adjusts its orientation to the
direction pointing to the target. The adjustment of
orientation can be achieved by resetting the orientation
angle forcedly, or by adjusting the previous angle to the
final angle pointing to the targets bit by bit by steering
the wheel with certain angle. Reset of the orientation is
simple to realize, but the trajectory of EV shows as a
straight line from the current location to the designation
[20–22].
The straight trajectory is not realistic and may cause

inaccurate mileage. So we choose to adjust the orienta-
tion angle by steering the wheel with smooth operation.
We calculate the difference between the current orienta-
tion angle and the correct orientation angle that is aim-
ing to the target. Then EVs steer to the right or left by a
fine wheel angle bit by bit with corresponding adjust-
ment value, and EVs keep steering for a certain amount
of time, and EVs arrive at a new position with updated
orientation angle which can be obtained according to
the Eq. (2). The EVs repeat this procedure until they aim
to the right orientation and approaches the destination.
Figure 1a shows the synthesized trajectories of a batch

of EVs evacuating from the same source site to different
destinations by the proposed mobility model. Instead of
just adjusting the EV direction to the target and drive
straight to the target, we use more realistic and less rad-
ical navigation method. In Fig.1b, the mobility model is
used to simulate the traffic flow in a scenario of signal-
ized flat intersection. The EVs follow the respective lanes
of the road, by adjusting the angle smoothly, digital twin
EV can keep realistic trajectory during marching in
queue as how the real EV does.
The route choice model used in the navigation is

gravity-based attraction algorithm, where the EVs steer
the wheel smoothly and approach the target gradually
[23]. The trajectories of EVs are more smooth and then
more realistic compared with other mobility models. As
to the navigation algorithms, the EV may choose the
path to approaching the target or destination according
to different matrices and strategies.

3.1 Modeling of charging pile
Accompanying to the digital twin modeling of dischar-
ging process of EVs, the digital twin of the charging pile
is also needed to simulate the charging process of EV.
The digital twin of charging pile is modeled with a cer-
tain number of plug-in electric connectors with different
geographical, physical, and electrical parameters, such as
GPS location, type of plugs, charging voltage, current,
temperature, price, and power.
The energy exchanging conducts according to the con-

straints of the BMS (Battery Management System) and
charging profiles of EVs and piles. What’s more, the
quality of a charging service such as charging speed,
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number of plugs, capacity of parking lot, availability of
pile, waiting time, waiting queue line, and charging fre-
quency may vary dynamically and should be considered
when EVs make charging plan. With the communication
capacity provided by the smart grid and VANET, the
charging pile can negotiate with an EV based on these
running data. It can also sense the distribution of
nearby EVs and their charging demands [24–26].
Charging pile may advertise the quality and availabil-
ity of service to the EVs which can make decision of
charging choice to eliminate the waste of time and
energy in case of choosing another pile due to cap-
acity limit and profile mismatch. When an EV
chooses to drive to the charging pile, the charging
scheduler may prepare the preserved matched pile

and correspondent power load budget according to
the physical and electrical profile of the given vehicle
type [27]. The request reserved renegotiation proced-
ure eliminates possibility of the denies of service for
the incoming request due to limited resource such as
power and related service infrastructure.

3.2 Route choice model in task processing
Each EV is assigned to an agenda template to simulate
travel demand patterns according to the travel agenda
model. We select 17 types of most typical interesting
sites (such as office, park yard, bank, medical center,
school, and restaurant) to construct the events pool ac-
cording to spatially distributed travel demand [2, 28].
The event site is randomly dropped on the map at

Fig. 1 Synthesized trajectories of EV. a Trajectory of evacuation. b Simulated traffics at an signalized intersection

Fig. 2 Time series data based events map
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specific event occurrence intensity. The density and dis-
tribution of the events can be configured to reflect the
difference in commercial and administrative prosperity
of different areas and sections in the simulation
scenarios.
The events or tasks can be seen as dynamically created

time series data with time and special property to simu-
late the time-varying travel demands of EVs (Fig. 2).
When EVs approach the event site assigned by the
agenda, EVs may dwell there for certain period of time
to simulate the parking or charging activities before driv-
ing to the next task. When the task is processed, bonus
is scored by the EVs to calculate the activity intensity of
EVs. EV repeats this task routine and generates trajec-
tory according to the motion synthesis model. Energy
consumption and supply model is responsible for updat-
ing the SOC of EVs and route choice model in charging
makes charging decision during the task processing. The
route choice model in task processing imposes simulated
traffic flow to the scenarios and generates the charging
demand by the travel mileage of EVs when it drives to
different interesting sites according to the travel agenda
model.

3.3 Route choice model in charging
Within route choice model in charging, we have three op-
tions. Firstly, we use the static pre-trip route choice
models, where EVs are assumed to choose their route
(from origin to destination) before departure according to
information obtained or past experiences and do not
switch routes or destination (target charging pile) while
driving for charging. For in-route route choice models,
travelers observe prevailing traffic conditions and quality
of charging services as they travel, and make route choice
decisions accordingly. EV may change their target char-
ging pile during the trip adaptively [29]. In hybrid route
choice models, travelers rely on both on pre-trip route de-
cisions and in-trip decisions. They may find a better
choice according to different conditions. Some travelers
may decide to switch to an alternative route when receiv-
ing advertised guiding information from the smart grid.
In the simulation, we presume that all the EV initiate

with a fixed energy level that is much higher than the
critical level (with enough energy to drive to the nearest
charging pile). A proper charging plan is important to
help overcome range anxiety of EV driver, and avoid an
EV battery running out of energy before a destination is
reached. The charging scheduling model should confirm
this safe energy status and make prompt and proper
charging decisions. Our route choice model for charging
considers three basic requirements to simulate this
process of charging of EVs. EVs should decide when,
where to charge, how long to charge, and where to go
after charging.

As to the time point to toggle the route choice, there
are several options. An EV may choose to go to charging
pile whenever the SOC of EV approaches certain fixed
threshold value which should be higher than the critical
level. EV may also choose to charge whenever it ap-
proaches some charging pile which is within a close dis-
tance range (i.e., 1–2 miles) from the current location.
Some EVs choose to charge on a regular time basis or
choose to charge according to the random intend of EV
drivers.
When an EV decides to go to charge, the next decision

for the EV is where or which charging pile to choose.
Distance, type of charging pile, service quality, and avail-
ability of pile should be taken into account respectively
or associatively. Take short-distance-first policy as an ex-
ample, the model can choose the nearest pile from the
current location of an EV, or it may not go to charge
right now but choose the pile which is nearest to the up-
coming trajectory along the way to the next destinations
according to the travel agenda model [30]. When certain
charging pile is set as the target, the motion synthesis
model navigates the EV to the destination.
The EV then decides how much energy to supply and

how long or how much the charging process takes. The
time and amount may vary due to the constraints such
as time and budget limit, capacity, and policy of parking
lots [31]. To simulate this process, the model provides 4
basic options for EVs. The most conservative option is
to charge the minimal amount to keep the SOC above
the critical level. EV may also choose to charge for a
fixed amount of energy to simulate the regular con-
sumption custom of EV driver. Some EV may choose to
let the battery fully charged or to a certain fixed thresh-
old. Route choice model demonstrates the variety in
charging behavior of EVs in simulation.
When EV finishes charging, it may decide where to go

after interruption of charging. Some policy may choose
to return to the interrupted point where the EV detours
to the charging pile while processing the daily tasks. EV
may also not go back but continue to navigate to the
next event site based on the current charging location.
Different return policies may have different impact on
the performance and efficiency of charging.
These multimodal decision-making policy of digital

twin EV provides high freedom of motion in the char-
ging process of EV and helps simulate the complex pos-
sible mobility pattern of EV in real world. The fine
controlled digital twin EV model can increase the trust-
worthiness of the motion simulation of IoV.

4 Experiments
To validate the feasibility and effectiveness of the pro-
posed EV mobility model, and show how EV mobility af-
fects the traffic system and the energy system, we set up
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a simulation scenario of a 3 km × 6 km campus area in
Guangdong Province as the background with 500 digital
twin EV nodes scatted randomly and 280 plugs of digital
twin charging piles deployed. Each EV has been assigned
to random initial configuration of parameters such as
battery capacity, MPGe, maximum speed, and charging
power [18, 32]. A digital twin EV is automatically navi-
gated according to the agenda tables and charging
scheduling algorithms. Figure 3 shows the simulation
scenario.
The utility and efficiency of charging pile can be ana-

lyzed according to the recorded statistical simulation
data such as charging frequency and waiting time of
EVs. We find a manifest asymmetry load pattern of dif-
ferent pile due to the location and mobility of EVs.
Based on this variety, statistical analysis can be con-
ducted by introducing different traffic flows of EV and
travel tasks to simulate different application scenarios.
The mobility and charging process of a large scale of
EVs is simulated in the investigated area.

5 Results and discussion
To evaluate the performance of different charging sched-
uling algorithms, several factors are set to analyze the ef-
ficiency of the charging. The detour distance of an EV is
defined as the difference between the total mileage of
journey and the total one without charging activities. In
a given simulation time, the total detour distance of all
EVs is calculated and used as a key factor to evaluate the
performance of charging scheduling algorithms and the
feasibility of pile arrangement. Considering that the EV
may change its task execution sequence and choose dif-
ferent route after it finishes charging, the route of EV

may be completely different with the route of task pro-
cessing without need of charging. The detour distance
may be difficult to calculate. To eliminate the interfer-
ence of detouring on the travel plan and route during
task processing, we introduce a reference digital twin
node for each digital twin EV. The reference EV has a
battery with infinite capacity without charging demand,
while it has the same configuration and agenda template
with its correspondent digital twin EV. The only differ-
ence of reference EV and the digital twin EV is that the
reference EV does not need charging and the energy cost
is only related to task processing activities. All the EVs
compete with each other in the same traffic conditions
and the same event density; we evaluate the digital EVs
by analyzing the difference in the energy cost of charging
activity while complete the given work load. The mileage
of reference EVs is only related to the task processing
without charging, and then the detour distance can be
easily calculated as the mileage difference between EV
and its reference EV.
To evaluate the feasibility of pile arrangement, we use

another factor to validate the utility of charging piles. Each
pile is assigned a service coverage range, whenever an EV
enters the coverage area of a charging pile, a contact-
counter is increased by one. The contact-counter of pile
reflects the intensity of traffic flow passing by and can be
used as a factor to evaluate the importance of a pile in a
charging service grid. The higher the contact-counter, the
pile has higher possibility to provide charging service to
the EVs. The ratio between the investigated charging
times and the contact-counter of a pile reflects the poten-
tial of the pile. If charging scheduling algorithm is subtly
designed, the ratio can be enhanced and better utility of

Fig. 3 Simulation scenario of network of EVs
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the charging infrastructure can be achieved. On the other
side, rearrangement can be made on the deployment of
the charging piles according to the simulation results to
achieve the final balance among the piles and enhance the
utilization of energy grid.

In the simulation, the digital twin EVs and charging
pile are modeled as how real-world EVs and piles work
in terms of physical and electrical characteristics. The
energy consumption and charging process are simulated
by energy model on the EV and charging pile side. The

Fig. 4 Score and mileage of reference EV and digital EVs in 3 scenarios. a Scenario1 with 1 pile. b Scenario 2 with 4 piles. c Scenario 3 with 8
piles and 3 EVs
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mobility and behaviors of EVs are motivated by schedul-
ing their order taking and order processing according to
the given agenda model. We compare the mileage of
digital twin EVs and its reference EV. The EVs run in
the same scenario with the same traffic environment and
the events density is set to be proportional to the num-
ber of EVs to keep the equal task load for each EV. The
digital twin EVs can choose charging pile from a set of
charging piles. Different amount and arrangement of
charging piles is set to study the impact of charging pile
deployment on the charging efficiency. After certain
simulation period, we calculate the mileage and the task
score of the two compared node. We set three scenarios
to show how to use the simulation platform to evaluate
the feasibility of pile arrangement.
In the first scenario, we provide only 1 charging pile

located at the center of the map. In the second and third
scenario, we provide 4 and 8 charging piles scattered on
the map with uniform distribution respectively. In the 3
scenarios, digital twin EVs and reference EVs navigate to
the randomly generated event sites to earn task score in
a competitive manner. The task score reflects the work
load and the traffic intensity. The digital twin EVs and
reference EVs are homogeneous configured and share
the same background in terms of traffic and task load,
and the only difference is the arrangement of the char-
ging piles. To make these three scenarios comparable in
principle, we use the work load of a common reference
EVs as indicator, instead of using the simulation time.
All the simulation run until the reference EV scores the
same value. In the simulations, we collect data of twin
EVs in 3 scenarios where the reference EV earns the
same amount of task score (13,900 points). We find that
the digital twin EV in the first scenario scored less com-
pared with their competitive reference EV due to over-
head of charging in terms of time and mileage. The
reference EV takes more orders while the digital twin
EV is engaged in charging. The efficiency ratio (ratio of
the earned score to mileage) is 1.6% and 1.0% for refer-
ence EV and digital twin EV.
In the second scenario, when the reference EV scores

the same as in the first scenario, the digital twin EV scores
11,030 with ratio of 1.3% which are much higher than it
does in the first scenario. The difference between the ref-
erence node and digital twin node in ratio is decreased to
0.1%. The enhancement in efficiency is because that the
digital twin EV has more options for charging and saves
detour mileage and time. The decrease of ratio of refer-
ence indicates that the digital twin EV is more competitive
due to decreased charging overhead.
In the third scenario, we create 50 digital twin EVs

and 1 reference EV (indexed from 1 to 51) with 8 char-
ging pile scattered. The first digital twin EV (node 1) is
set to choose the unique charging pile and the others

can choose any convenient pile from the 8 candidates.
The first digital twin EV scored less compared with their
competitive reference EVs (node 51) and the digital twin
EV 2 (average of node 2 to 51) as well due to more de-
tour distance. The digital twin EV 2 also earns less score
compared with the reference EV, but achieves compara-
tively higher efficiency ratio (the 95% confidence interval
for this measurement is 1.44 ± 0.31%) due to conveni-
ence of charging. As shown in Fig. 4, simulation results
show how the number of charging piles and car-to-pile
ratio affects the efficiency of charging, validates the de-
sign of EV mobility model with digital twin, and can
help evaluate the feasibility of charging plan and deploy-
ment of charging piles.

6 Conclusion
In this paper, a simulation platform with digital twin-
based modeling is proposed to conduct replication of
charging and discharging process of large-scale mobile
EVs in different kinds of dynamic scenarios. To achieve
the realistic mobility of EV, we introduce the fine oper-
ational motion parameters such as steer angle, orienta-
tion angle, and acceleration to the mobility model to
simulate the realistic trajectory when EV is targeting to
the targets. A new tracking method of the dynamic pos-
ition and orientation is proposed to synthesize the rea-
sonable trajectory of EV in day-to-day traffic condition.
The key elements and activities are modeled as what
they are in real world. The digital twin EVs and charging
piles behave and interact with each other just as the real
entities, and then the simulation result can be used to
evaluate schemes of the deployment and management of
EVs and charging infrastructures. Simulations validate
the correctness and effectiveness of the proposed plat-
form and the EV mobility digital twin model. The exper-
iments also show the charging efficiency differences
against various deployment of charging piles. In conclu-
sion, the proposed platform and model are effective in
evaluating EV charging scheduling algorithms and char-
ging position deployments. In the further work, different
navigation and charging scheduling algorithm can be in-
troduced to the proposed simulation platform to verify
the design of deployment of charging infrastructure and
related impact on smart grid [33].
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