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Abstract

Location-based recommendation services can provide users with convenient services, but this requires monitoring
and collecting a large amount of location information. In order to prevent location information from being leaked
after monitoring and collection, location privacy must be effectively protected. Therefore, this paper proposes a
privacy protection method based on location sensitivity for location recommendation. This method uses location
trajectories and check-in frequencies to set a threshold so as to classify location sensitivity levels. The corresponding
privacy budget is then assigned based on the sensitivity to add Laplace noise that satisfies the differential privacy.
Experimental results show that this method can effectively protect the user’s location privacy and reduce the
impact of differential privacy noise on service quality.
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1 Introduction
The development of mobile communication network
provides users with a more colorful mobile network ser-
vice platform, which enables users to obtain and push
network information resources anytime and anywhere.
This makes it possible to provide users with ubiquitous
mobile network services. In particular, the rise of mobile
social networks has greatly helped users in network
information services [1]. At the same time, since it is
necessary to collect a large amount of information from
users while enjoying network services, how to ensure the
data security of supervisory control and data acquisition
(SCADA) system is worthy of attention. We must first
ensure that the user’s data is secure and then consider
how to use this data to find the information resources
that users are really interested in, so as to meet the per-
sonalized needs of mobile users [2].
As one of the solutions for personalized information

services, the recommendation system has attracted wide
attention in both industry and academia. Compared with
the traditional search engine, the recommendation system

not only pays attention to the relationship and ordering
between search results but also focuses on the influence of
the user’s personalized preference model on the search
results. In addition, the successful introduction of perva-
sive computing theory makes the traditional recommen-
dation systems not only focus on the “user-project” binary
relationship but also consider the context information of
the user together to form a “context-user-project” system.
This enables the system to automatically discover and
utilize contextual information to meet the user’s personal-
ized information needs that change as contextual informa-
tion changes [3]. For example, users are more willing to
watch their favorite movies on commuting buses instead
of at the office. Compared with the working office, users
are more willing to know about the surrounding promo-
tional advertisements in the leisure and entertainment
plaza after work. This aspect truly satisfies the user experi-
ence and improves user satisfaction. On the other hand,
the adaptability of the system and the accuracy of the rec-
ommendation are enhanced [4].
In recent years, with the further development of the

mobile Internet and the maturation of geographical posi-
tioning technology, more and more scholars have begun
to pay attention to the influence of location characteris-
tics on the mobile users’ cognition and behavior in the
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context of the mobile Internet. At the same time, when
researchers analyze the behavior of mobile users, the
personal privacy protection of users becomes more and
more important.
Most recommended services focus on social trust be-

tween users [5], while mobile location-based recommen-
dations are mainly to send a location service request to
the server through the user’s operation so as to provide
the user with personalized service. Location recommenda-
tion combines the user’s interest preferences and geo-
graphic location and then analyzes the content of the
service. Finally, the server returns the service information
required by the user. In location-based recommendation,
since the server is to provide personalized services to
users, it will store a large number of users’ evaluation and
recommendation information. The server then mines hid-
den and useful information from it so that the requesting
user can get valid recommendations. However, location-
based recommendation services provide users with con-
venience and also pose a threat of privacy leakage. The
service provider can collect sensitive information (such as
location or point of interest (POI)) in the service request
sent by the user through SCADA to obtain and infer more
private information of the user. For example, service pro-
viders can analyze their travel patterns and predict their
locations in the future by extracting the user’s location
characteristics [6]. In addition, the service provider can
use the statistical data of the user’s location information in
certain time periods to infer user’s home address and unit
[7]. The leakage of the private information may cause the
user to have an unpredictable loss. Therefore, how to en-
sure user data security in SCADA has become a problem
that needs to be addressed in location-based recommen-
dation services.
This paper proposes a location data security protection

scheme under SCADA for user behavior patterns in lo-
cation recommendation. The enterprise can grasp the
user’s behavioral regularity by analyzing the user’s loca-
tion trajectory so as to recommend the next location
which the user may be interested in. Then the enterprise
sends more targeted recommended information based
on the distance information of the location where the
mobile user is located or the next location where the
user is likely to be interested. Therefore, we need to pro-
vide effective services while protecting the user’s location
information. On the one hand, the current researches
add uniform noise to the user’s location data, but this
will cause excessive noise addition at some locations to
reduce the quality of service. On the other hand, re-
searchers add noise to certain sensitive locations, but
this scheme ignores the user’s interest preferences and
does not meet the user’s personalized privacy needs. In
order to solve the above problems, this paper makes the
following main contributions:

(1) We define the sensitivity level for the user’s location
based on check-in frequencies. When the number
of check-in times reaches the threshold set in this
paper, the sensitivity level of the location will
change. Different levels of sensitivity indicate that
the user has a different degree of preference for the
location.

(2) We use the prefix tree structure to represent the
user’s location trajectory information. This
structure shows the check-in statistics and the
sensitivity level of the user’s locations.

(3) According to the structure of the prefix tree, we
propose a privacy budget allocation method based
on location sensitivity. This paper assigns a
corresponding privacy budget based on the
sensitivity level of each location and then adds the
corresponding noise. Through the experimental
results in the real data set, we prove that this
scheme can not only avoid adding too much noise
but also meet the user’s personalized privacy needs.

Section 2 of this paper compares domestic and foreign
research status. Section 3 lists the relevant definitions of
differential privacy and location recommendations. Sec-
tion 4 describes a privacy protection method based on
location sensitivity for location recommendation pro-
posed in this paper. Section 5 analyzes the experimental
results. Section 6 summarizes the full paper.

2 Related work
Implementing data privacy protection before data release
has become a concern for researchers, individuals, and
service providers [8]. In recent years, privacy protection
for mobile locations has mostly been implemented on
the basis of k-anonymity. Researchers usually cluster the
movement trajectories first, and then they generalize the
cluster group or limit its feature release [9]. In 2003,
Gruteser et al. applied k-anonymity to location privacy
protection for the first time [10]. The algorithm uses a
quad-tree search method to construct an anonymous re-
gion that satisfies k-anonymity and whose area is not
less than a certain value. Experiments show that this
method makes it impossible for an attacker to effectively
identify the user’s real location. Chunyong Yin proposed
an improved K-value location privacy protection method
based on privacy level, which combines the k-anonymity
method with the kana method [11]. The improved
method can more reasonably select the K-value to meet
different privacy level requirements. Miura proposed a
hybrid method which introduced false nodes and an-
onymous areas to protect location privacy [12]. When
the number of mobile users in the environment sur-
rounding the user does not meet the anonymous de-
mand, an anonymous area meeting the requirements is
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constructed by creating fake nodes. The number of false
nodes dynamically adjusts according to the number of
users in the surrounding environment. Although the ap-
proach based on false nodes has various advantages in
terms of implementation and the computational cost is
low, when users submit continuous requests, they suffer
from temporal and spatial correlation problems. To
solve this problem, Nosouhi proposed a practical hybrid
location privacy protection scheme [13]. The proposed
method filters out relevant false location data before
submission. Therefore, the attacker cannot identify the
user’s real location. Since privacy protection in the era of
big data is more difficult than traditional information
protection, Zhang Sun et al. proposed an improved model
that combines k-anonymity with L-diversity. The K-mem-
ber clustering algorithm can be used to transform the ano-
nymity problem into a clustering problem to achieve an
improved anonymity model. Improved anonymous models
can reduce algorithm execution time and information loss,
which is especially important for big data [14]. Most exist-
ing anonymous methods directly delete trajectories or loca-
tions that violate specific constraints, resulting in a large
amount of information being lost. In response to this prob-
lem, Chen et al. proposed a trajectory privacy protection
method based on 3D mesh partitioning [15]. This method
first divides the trajectory area into a number of spatiotem-
poral units (represented as 3D units) and then performs
location swapping or suppression in each spatiotemporal
unit. Compared with other methods, this algorithm effect-
ively preserves the trajectory data privacy and improves the
availability of the data.
In addition to the above methods, differential privacy

has also achieved remarkable results in location protec-
tion research in recent years. Differential privacy is a
new privacy protection model proposed by Dwork in
2006 [16]. This model is based on data distortion. This
method can solve two major defects of the traditional
privacy protection model. One is that it defines a fairly
strict attack model. It does not care how much back-
ground the attacker has. Even if the attacker has mas-
tered all record information except a certain record, the
privacy of the record cannot be disclosed. The other is
that it gives a rigorous definition and quantitative assess-
ment of the level of privacy protection. Implementing
differential privacy mainly considers the following two
issues. The first is to design algorithms that satisfy dif-
ferential privacy to ensure the privacy security. The sec-
ond is how to reduce errors caused by data distortion to
improve data availability. Wang et al. combined the con-
cepts of differential privacy and k-anonymity to propose
a differential private k-anonymous concept (DPkA) for
LBS query privacy [17]. They also proposed an algorithm
to implement DPkA with a minimized ε. Experiments
show that DPkA effectively improves the level of privacy

protection while ensuring query efficiency. Chunyong
Yin et al. proposed a location privacy protection method
that satisfies differential privacy constraints to protect
location data privacy [18]. First of all, they built a multi-
level location information tree model and then selected
data according to the tree node access frequency. Finally,
the Laplace mechanism was used to add noise to the ac-
cess frequency of the selected data. Experiments show
that this scheme can effectively blur the access frequency
of sensitive locations and maintain high data availability.
In order to solve the problem that the traditional grid
noise adding method leads to high error, Zhou proposed
a differential privacy noise dynamic allocation algorithm
based on the standard deviation circle radius (called
SDC-DP algorithm) [19]. The strength of the privacy
protection requirements of the SDC-DP algorithm is de-
fined by the divergence of each grid. For different priv-
acy protection requirements, the SDC-DP algorithm
dynamically adds noise of different scale to the count
query results of each grid. Experiments show that the
SDC-DP algorithm effectively reduces the relative error
and improves the query accuracy. In addition, in order
to protect real-time trajectory data, Ma et al. proposed a
privacy protection mechanism based on differential priv-
acy called RPTR [20]. RPTR uses an aggregate Kalman fil-
ter based on the user-location transfer probability matrix
to ensure data availability. In addition, they have built a
privacy budget allocation method based on regional priv-
acy weights to provide better protection for areas with
high user density. Experiments show that RPTR cannot
only protect the privacy of real-time trajectory data but
also ensure the availability of data.
With the popularity of recommendation systems, loca-

tion recommendation services are playing an increas-
ingly important role in people’s daily lives. At the same
time, the issue of location privacy protection in location
recommendation services has also received increasing at-
tention. Hao proposed a differential privacy trajectory
analysis algorithm [21]. The algorithm first converts the
original trajectory data set into a bipartite graph and
then extracts the correlation matrix representing the bi-
partite graph to inject carefully calibrated noise to satisfy
the difference privacy. A large number of experiments
on real trajectory data sets show that the algorithm dem-
onstrates high recommendation accuracy while meeting
the required differential privacy guarantees. Polatidis
proposes a multilevel privacy protection method for
collaborative filtering systems that perturbs each rating
before submitting it to the server [22]. The perturbation
method is based on multiple levels of each level and ran-
dom values of different ranges. Before we submit each
rating, the privacy level and perturbation range are ran-
domly selected from a fixed level of privacy. The results
show that this scheme can provide different levels of
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privacy protection and can achieve a more satisfactory
recommendation. Xue proposed a new destination pre-
diction method specifically for registration services for
geographic social networks [23]. This method not only
solves the problem of data sparsity faced by common
destination prediction methods but also utilizes common
background information such as social structure, road
network and speed limit. The experimental results show
that the destination prediction method has strong predict-
ive ability and has effective protection against destination
inference attacks. Zhang S proposed an enhanced user
privacy scheme through caching and spatial-anonymity
(CSKA) in continuous LBS [24]. It uses multilevel caching
to reduce the risk of user information being exposed to
untrusted location service providers. Simulation results
show that the CSKA scheme can provide higher privacy
protection than the previous methods and can minimize
the overhead of the LBS server. In order to improve the
availability of data, Wei proposed a trajectory community
recommendation (DPTCR) scheme based on differential
privacy [25]. First, DPTCR converts the position of the
real trajectory into a noise feature location based on a pro-
prietary semantic expectation method. Second, DPTCR
uses a proprietary geographic distance approach to con-
struct a noise trajectory that has the smallest geographic
distance from the actual trajectory. DPTCR ensures that
the real trajectory is highly similar to the constructed
noise trajectory. Zhang et al. proposed a new Privacy-
preserving LOcation REcommendation framework [26].
They use n-order additive Markov chains to use the user’s
sequence pattern for location recommendation. In
addition, they designed a probabilistic differential privacy
mechanism to effectively protect the user’s location priv-
acy. This solution addresses two key challenges of recom-
mendation accuracy and location privacy caused by high
sensitivity and small counting issues in a personalized and
fine-grained location recommendation environment.
However, the above privacy protection methods for

the location recommendation service ignore the user’s
interest preference, resulting in a failure to more ration-
ally allocate the privacy budget and add noise. Therefore,
this paper proposes a privacy protection method based
on location sensitivity for location recommendation.

3 Preliminary knowledge
3.1 Related definitions of difference privacy
3.1.1 Definition 1 (differential privacy)
There are two data setsD1andD2. The difference be-
tween them is at most one record. Range (K) represents
the range of a random function (algorithm) K. Pr[Es]
represents the disclosure risk of event Es. If the random
function (algorithm) K satisfies Eq. (1) for any query re-
sult S Range (K), the algorithm K satisfies the ε-differ-
ence privacy protection, where the parameter ε is the

privacy protection budget [27]. In practice, ε usually
takes a small value, such as 0.01, 0.1, or ln2. If the value
of ε is smaller, it means that the level of privacy protec-
tion is higher.

Pr K D1ð Þ∈Sð Þ≤eεPr K D2ð Þ∈Sð Þ ð1Þ

The definition shows that for any possible outcome of
the algorithm output, the probability ratio of the algorithm
to the same result on data setsD1andD2is a constantexp(ε)
less than ε.
As shown in Fig. 1, algorithm K randomizes the output

to achieve the effect of privacy protection. The parameter
ε quantifies the probability of outputting the same result
when any record is deleted or added in the data set.

3.1.2 Definition 2 (global sensitivity)
Suppose there is a functionf :D→ Rd. The input is a data
set and the output is a d-dimensional real number vec-
tor. For any adjacent data setDandD', if it satisfies Eq.
(2), it is called the global sensitivity of function f,
where∥f(D) − f(D')∥1 is the one-order norm distance be-
tween andf(D)andf(D').

GS f ¼ maxD;D0 f Dð Þ− f D0ð Þk k1 ð2Þ

The global sensitivity of a function is determined by
the function itself, and different functions will have dif-
ferent global sensitivities. Some functions have less glo-
bal sensitivity, so only a small amount of noise can be
added to mask the effect of a record being deleted on
the query results.

3.1.3 Definition 3 (Laplace mechanism)
In practical applications, we usually use the Laplace
mechanism for the protection of location privacy [28].
The idea of Laplace mechanism is to satisfy ε-differential
privacy protection by adding random noise to the query

Fig. 1 Random algorithm output probabilities on neighboring
data sets
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resultf(D). And the noise is subject to the Laplace
distribution.
We give the data set D and assume that there is a

functionf :D→ Rd with a sensitivity of Δf. Then the ran-
dom algorithmM(D) = f(D) + Y provides ε-differential
privacy protection whereY ∼ Lap(Δf/ε) is random noise
and obeys the Laplace distribution with scale parameter
Δf/ε.

P xð Þ ¼ 1
2b

exp −
j x−u j

b

� �
ð3Þ

When u = 0 , the probability density of Laplace under
different scale parameters is shown in Fig. 2. As can be
seen in the Fig. 2, the scale parameter increases, and the
probability distribution becomes more uniform. On the
contrary, the scale parameter decreases and the prob-
ability distribution are more concentrated.
The amount of noise added is positively related to the

size of Δfand negatively related to ε. When Δfis small,
less noise is added and the algorithm shows better effect.

3.2 Related definitions based on location
recommendation
At present, scholars have conducted extensive research on
location recommendation. Recommendations based on
collaborative filtering are also often used for location rec-
ommendations [29]. The collaborative filtering method
uses the user’s rating matrix for the project to calculate the
similarity and compares the similarity to select the most
similar set of neighbors. It then builds a user-location scor-
ing matrix and calculates the similarity between user loca-
tions. In general, the collaborative filtering matrix is based
directly on the user’s scoring value for the project. For
example, in movie recommendations, users have an intui-
tive score rating for movies they have watched. However,
such explicit scoring evaluation is not included in the user’s
historical location information. Therefore, in the location
recommendation based on collaborative filtering, a value of

interest that can reflect the location of the user is often
extracted according to the location information of the user,
and this is used as an implicit rating evaluation of the loca-
tion by the user. For example, the frequency of user’s
appearance in a certain location reflects the user’s interest
in this location. Therefore, we can predict the user’s next
action by analyzing the frequency characteristics of the
user’s trajectory data [30].

3.2.1 Definition 4
All the set of check-in locations of user u are SL(u) = <
l1, l2, … ln >, where the number of check-in times of the
user at the location li(1 ≤ i ≤ n)isαi.

3.2.2 Definition 5
The set of all users checked in at location l is Su(l) = <
u1, u2, …um>, where the number of check-in times at
the location l of the user ui(1 ≤ i ≤m) is βi.

3.2.3 Definition 6
The user u scores the location in a way that combines
the number of check-in times and the weighting of the
sensitivity. As shown in Eq. (4):

Score u; lð Þ ¼ αl � wl ð4Þ

Scoreðu; lÞ represents the user’s average score for all
locations. Equation (5) is used to calculate the location
similaritysim(ui, uj) of two users ui and uj.

sim ui; uj
� � ¼X

l∈S
L ui ;u jð Þ

Score ui; lð Þ−Score ui; lð Þ� �
Score u j; l

� �
−Score u j; l

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l∈SL uið Þ

Score ui; lð Þ−Score ui; lð Þ� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l∈S

L u jð Þ
Score u j; l

� �
−Score u j; l

� �� �2vuut
ð5Þ

4 Methods
Location-based recommendations calculate location
similarity based on the user’s rating of the location. The
rating is based on the user’s set of check-in locations,
which includes features such as trajectory sequence,
check-in times, and location sensitivity. In order to intui-
tively reflect these features, this paper considers the use
of a prefix tree to organize the user’s check-in location
information.
Differential privacy protection primarily adds noise

based on privacy budget allocation results. The random
allocation of privacy budgets will distort the user’s
original trajectory sequence and location sensitivity fea-
tures, thereby affecting the location similarity calcula-
tion. Therefore, in order to reduce the errors caused by
noise, this paper uses the method based on the location

Fig. 2 Laplace probability density
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sensitivity to allocate the privacy budget. The overall
flow chart of this scheme is shown in the Fig. 3.
As shown in the flow chart, we use the prefix tree to

represent the location trajectory and check-in times in the
location information after collecting the location data.
Then we divide sensitivity levels for locations by check-in
frequency. The corresponding privacy budget is assigned
according to different sensitivity levels. Then we add the
corresponding Laplace noise to the check-in statistics ac-
cording to the assigned privacy budget. Finally, we use the
noisy location data for location recommendation.

4.1 Prefix tree structure
The basic unit of location information is location point
information. It represents the location information of a
user at a certain time. Although the user’s location
points are discrete in geospatial, the discrete locations in
the space can be effectively connected according to the
order of time points. They are then combined into a se-
quence of continuous linear trajectories that describes
the location information of the user over a certain
period of time. We abstract the user’s all trajectories into
a prefix tree whose root node is root. Each node in the
prefix tree describes a location, and each branch repre-
sents a check-in trajectory. All of the user’s trajectories
start from root and merge the same subtracks. Then we
count the number of location check-in times and use
this to classify the sensitivity levels. Table 1 shows the
trajectory sequence owned by the user u.
We create a prefix tree from the user u’s trajectory

sequence and then merge the subtracks. After the estab-
lishment of the tree, we need to calculate the number of
check-in times for each tree node and assign a sensitivity
level to the node. Figure 4 shows the prefix tree struc-
ture for user u.
As shown in Fig. 4, the first parameter in parentheses

indicates the number of statistics for this location on the
trace. The second parameter indicates the sensitivity level
of this location on this trajectory. The number of visits to

the location point reflects the user’s level of interest in this
location. The more users visit this location, the more
interested the user is in this location. It is not difficult to
find from Fig. 4 that user u has the greatest interest in
location l3. And we can see that the prefix tree path struc-
ture keeps the chronological order of the user’s original
location from top to bottom. At the same time, it visually
and clearly reflects the user’s trajectory law and the fre-
quency characteristics of the passing location. In this
paper, the height of the prefix tree structure is determined
by the maximum length of the trajectory sequence. Since
the abstract root node does not belong to any real trajec-
tory sequence, the height of the prefix tree in Fig. 4 is 4.
The first layer of the structure indicates that the user’s
first passing location is l1 or l3.Moreover, the substructure
of the prefix tree also represents a collection of all trajec-
tory sequences with the same prefix subsequence.

4.2 Privacy budget allocation plan based on location
sensitivity
The traditional privacy budget allocation method uses a
uniform distribution strategy. However, this allocation
strategy can result in some of the privacy budget being
wasted. If the substructure of the tree is highly unbal-
anced, it can lead to a tilt in the distribution of privacy
budgets. And it does not take into account the check-in
features and sensitivity of the location. However, the rec-
ommendation system believes that users with the same
hobbies have certain similarities in behavior patterns. For
example, if some users have similar interests in a location,
then there is a certain similarity in the recorded location
trajectory sequence. In order to maintain this similarity,
this paper proposes a privacy budget allocation method
based on location sensitivity. We first redefine the location
sensitivity and location weight.

4.2.1 Definition 7 (location sensitivity)
The number of check-in times of user u at location l can
indicate the user’s degree of preference for this location.

Fig. 3 Scheme flow chart

Yin et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:266 Page 6 of 13



The more the user checks in, the higher the user prefers
to this location. The attacker can easily grasp the user’s
preference by counting the number of check-in times for
a certain location. Therefore, the user’s privacy is vulner-
able to leakage. In order to solve this problem, this paper
defines the sensitivity level for the user’s check-in loca-
tion. If the user has more check-in times at a certain lo-
cation, the sensitivity level of this location is higher.
We define the location sensitivity level as pr = r(r = 1,

2,…, n). The sensitivity level of location is determined by
the number of check-in times of user u at this location.
The more users check in at this location, the more sensi-
tive this location is. This paper sets a threshold θ for the
number of check-in times. When the number of check-
in times reaches the threshold, the sensitivity level of
this location will change. For example, we assume that
the sensitivity level is the lowest when the number of
check-in times is less than 50. Then we assume that the
threshold interval is 50, and when the number of check-
in times is between 50 and 100, the sensitivity level is
increased by one level. By analogy, when the number of

check-in times exceeds 200, the sensitivity level is the
highest. In this paper, we define the highest sensitivity
level when pr = 1. As the value of pr increases, the level
of location sensitivity decreases. The reasons for this def-
inition will be explained at the end of this section.

4.2.2 Definition 8 (location weight)
αl represents the number of times the user u checked in
at location l, and wl represents the sensitivity weight of
location l. In definition 7, we define that the location l
has the highest sensitivity when the value of prl is the
smallest. However, when we calculate the location score,
the weight of this location increases as the sensitivity of
this location increases. Therefore, we use Eq. (6) to rep-
resent the weight of location l.

wl ¼
1þ p n−prlð ÞPn

r¼1pr
ð6Þ

Since the abstract root node in the prefix tree is not
the actual check-in location, the root node will not con-
sume privacy budget. As shown in Fig. 4 above, we take
the trajectory which starts at l3 as an example. The track
contains two sub-tracks and its track height is four
layers. We first calculate the sum of the sensitivity levels
of all the nodes in the trajectory. Then we calculate the
sum of the sensitivity levels for each layer. Finally, we al-
locate the privacy budget to each node at each layer
based on the ratio of sensitivity weights. The specific
privacy budget allocation algorithm steps based on loca-
tion sensitivity is as follows:

Step 1: Input: privacy budget ε, prefix tree.
Step 2: Calculate the sum of the sensitivity levels of all
location nodes.
Step 3: Calculate the sum of the location node
sensitivity levels for each layer.
Step 4: Each layer is assigned a privacy budget by
calculating the weight of each layer’s location
sensitivity.
Step 5: The privacy budget is assigned to each location
node by calculating the weight of each location node at
this layer.
Step 6: Output: Location set after assigning privacy
budget.

In the above steps, the location node’s sensitivity
weight is calculated as shown in Eq. (7):

w0 ¼ prXn
r¼1

pr

ð7Þ

In definition 7, if the value of pr defined in this paper
is smaller, the sensitivity of the location is higher.

Table 1 The trajectory sequences of the user u

Sequence Track path

T1 l1-l2-l3

T2 l1-l2

T3 l3-l2-l1

T4 l1-l2-l3

T5 l3-l1-l4

T6 l3-l2

T7 l3-l1-l4

T8 l3-l1-l4-l5

T8 l1-l2

T10 l3-l2-l1

Fig. 4 The prefix tree structure for user u
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Therefore, the more sensitive the location l is, the smaller
the weight it will have. As a result, the privacy
budget allocated by location l is small. In differential priv-
acy protection, if the ε assigned to location l is smaller, the
added noise is greater, and the privacy protection is
higher. Figure 5 shows the results of the privacy
budget allocation with l3 as the root node of the subtree.
The same user may check in at the same location at

different times, so the same location will appear multiple
times in the prefix tree structure because of multiple
check-in times. And because of the different location of
the check-in location, the location of the node will be
different. Therefore, the allocation of privacy budgets
may cause the same location to be assigned to different
privacy budgets. We need to merge the results of differ-
ent allocations at the same location by location identi-
fiers. From Fig. 5, we can see that l1 appears in two
subtracks. Its assigned privacy budgets are 2ε/15 and ε/
15, respectively. Therefore, the final allocated private
budget for l1 is ε/3.

4.3 Location recommendation under differential privacy
protection
We get the privacy budget for each location of the user
through Sect. 4.2 above. Then we use the Laplace mech-
anism to add appropriate noise to the location’s check-in
statistics to change the location sensitivity. With changes
in location sensitivity, it is difficult for an attacker to dis-
cover the user’s true preference for the location.

Step 1: Input: location set A. It includes check-in
statistics and privacy budget for each location point.
Step 2: Add noise to its check-in statistics based on the
privacy budget of each location point.
Step 3: Calculate the sensitivity level of each location
point after adding noise.
Step 4: Output: location set B. It includes check-in
statistics and sensitivity levels after adding noise at each
location point.

After the set B is obtained, we calculate the interest
score Eij of the user i on the location j by the equations
in the definition 7 and construct the interest degree rat-
ing matrix ME of the user and the location. As shown in
Eq. (8):

ME ¼
E11 E12 … E1 j
E21 … … E2 j
⋮ ⋮ ⋮ ⋮

Ei1 … … Eij

2
664

3
775 ð8Þ

Then we use Eq. (5) to calculate the similarity of loca-
tions to construct a similarity matrix Ms, where sim(i, j)
represents the location similarity of users ui and uj. As
shown in Eq. (9):

ME ¼
sim 1; 1ð Þ sim 1; 2ð Þ … sim 1; jð Þ
sim 2; 1ð Þ … … sim 2; jð Þ

⋮ ⋮ ⋮ ⋮
sim i; 1ð Þ … … sim i; jð Þ

2
664

3
775 ð9Þ

Finally, for the target user (the recommended user),
the k users with the highest similarity are selected as
similar neighbors. And based on the location set of simi-
lar neighbors, the locations that the user may be inter-
ested in are selected for recommendation.

5 Results and discussion
5.1 Experimental setup
All experiments of this paper are conducted on a com-
puter with Intel i5-6500 3.20 GHz CPU and 16 GB
RAM, running 64-bit Windows 10 OS. The algorithm is
implemented in Python. This experiment uses the real
public location data set Gowalla. The data set contains
107,092 users and 1,280,970 different locations with a
total of 6,428,892 location check-in records [31]. In
order to obtain better experimental results, we select the
check-in records of the 20,000 users who are more ac-
tive. The specific data format is shown in Table 2. Each
piece of data consists of the user’s unique identifier,
time, and location information.

5.2 Evaluation index
In order to effectively evaluate the impact of differential
privacy on the final recommendation effect, the experiment

Fig. 5 Example of privacy budget allocation results
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selects the evaluation indicators commonly used in the rec-
ommendation system: precision, recall, F-Score, and MAE
(mean absolute error) [32]. The definitions of precision
and recall are respectively shown in Eqs. (10) and (11):

Precison ¼ The number of effective recommended sets
The number of recommended sets

ð10Þ

Recall ¼ The number of effective recommended sets
The number of test sets

ð11Þ

F-Score indicates the comprehensive recommendation
quality. Precision and recall are metrics that measure
recommendations from two different perspectives.
Therefore, F-Score is the result of weighting and reasses-
sing precision and recall. If the value of F-Score is larger,
it means that the recommended quality is higher. As
shown in Eq. (12):

F−Score ¼ 2� Precision� Recall
Precisionþ Recall

ð12Þ

MAE truly reflects the error between the test set and
the predicted data. If the value of MAE is smaller, it

means that the predicted performance is better. As
shown in Eq. (13):

MAE ¼
P

N j Score u; lð Þ− gScore u; lð Þ j
j N j ð13Þ

Score(u, l) represents the true score of the user u for

location l. gScoreðu; lÞ indicates the score of the user u for
location a after adding noise. ∣N∣ represents the num-
ber of test set samples.
In order to prove the effectiveness of this paper’s

scheme, we will compare it with uniform distribution
(UD) method and private neighbor collaborative filtering
(PNCF) method [33]. In this experiment, we set a total
of five levels of sensitivity. The initial threshold θ for this
paper is set to 30. When the number of check-in times
is less than 30, the location sensitivity level pr reaches a
minimum of 5. The threshold interval is then gradually
increased at intervals of 50. When the number of check-
in times is between 30 and 80, the location sensitivity
level pr is 4. By analogy, when the number of check-in
times exceeds 180, the location sensitivity level pr
reaches a maximum of 1. We use top-k (k = 10) to filter
out the set of candidate locations with the highest simi-
larity. The experiment uses fivefold cross-validation and
then takes the average of precision and recall. The im-
pacts of differential privacy protection on precision and
recall are respectively shown in Figs. 6 and 7.
According to the above experimental results, it can be

found whether it is precision or recall; the recommended
quality of the UD and PNCF and the method based on the
sensitivity level are lower than the recommended quality
before protection. It can be seen that differential privacy
protection has caused a certain loss of recommended
quality. The reason for this is that the differential privacy

Table 2 The samples of the user check-in data

User Time Latitude Longitude Location id

469 2010-01-16T06:08:14Z 36.02070054 − 115.0905554 154706

469 2010-03-14T23:56:47Z 36.09091582 − 115.179323 154743

469 2010-03-21T19:04:20Z 36.06759061 − 115.1785076 138981

469 2010-04-04T04:35:43Z 36.02070054 − 115.0905554 154706

469 2010-04-09T23:04:19Z 36.02070054 − 115.0905554 154706

Fig. 6 Impact of differential privacy protection on precision

Yin et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:266 Page 9 of 13



protection method needs to add Laplace noise to the ori-
ginal data set in order to provide privacy protection. This
process inevitably causes a certain degree of noise error,
which affects the final recommended quality. But in gen-
eral, the method proposed in this paper is better than UD
and PNCF. The F-Score comparison of the three methods
is shown in Fig. 8.
As can be seen from Fig. 8, the differential privacy

method based on location sensitivity level will result in a
certain loss of recommendation quality. And because the
user’s check-in data is sparse, it will have a certain im-
pact on the results of the experiment. However, it still
can be seen from the figure that the F-Score of the priv-
acy budget allocation method proposed in this paper is
better than UD and PNCF. This is because UD does not
consider the user’s preference for location and the differ-
ence in subtrack length. The user’s preference for loca-
tions can result in different levels of sensitivity at various

locations. And different track lengths can cause privacy
budgets to lean. However, the privacy budget allocation
method based on location sensitivity level proposed in
this paper maintains the user’s original trajectory law
and the frequency characteristics of the passing location.
It better maintains the similarity between locations and
reduces the similarity error caused by noise addition.
But PNCF achieves the privacy protection effect in the
recommendation process by adding Laplace noise based
on the similarity. This directly obscures the similarity
between users’ locations, so PNCF results in a greater
loss of recommended quality compared to the method
proposed in this paper.
Figure 9 shows the comparison of MAE using three

methods under different differential budgets. It can be
seen from the figure that under different differential
budgets, MAE based on sensitivity level is significantly
smaller than the other two methods. Since PNCF masks

Fig. 7 Impact of differential privacy protection on recall

Fig. 8 F-Score of three different methods
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the similarity between the locations, its MAE is relatively
large. And UD is to add noise evenly. Compared to the
method proposed in this paper, UD ignores the user’s
preference for the location and thus cannot maintain the
check-in frequency characteristics of the location. There-
fore, its MAE is also relatively higher than the method
proposed in this paper. It can be seen that the scheme of
this paper can effectively reduce the MAE and improve
the data availability.
Since the location sensitivity is determined by the num-

ber of check-in times in this paper, the range setting of
the thresholds will also have an impact on the final result.
Therefore, in the case where the location sensitivity level

is a total of 5 levels and the privacy budget is 0.5, this
paper compares the relationship between F-Score and
threshold range. We set the initial threshold to 30 and the
threshold interval between each sensitivity level to be 30.
The interval in the experiment is increased by 20 each
time. The result is shown in Fig. 10.
As shown, as the threshold interval increases, the

threshold range between each sensitivity level becomes
larger, and F-Score also increases slightly. This is be-
cause as the threshold range increases, the number of
locations with higher sensitivity levels decreases, and the
noise added to them is also relatively reduced. However,
a decrease in the number of locations with a higher

Fig. 9 MAE of three different methods

Fig. 10 Impact of threshold range on F-Score
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sensitivity level means a reduction in the privacy protec-
tion strength. We need to set the threshold range reason-
ably to balance the relationship between recommendation
quality and privacy protection. In summary, the differen-
tial privacy protection method proposed in this paper can
effectively protect the user’s location privacy in the loca-
tion recommendation process and can effectively reduce
the impact of differential privacy noise on the recommen-
dation effect.

6 Conclusions
In order to protect user’s location data security in SCADA
under location-based recommendation, this paper proposes
a protection method based on location sensitivity. This
method stores the trajectory sequence through a prefix tree
structure and uses the check-in statistics to divide the loca-
tion sensitivity level. Then according to the allocated
budget based on sensitivity level, appropriate differential
privacy noise is added to the user’s location check-in statis-
tics to achieve privacy protection effect. By analyzing the
experimental results on the real location data set, the pro-
posed method can effectively protect the user’s location
privacy and reduce the impact of differential privacy noise
on service quality. However, there are still some shortcom-
ings in the research of this paper. The privacy protection
method studied in this paper is based on collected static lo-
cation data. Since SCADA monitors and collects data in
real time, in order to protect the user’s real-time location
information, a dynamic privacy protection processing
method is required. Therefore, the research on location
privacy protection in dynamic environment is one of the
important contents of the next step.
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