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A hyperspectral image classification
algorithm based on atrous convolution
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Abstract

Hyperspectral images not only have high spectral dimension, but the spatial size of datasets containing such kind
of images is also small. Aiming at this problem, we design the NG-APC (non-gridding multi-level concatenated
Atrous Pyramid Convolution) module based on the combined atrous convolution. By expanding the receptive field
of three layers convolution from 7 to 45, the module can obtain a distanced combination of the spectral features of
hyperspectral pixels and solve the gridding problem of atrous convolution. In NG-APC module, we construct a 15-
layer Deep Convolutional Neural Networks (DCNN) model to classify each hyperspectral pixel. Through the experiments
on the Pavia University dataset, the model reaches 97.9% accuracy while the parameter amount is only 0.25 M.
Compared with other CNN algorithms, our method gets the best OA (Over All Accuracy) and Kappa metrics, at the
same time, NG-APC module keeps good performance and high efficiency with smaller number of parameters.

Keywords: Deep Convolutional Neural Networks, Hyperspectral image classification, Atrous Convolution, Gridding
problem

1 Introduction
Hyperspectral remote sensing is a novel technology that can
simultaneously acquire spectral and spatial information at
the nanometer scale while maintaining the advantages of the
previous wide-band remote sensing technology. Moreover,
hyperspectral remote sensing can cover tens or even hun-
dreds of continuous narrow-band spectrums formed from
chromatic dispersion, such as ultraviolet, visible, near-
infrared, and far-infrared bands. Therefore, hyperspectral im-
ages (HSI) are often used for fine classification of features [1],
such as distinguishing different types of crops or ground ma-
terials [2, 3]. In recent years, the spatial resolution of hyper-
spectral image sensors has been greatly improved. Using
AVIRIS sensors, the 20-m resolution of the Indian Pines
dataset in 1992 has been improved by the 3.7-m resolution
on the Salinas dataset. Then, the reflective optics spectro-
graphic imaging system (ROSIS-03) has allowed to further
improve to a 1.3-m resolution on the Pavia University data-
set. With such an improvement and an abundance of spec-
tral features, the number of mixed pixels has been
significantly reduced. Hence, the material properties of a

single-pixel have become clearer, enabling to make qualita-
tive detection out of small targets more feasible.
Nowadays, HSI classification algorithms are mainly di-

vided into two categories: spectral information matching
methods and statistical methods. The former methods
directly utilize known spectral information in the spec-
tral library to identify the types of features in the image.
These methods can be used to compare and match the
whole band spectral information, or to select some spec-
tral bands information of interest, so as to achieve the
purpose of classification. Examples of spectral informa-
tion matching methods are minimum distance measure
[4], binary code matching [5], spectral angle mapping,
and spectral information divergence [6]. Such algorithms
are mainly used in some HSI processing software, and
the application scope and classification accuracy are
limited.
Statistical-based classification methods first convert

image information into discrete digital matrices and then
use strict mathematical derivation algorithms to distin-
guish different features. Examples of such methods are
Support Vector Machine (SVM) [7], PCA-based classifi-
cation method [8], and classification methods based on
sparse matrix [9]. Statistical-based classification methods
usually require the processed data to meet certain
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conditions, such as conforming to normal distribution
or supporting normalization. Thus, the high requirement
of the digital matrices and the previous data processing
will inevitably reduce the accuracy of classification.
In recent years, many researchers have used Convo-

lutional Neural Networks (CNN) to classify hyper-
spectral images and achieved good results. CNN learn
the feature maps of samples through convolution and
down-sampling hierarchical operations. Through mul-
tiple feedback optimizations, it automatically learns
and finally obtains hierarchical features. In particular,
CNNs have developed towards the direction of “deep”
and many classic architectures. For instance, AlexNet
[10] VGG16, GoogleNet [11], and ResNet [12] can
achieve good results in target recognition and classifi-
cation on huge datasets. Usually, those datasets (e.g.,
ImageNet, PASCAL VOC) are composed of tens of
thousands of samples, i.e., the spatial features of three
dimension (RGB) images. These Deep Convolutional
Neural Networks (DCNN) deepen with the increase
of parameters and computation; thus, the training
process becomes more difficult [13–15]. Therefore,
how to construct a lightweight model has become a
hot research topic. To achieve this goal, models such
as MobileNets [16], Squeezenet [17], Xception [18],
and others [19, 20] use deep-wise separable convolu-
tion or dilated convolution instead of full convolution
to make them lightweight and effective.
Since HSI is different from an RGB image, the classical

DCNN model cannot be directly applied to HSI classifi-
cation. Indeed, such a classification raises three main
problems:

a) Multiple spectral features. HSI has hundreds of
dimensions of spectral features. If directly input
DCNN model, the kernels of each layer should have
several times the number of dimensions of the
original, which causes the number of parameters to
increase exponentially. This phenomenon is called
dimension disaster. Moreover, a further
dimensional reduction reduces accuracy, such as
SVM [7].

b) Small spatial size of hyperspectra dataset. Usually,
the HSI dataset has little spatial information, even
only a picture of tens of thousands of pixels. This
could be not enough for a DCNN model to achieve
effectively classification by extracting spatial
features, and it is easy to cause overfitting.
Therefore, the common hyperspectral CNN model
[21, 22] has only two convolution layers; thus, it is
difficult to learn the combination features over a
long distance.

c) The number of parameters has to be kept as small
as possible to achieve fast computational speed.

This is necessary because in the future, it
envisioned the possibility to run a DCNN model on
mobile devices and provide real-time feedback. For
example, real-time land information can be pro-
vided to farmers through HIS.

To solve the above three problems, in this paper, we
combine the atrous pyramid convolution to obtain HSI’s
spectral features more effectively by solving the gridding
problem in the atrous convolution. We acquire the fea-
ture maps of the spectral information in all dimensions
and replace the fully connected layer with two convolu-
tional layers. It significantly reduces the number of pa-
rameters and provides as output the material label of a
single hyperspectral pixel.
The rest of this paper is organized as follows. In Sec-

tion 2, we introduce the atrous convolution. Section 3
briefly introduces gridding and non-gridding problems.
Section 4 gives the algorithm of NG-APC module. In
Section 5, we experimentally compare the performance
of our method with SVM and some other CNN-based
algorithms. Section 6 draws some conclusions.

2 Atrous convolution analysis
In the field of image semantic segmentation, Chen
proposed the Deeplab model [23] in 2014, which in-
troduced the atrous convolution. In 2017, Chen pro-
posed the atrous spatial pyramid pooling [24] [25],
which was applied to the up-sampling part of the
encode-decode architecture to expand the convolution
receptive field to acquire long-distance features effect-
ively. It performed good in RGB image semantic
segmentation. The core idea is to expand the recep-
tive field of different scales by changing the size of
the atrous while maintaining the size of the convolu-
tion kernel and to quickly obtain a larger range of
feature maps.
Atrous convolution, also known as dilated convolu-

tion, combines different cavity-sized atrous convolutions
called pyramid dilated convolutions. Atrous convolution
is to inject holes into the standard convolution map to
expand the reception field without increasing the param-
eter amount and convolution depth. Moreover, it obtains
larger scale feature information. 1D atrous convolution
is defined as:

y i½ � ¼
XK

k¼1

x iþ r � k½ �w k½ � ð1Þ

where y[i] is output signal, x[i] is input signal with a fil-
ter w[k] of length K, r corresponds to the dilation rate to
sample x[i], and standard convolution is a special case
for the rate r = 1.
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As shown in Fig. 1, each small square represents a
pixel. The red pixel is the center pixel of the convolu-
tion; the blue pixels are associated with the center pixel
and covered by the atrous convolution. That is to say,
the feature of blue pixels can be sampled at that

location. The gray ones are the holes from which the
convolution cannot learn the feature of the location.
Through one layer of atrous convolution, it is possible
to associate far apart features, that is, to obtain a com-
bined feature of a longer distance dimension.

Fig. 1 Atrous convolutions sketch map. a 1D atrous convolutions with kernel, dilation rate is 1, 2, and 4; b 2D atrous convolutions with kernel,
dilation rate is 1, 2, and 4; atrous convolutions enlarge the receptive field while keeping the same kernel size
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The 1D reception field equation is as follows:

F1 ¼ k−1ð Þ � r þ 1 ð2Þ
where F1 is the 1D reception field, k is the size of the

convolution kernel, r is the rate, and the size of hole is r
− 1. For instance, in the case of kernel = 3, rate = 4, we
can get F1 = 9. In the case of 2D convolution, the recep-
tion field is Eq. (3):

F2 ¼ F1
2 ð3Þ

There are three ways to get the same receptive field, if
we use the standard convolution. First, using the big ker-
nel of 7, the parameters are also expanded by 7/3 times;
Second, using the four-layer convolution structure ker-
nel of 3, the parameters are expanded by 4 times; Third,
using two-layer convolution kernel of 3, the connection
is expanded by max pooling or average pooling in the
middle, and the parameter quantity is expanded by 2
times. However, the boundary is blurred, details are lost,
and errors are introduced when pooling. It can be seen
that the atrous convolution has great advantages in
expanding the receptive field. At the same time, it also
exists as the problem of not learning all features, which
is called gridding problems.

3 Gridding and non-gridding problems
Atrous convolutions with dilation rates larger than the
one will generate holes called gridding artifacts, 2D
atrous convolution with 3 × 3 kernel, and a dilation rate
of r = 4 has a 9 × 9 receptive field. However, the number
of points that are actually involved in the computation is
only 9 out of 81, which implies that the actual receptive
field is still 3 × 3 see Fig. 1b.
If we use the atrous convolution at the same rate

or multiplying rate, gridding and non-gridding prob-
lems will become worse. For example, if the rate is 2,
2, and 2 or 2, 4, and 8, this problem will show up
[26]. In Fig. 2, the atrous convolution of different
atrous rates is selected to convolute from top to bot-
tom. The red pixel in the figure is the central pixel
of the convolution kernel, which is combined with
the features of other locations by different atrous rate
to construct a feature map, regardless of the size of
rate and the number of convolution layers. According
to the principle of convolution, although the data of
other positions will be introduced after the convolu-
tion, the data of the center position (red) will always
exist. Blue pixels are positions where features can be
obtained by atrous convolution and the more the
number of combinations. The higher redundancy, the
deeper of the blue color.
Gridding and non-gridding sketch map is shown in

Fig. 2. It can be seen from Fig. 2a, after three-layer

atrous convolution where atrous rate is set to 3, the re-
ception field can be expanded to 12. But the effective
connection point is 5, and the adjacent points of the red
pixels are not connected.
In this case, the efficiency of the receptive field (ERF)

is 5/12, and the gridding problem is obvious. Since the
convolution kernel has holes, after several superimposed
atrous convolutions, there will be a problem that the fea-
tures of the data in the receptive field are incomplete.
Hence, it is also the essential cause of the gridding prob-
lem. For the gridding problem, the researchers have pro-
posed two solutions:
First is the parallel method, in which we use differ-

ent rates in the same layer of convolution and then
concatenate the results of the convolution. Chen used
the parallel atrous convolution with the rate = 6, 12,
18, and 24 in DeepLabv2. It groups several dilated
convolutional layers and applies dilation rates without
a common factor relationship. ASPP (Atrous Spatial
Pyramid Pooling) improved encoding part and
achieved a better semantic segmentation performance.
Sachin Mehta improved the Resnet architecture in the
efficient spatial pyramid (ESP) module [24], using
atrous convolution rate = 2, 4, 8, and 16 to obtain
feature maps of different receptive fields, and then
concat to get the final feature maps by reusing the
ESP structure. It achieved better recognition and seg-
mentation results in the urban street scene of the
PASCAL VOC dataset. Figure 2b illustrates the first
approach and concatenates the result of the convolu-
tion with three branches, which atrous rate = 2, 4,
and 8 on the input data. Receptive field is 17, and
the ERF is 7/17, which improved the gridding prob-
lem. This approach is similar to inception, which
widens DCNN and concatenates multiple branches
with different size of kernel. The receptive field is 17/
3 times that of a standard convolution of 3 kernel.
Through only one layer of convolution, the reception
field is enlarged and the parameter quantity is not in-
creased. However, there is still a gridding problem in
this approach. If you want to achieve non-gridding,
you need to use a continuous atrous rate. It is
equivalent to a large kernel, but it loses the advantage
of small convolution kernel with fewer parameters.
Second, as is shown in Fig. 2c, we call it the serial

method. It used different atrous rate concatenated
multi-layer convolution, by controlling the size of the
rate to de-gridding. In 2018, Wang [27] proposed hy-
brid dilated convolution (HDC) structure, which used
a concatenated atrous convolutions of different rate =
1, 2, and 3 instead of rate = 2, 2, and 2. It is proved
that this kind of setting can solve the gridding prob-
lem, and at the same time, it can expand the recep-
tive field.
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After using the rate = 1, 2, and 3 atrous convolution
layers, the receptive field F1 = 13 and the ERF = 1, which
is two times of the standard three-layer concatenated
convolution of 3 kernels andF1 = 7. Therefore, all the
features in the receptive field are obtained. We call this
kind of scenario as non-gridding.
Under the condition of non-gridding, the calculation

of rate and reception field in serial mode is obtained by
formulas (4) and (5):

Fd ¼ Fd−1 þ 2rd ð4Þ

f
r1 max ¼ 1; F1 max ¼ 3; F1 ¼ 3
rd max ¼ Fd−1

Fd max ¼ Fd−1 þ 2rd max

ð5Þ

where r is atrous rate, d is the number of layers in the
serial convolution, max is the maximum value that can
be obtained at non-gridding, F is receptive field, and the

Fig. 2 Gridding and non-gridding sketch map. a Atrous convolution cascade of three layers of the same size rate. b Three atrous convolution
stitching of rate = 2, 4, and 8. c Three-layer rate = 1, 2, and 3 atrous convolution cascade. d Three-layer atrous convolution cascade after splicing
of 1, 3, and 9 and 1, 3, and 18
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calculation of the first layer of convolution F can be got-
ten in formula (2). In this paper, we only discuss and
analyze the case of 1D convolution and of 3 kernels.
In summary, both of these two methods can improve

the efficiency of convolution, expand the reception, and
reduce the gridding problem.

4 NG-APC module
In this paper, combining these two methods of solving
the gridding problem and introducing inception model,
we propose a non-gridding multi-level concatenated
atrous pyramid convolution module (NG-APC). NG-
APC module is divided into two parts. The first part is
atrous pyramid convolution, while the second part is di-
vided into several branches. Each branch uses a different
atrous rate convolution and then merges together, which
can achieve the maximum reception field of the non-
gridding atrous convolution.
In the first part of NG-APC module, the convolution

depth is n, atrous pyramid convolution depth isn − 1.
Formula (5) gives the desirable maximum value of atrous
rate under non-gridding conditions, which can be re-
duced according to the actual situation.
Layer n of NG-APC module is the second part of

model. It is a convolution layer composed of multiple
branches. The number of branches can be set, according
to the requirement of receptive field in practical applica-
tion. The rate of each branch is according to formula
(6):

f r
i
d max ¼ iFd−1

Fi
d max ¼ Fd−1 þ 2rid max

ð6Þ

where r11 ¼ 1, F1
1 max ¼ 3, and i denotes the ith branch

of the module, d denotes the layer of the convolution,
and max denotes the maximum value of r and F in the
non-gridding condition. 1D NG-APC module flow chart
is shown in Fig. 3.
In Fig. 3, n is the number of convolution layers, and

the default value is 3, which can be modified. The num-
ber of branches of the module is i, and rin is atrous rate.
According to formulas (5) and (6), rin is not greater than
rin max , and Fi

n is reception field, which can obtain the
global farthest distance feature. Figure 2d is an example
of NG-APC module, which has three convolution layers.
The first layer atrous rate is 1, the second layer atrous
rate is 3, and the third layer has two branches. The
atrous rate of branch 1 is 9 and reception field is 27.
The atrous rate of branch 2 is 18 and reception field is
45. The holes in branch 2 can be filled by branch 1, so
the whole is non-gridding atrous pyramid.
In summary, it can accurately mark the category of

each pixel, by using the atrous convolution to collect
features between dimensions with large span and

construct an appropriate deep learning architecture to
learn the spectral features, for the spectral dimension of
100~200 of each pixel. In the classification of hyperspec-
tral image, atrous convolution is effective in replacing
traditional convolution in DCNN. Based on the non-
gridding atrous pyramid convolution, this paper designs
a light weight depth learning architecture model for
spectral information classification of hyperspectral im-
ages. The hyperspectral image NG-APC classification
architecture model is divided into four parts.

a) Input the pixels as a single hyperspectral image, 1 ×
1 × band numbers;

b) Input the pixels into the NG-APC module, where
the number of convolution layers N = 3, the num-
ber of branches I = 2, the convolution of 128 kernel,
the activation function uses ReLu, then the use con-
cat function to integrate the feature map together
to become the feature map of band numbers × 256.

c) Perform three-layer 1D convolution on the feature
map while stride = 2. The number of convolution
kernel is halved for every convolution layer and fi-
nally get a (band numbers/8) × 32 feature map.

Output the classification results, through the fully con-
nected (FC) layer and the Softmax layer. As is shown in
Fig. 4:

5 Experimental results and discussion
The goal of this algorithm is to obtain the material prop-
erties of a single-pixel for the identification of different
kinds of ground objects in hyperspectral images. In the
three public available hyperspectral datasets [26–31], the
Indian Pines datasets and Salinas datasets target the
farmland of different crops and the natural topography.
They are continuous large areas of the same category,
and the classification effect will be better by using the
method of spatial spectrum combination. Since our algo-
rithm aims at small target recognition of different fea-
tures, we select the Pavia University dataset to verify the
effectiveness of the algorithm. This dataset is one of the
common scenes in the city, which is in line with the goal
of this algorithm.

5.1 Experimental dataset
Pavia University dataset (as shown in Fig. 5) is from Ger-
many’s Reflective Optics Spectrographic Imaging System
(ROSIS-03) in 2003.
It is a part of the hyperspectral data of the image of

Pavia, Italy, with a spatial resolution of 1.3 m. The data-
set has a total of 610 × 340 pixels. The spectral image
resamples 115 samples in the 0.43–0.86 μm wavelength
range, removing 12 bands that are subject to noise inter-
ference, hence the remaining is 103. This dataset has
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Fig. 3 1D NG-APC module flow chart

Fig. 4 Hyperspectral image NG-APC classification architecture model diagram
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Fig. 5 Pavia University dataset images. a False-color composite. b Ground truth. Land cover classes, black area represents unlabeled pixels

Table 1 Classification results with different categories
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42776 labeled pixels and 9 labeled samples, as is shown
in Table 1.
In the dataset, when we randomly select the similar la-

beled pixels in different spatial locations, the features of
shadows and painted metal are more consistent. How-
ever, the spectral features of bitumen, Gravel, etc., are
quite different. During the experiment, we randomly div-
ide the labeled samples into training sets and test sets
according to the ratio of 80% and 20%. The unlabeled
sample pixels are background pixels. Actually, there
should be different material labels. Because they are not
labeled, they are not used for training. Otherwise, it will
affect the accuracy of the identification classification.
Figure 5 shows the false color composite image and
ground truth with different land cover classes.

5.2 Results and discussion
We set the experiment parameters as follows: learning
rate is 0.9, the activation function is Relu, batch is 100,
and the optimization strategy uses SGD. The model
train and test are on a single NVIDIA GTX 980 4 GB
GPUs and with 8 G memory.
In this paper, we compare NG-APC model with the

classical SVM, the new 1D-CNN [28, 29] 2D-CNN [30],
3D-CNN algorithms [31–34], and RNN [35]. We refer
some of these algorithms by nshaud/DeepHyperX on
GitHub. We set training sample 80%, test sample 20%,
and keep some default parameter settings, such as patch
size is 7 and epoch is 50.
In Table 2, we compare the classification results of the

proposed NG-APC with other classification algorithms
(SVM, 1D CNN, 2D CNN, 3D CNN, and RNN). NG-
APC module belongs to 1D CNN. The classification re-
sults of NG-APC algorithm are better than the 1D and
2D CNN classification methods in gravel, meadows, and

bitumen feature classification. Even though NG-APC al-
gorithm has less accuracy than 3D CNN [32] classifica-
tion results in bitumen and bricks features, it has much
higher than the average level (0.821 and 0.900).
Table 3 shows confusion matrices for the Pavia Uni-

versity dataset. It can be seen from the detailed classifi-
cation accuracy of all the classes, which is calculated
from one arbitrary train/test partition. The cell of ith
row and jth column means the probability that the ith
class samples is classified as the jthclass. The percent-
ages on diagonal line are just the classification accuracy
of corresponding class. The proposed algorithm per-
forms under 95% in only two classes (bitumen and
bricks) among the nine classes. These two class samples
are wrongly classified as asphalt with 3.38% and 3.26%
separately. As shown in the Table 1, the two classes are
the ones with smaller numbers of samples. The more
similar two classes of spectral domain, the higher prob-
ability they are wrongly classified to each other.

5.3 The accuracy assessment criteria for classification
We use OA (overall accuracy) and Kappa (Kappa coeffi-
cient) as the criteria for classification of HSI. OA refers
to the proportion of correctly classified samples to all
classified samples. The formula is as follows (7):

OA ¼
PK

i¼1C i; ið Þ
M

ð7Þ

where M is the total sample number of one class, K is
the number of categories, and C(i, i) is the current classi-
fied sample by the algorithm.
Kappa is used to calculate the similarity between the

classification results of ground and the real distribution

Table 2 Classification results of different categories by various methods

Categories Asphalt Meadows Gravel Trees Painted metal Bare soil Bitumen Bricks Shadows

Train samples 5305 14919 1679 2451 1076 4023 1064 2945 558

Test samples 1326 3730 420 613 269 1006 266 737 189

SVM [7] 0.827 0.859 0.000 0.730 0.982 0.196 0.000 0.740 1.000

1D CNN [28] 0.869 0.906 0.385 0.899 0.993 0.604 0.706 0.788 0.997

1D CNN [29] 0.939 0.967 0.748 0.949 0.998 0.916 0.771 0.860 0.932

2D CNN [30] 0.795 0.709 0.607 0.873 0.999 1.000 0.999 0.961 0.898

3D CNN [31] 0.976 0.955 0.947 0.976 1.000 0.981 0.983 0.985 1.000

3D CNN [32] 0.933 0.860 0.854 0.949 1.000 0.999 1.000 0.998 0.978

DLCNN [33] 0.979 0.959 0.966 0.978 0.998 0.995 0.983 0.986 0.997

DSSCNN [34] 0.922 0.967 0.828 0.977 1.000 0.915 0.895 0.840 1.000

RNN [35] 0.961 0.970 0.826 0.970 1.000 0.931 0.903 0.877 0.999

NG-APC 0.983 0.987 0.974 0.976 1.000 0.979 0.973 0.965 1.000

Average 0.918 0.914 0.714 0.928 0.997 0.852 0.821 0.900 0.980
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of ground objects with disperse analysis method, the for-
mula is as follows (8):

Kappa ¼ M
PK

i¼1C i; ið Þ−PK
i¼1 C i;þð ÞC þ; ið Þð Þ

M2−
PK

i¼1 C i;þð ÞC þ; ið Þð Þ ð8Þ

where C(i, +) is the total number of pixels, in which a
ground object is divided into a particular category, C(+,
i) is the total number of pixels, in which the ground ob-
ject actually belongs to a particular category.
In Table 4, we compare five metrics (i.e., OA, Kappa,

the parameters quantities, memory usage, and the run-
time) with the other approaches. Compared with the 1D
CNN models, whose parameters and runtime are equiva-
lent, the NG-APC model gets better results on OA and
Kappa. OA increases from 84.619% and 92.778% to
97.966%, while Kappa increases from 0.792 and 0.904 to
0.973. When comparing with the best 3D CNN [33],
whose number of parameters and memory are 5.8 times
and 4.68 times larger than NG-APC model. At the same
time, OA of NG-APC increases 2.54% and Kappa of
NG-APC increases 0.032, respectively. Therefore, the
NG-APC model is the best one in those convolution
models. It not only has high accuracy classification

results, but also has smaller parameters and faster
runtime.

6 Conclusions
In this paper, we propose a 15-layer DCNN model with
NG-APC module to classify single-pixel of HSI. This model
has solved three problems in HSI classification. First, the
single-pixel classification of HSI learns the whole spectral
information of each pixel, which not only solves the prob-
lem of large computational complexity of high-dimensional
data, but also solves the problem of insufficient samples in
DCNN training. Second, aiming at the reasonable combin-
ation of 1D atrous convolution, we propose NG-APC mod-
ule, which solves the gridding problem and enlarges the
receptive field from 7 to 45. Moreover, the classification ac-
curacy is improved by learning the long-distance feature
combination. The OA reaches 98% and the Kappa reaches
0.974 on the Pavia University dataset, whose are superior to
many kinds of 1D, 2D, and 3D CNN models. Third, re-
placing the 1D convolution with the full connection layer,
although the model is a 15-layer DCNN, the parameters
are similar to those of the same type of 1D-CNN of five
layers, which meets the requirements of small parameter
models. In conclusion, NG-APC model is an excellent
DCNN model for HSI classification.

Table 3 The detailed classification accuracies of all the categories for Pavia University with NG-APC model

Asphalt (%) Meadows (%) Gravel (%) Trees (%) Painted metal (%) Bare soil (%) Bitumen (%) Bricks (%) Shadows (%)

Asphalt 99.17 0.00 0.60 0.00 0.00 0.08 0.00 0.15 0.00

Meadows 0.00 98.23 0.00 0.16 0.00 1.61 0.00 0.00 0.00

Gravel 0.24 0.00 97.62 0.00 0.00 0.00 0.00 2.14 0.00

Trees 0.00 2.77 0.00 96.74 0.00 0.33 0.00 0.16 0.00

Sheets 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00

Bare soil 0.00 1.19 0.00 0.30 0.00 98.51 0.00 0.00 0.00

Bitumen 3.38 0.00 0.00 0.00 0.00 1.88 94.74 0.00 0.00

Bricks 3.26 0.14 0.54 0.00 0.00 1.22 0.00 94.84 0.00

Shadows 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Table 4 Classification results obtained by different approaches on Pavia University dataset

Classifier methods OA (%) Kappa Parameters (M) Memory (M) Runtime (s)

SVM [7] 76.192 0.634 565

1D CNN [28] 84.619 0.792 0.23 0.25 255

1D CNN [29] 92.778 0.904 0.02 0.11 8519

2D CNN [30] 69.635 0.643 8.75 12.07 18148

3D CNN [31] 94.904 0.934 0.34 1.32 1062

3D CNN [32] 85.320 0.818 4.08 20.69 21313

DL CNN [33] 95.430 0.941 0.29 1.17 558

DSS CNN [34] 93.432 0.913 64.91 64.98 345

RNN [35] 94.460 0.927 0.30 0.33 219

NG-APC 97.966 0.973 0.05 0.25 433
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