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Abstract

In this paper, a novel resource management framework is introduced and exploited to ensure the efficient and
smooth operation of a wireless network, assisted by an unmanned aerial vehicle (UAV), operating under the
non-orthogonal multiple access (NOMA) scheme and consisting of both normal and malicious risk-aware users. User
devices are assumed capable of splitting their transmission power in two different communication alternatives,
established via either the UAV or the macro base station (MBS). The bandwidth offered by the UAV is accessible by
everyone, delivers potentially higher rate of return taking into account the enhanced communication channel gains
owing to its proximity to the serving users, but is prone to failure due to its potential over-exploitation. Accordingly,
the UAV’s bandwidth is considered as common pool of resources (CPR). In contrast, the MBS’s bandwidth is
considered as a safe resource offering to the users a more limited but guaranteed level of service, due to the fact that
though it has less available bandwidth it operates under a more controlled access scheme. The theory of the tragedy
of the commons is used to capture the probability of failure of the CPR, while the prospect theory is adopted to study
the normal and malicious users’ risk-aware behavior in the UAV-assisted network. A non-cooperative power control
game among the users is formulated and solved, in order to determine the users’ power investment to the dual
communication environment. The existence and uniqueness of a Pure Nash Equilibrium point is shown and a
distributed algorithm is introduced to converge to the PNE point. This overall resource allocation framework is
intelligently exploited as the vehicle to detect malicious user behavior and therefore protect the network from the
undesired effects of such behaviors. The performance and inherent attributes of the proposed user-centric risk-aware
operation framework, in terms of its capability to effectively utilize the available system and user resources (i.e.,
bandwidth and power), while succeeding in identifying potential abnormal or malicious user behaviors is assessed via
modeling and simulation, under different operation scenarios.

Keywords: Risk-awareness, Malicious users, Behavioral modeling, NOMA, Wireless network, Resource management,
Game theory, Intrusin detection

1 Introduction
Unmanned aerial vehicles (UAVs) have gained increasing
research and commercial popularity due to their salient
attributes, such as flexible and effortless deployment,
mobility, strong line-of-sight (LoS) connection links,
adaptive altitude, low-cost, adjustable usage, maneuver-
ability, and hovering ability [1, 2]. Emphasizing on the
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usage of UAVs for wireless communications over existing
network infrastructure, their main benefits, and advan-
tages include cost-effective compared to a fixed ground
base stations’ deployment, swift and easy deployment,
maneuverability to improve the signal reception, extended
coverage, enhanced connectivity, improved performance,
massive data transmission, etc. [3]. Many key industrial
vendors have invested on deploying UAVs to improve the
wireless connectivity, especially in disaster struck areas
after a natural disaster has occurred. Indicative examples
include Facebook’s Aquila UAV project [4] and Google’s
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Project Loon, where the latter has deployed UAVs in a dis-
aster response scenario in Puerto Rico [5]. This new reality
motivates and demands the examination of the major
challenging research problems of resource management
and security in UAV-assisted wireless networks due to the
critical missions that the UAVs support.

1.1 Related work andmotivation
Efficient resource management in UAV-assisted wireless
networks affects various network performance metrics,
such as connectivity, energy saving, throughput, cover-
age, and revenue. In [6], the authors formulate and solve
a non-convex joint optimization problem towards deter-
mining the users’ optimal transmission power, achievable
data rate, the optimal position of the UAV, and the opti-
mal bandwidth usage. In this research work, the UAV
acts as a relay, enabling the communication of the users
with the macro base station (MBS). In [7], a coalition
formation mechanism among the users based on rein-
forcement learning is proposed, and the optimal UAV’s
position, energy harvesting levels of the users from the
UAV, and the users’ optimal transmission power is deter-
mined following a game-theoretic approach. In [8], a non-
orthogonal multiple access (NOMA)-based UAV-assisted
wireless network is examined by formulating a central-
ized resource allocation problem towards maximizing the
overall users’ throughput.
The theory of minority games is used in [9] to create

clusters among the users based on their physical char-
acteristics (energy availability, communication distance
from the UAV) and determine their optimal transmis-
sion power to communicate with the UAV. In [10], the
authors exploit the UAV wireless system’s physical char-
acteristics, i.e., UAV’s maximum speed constraint and the
users’ energy availability, towards maximizing the mini-
mum uplink throughput of all the users during an exam-
ined period of the UAV’s flight. A non-cooperative power
control problem is formulated in [11] to determine the
users’ optimal transmission power to the UAV in a dis-
tributed manner. In this model, the users create coalitions
among each other by exploiting their socio-physical char-
acteristics and following the Chinese Restaurant Process.
Moreover, the authors in [12] introduce a risk-aware

resource management problem considering a static and
a mobile UAV serving the ground users, and accordingly
they determine the optimal power transmission of each
user via a game-theoretic approach, in order to communi-
cate with the two available receivers. This work is further
extended in [13] towards determining the users’ opti-
mal transmission power in order to communicate with
the macro base station or the flying UAV, following a
risk-aware analysis, where risk stems from the incom-
plete available information in the users’ decision-making
process. Both these works provide some insight about

the potential and benefit of introducing the concept of
user risk-based behavior in the operation of public safety
networks; however, they do not treat or consider the
impact of the existence of malicious users. The authors
in [14] focus on the application of structural inspection
services assisted by the UAVs and they propose an algo-
rithm to enable the unmanned aerial system to provide
uninterrupted services considering the feasible flying time
of the UAVs. In [15], the open challenges regarding the
resourcemanagement problem in the UAV-assisted public
safety systems are presented.Moreover, in [16] a zero-sum
network interdiction game is formulated between a ven-
dor, operating a drone delivery system, and a malicious
attacker in order to study the cyber-physical security chal-
lenges in drone delivery systems. This work has been fur-
ther extended in [17] to study the cyber-physical security
challenges of time-critical UAV applications.
Additional research efforts have been devoted to the

problem of UAV positioning to improve the resource
management process. In [18], the problem of optimal
placement of a single UAV in the presence of device-to-
device (D2D) underlaid links is examined. This problem
is extended in [19] to the multi-UAV optimal placement
to support the data aggregation in an Internet of Things
(IoT) setting. Also, the problem of UAV optimal posi-
tioning for system’s throughput optimization is studied in
[20], where a heuristic and an approximationmethod have
been proposed.
Although great research efforts have been devoted

to the resource management problems in UAV-assisted
wireless networks, the problem of detecting attacks in
UAV-based communication networks has not been well
addressed in the literature. UAVs are vulnerable to attacks,
as they are highly exposed technical systems, while gain-
ing illegitimate entry into the UAVs’ operation and net-
work can cause an enormous amount of losses regard-
ing data confidentiality, money, and reputation. Wireless
attacks are the most common form of UAVs’ hacking,
such as password theft, Wireshark, Global Positioning
System (GPS) spoofing, man-in-the-middle attacks, Tro-
jan horse viruses, and distributed denial of service (DDoS)
attacks [21]. A very well-known GPS spoofing exam-
ple (however, the legitimacy of this attack has not been
confirmed) occurred in 2011, when an Iranian engineer
reported that they have spoofed false GPS coordinates
to an US UAV, and they guided it to land safely on an
Iranian airfield [22]. Examples and events like that raise
concerns regarding the state of UAV-based communica-
tion security. Some indicative mechanisms in order to
detect and/or defend against the hacking of the UAVs
are: encryption and cryptography, anomaly detection,
defense techniques against DDoS attacks, and the devel-
opment of intrusion detection and intrusion ejection
systems [23].
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In [24], a risk assessment scheme for UAVs is developed
based on the UAVs’ provided services, equipped commu-
nication infrastructures and sensor systems, as well as
the existing UAVs’ fault handling mechanisms. In [25],
the authors discuss the security and privacy challenges
of the UAVs’ systems and networks. In [26], the Bayesian
game theory is adopted to design an intrusion detec-
tion system for monitoring the network and an intrusion
ejection system for excluding the malicious nodes that
are anticipated to instigate an attack is presented. In
[27], the authors proposed a differential game-theoretic
approach to determine the optimal strategies of multiple
UAVs evading the attack of an aerial jammer on the com-
munication channel. In [28], an intrusion detection and
response scheme is implemented focusing on the most
lethal cyber-attacks (i.e., false information dissemination,
GPS spoofing, jamming, and black and gray hole attacks)
and identifying the UAVs’ behavior as normal, abnormal,
suspect, or malicious. In [29], the authors introduce a pro-
totype UAV monitoring system that captures UAVs’ flight
data and it detects anomalies by performing real-time
behavioral modeling. A survey summarizing the state-of-
the-art intrusion detection systems which identify attacks
under networked UAV environments is presented in [30],
while in [31], a survey of the game-theoretic approaches
that study UAV-assisted wireless communication network
security is introduced.

1.2 Contributions
One important observation however is that the aforemen-
tioned related literature examines the resource manage-
ment and security aspects of the UAV-assisted wireless
networks, assuming that all the users have rational char-
acteristics and aim at maximizing their perceived utility,
i.e., benefit from communicating with the UAV, regard-
less if they are normal or malicious users. Nevertheless,
in real-life networking scenarios, the users demonstrate
a risk-aware behavior, which is driven by their personal
characteristics, the actions and behavior of the other
users, and the conditions in the UAV-assisted network.
Our paper aims at exactly filling this gap by exploring

user behavioral insights and incorporating behavioral fac-
tors into modeling normal and malicious users’ decisions.
The latter consideration enables to determine the users’
optimal transmission power allocation in the two avail-
able communication alternatives, that is UAV-based and
MBS-based communication, towards improving its utility,
while capitalizing on this to devise a sophisticated intru-
sion detection and ejection process. Towards capturing
normal and malicious users’ behavior in a more prag-
matic manner, prospect theory (PT) is adopted [32, 33].
Prospect theory, introduced by Kahneman and Tversky
[34], has emerged as a dominant behavioral model in for-
mulating decision making under probabilistic uncertainty.

Prospect theory succeeds in integrating user subjectiv-
ity in decisions, illustrated by an S-shaped utility func-
tion capturing user preferences tending to overweight the
probability of losses and underweight the probability of
gains.
The users are assumed capable of communicating

simultaneously with the UAV and the macro base sta-
tion, by appropriately investing their uplink transmission
power per each communication link. The above frame-
work is facilitated by the multi mode/access capable
advanced devices which have already become available
in the market in recent years [35, 36] which can oppor-
tunistically access and utilize the bandwidth resources
even from distinct cells or providers. Such a multi-
communication interface environment immensely mod-
ifies the flexibility enjoyed by the users who are not
restricted in selecting only one receiver but can propor-
tionally split their invested transmission power tomultiple
ones. The UAV is allocated a greater portion of band-
width compared to the MBS, as it is typically offered to
all users (e.g., by a smart city possibly on a free access
mode), resides closer to them (compared to the MBS)
and thus can serve them more efficiently. Consequently,
the users may achieve higher data rates with lower trans-
mission power. Therefore, the available bandwidth in the
UAV-based communication is considered as a common
pool of resources (CPR), since it is non-excludable (i.e., it is
accessible by all users), rivalrous, and subtractable. How-
ever, the potential over-exploitation of the CPR would
conclude to the failure of the UAV’s bandwidth, as due
to the increased interference at the receiver, i.e., UAV,
none of the users will be eventually satisfied. This obser-
vation is motivated by the well-known concept of the
tragedy of the commons [37]. In contrast, theMBS usually
resides far away from the majority of the users and higher
transmission power levels are required by the users to
achieve their QoS satisfaction. Thus, theMBS-based com-
munication becomes less attractive as it results to lower
energy-efficiency transmissions. Though usually a smaller
portion of bandwidth is available by the MBS to support
the users’ communication, it offers enhanced processing
capabilities while at the same time it operates under a
controlled user access scheme, and therefore in our sys-
tem model the MBS’s available bandwidth is treated as a
safe resource alternative, due to the fact that each user
can obtain a guaranteed level of QoS given its personal
characteristics (e.g., channel gain, transmission power).
In such a setting, a malicious user can take advantage of

the vulnerability of the UAV-based communication to fail-
ure, due to the over-exploitation of the UAV’s bandwidth,
and thus perform a distributed denial of service (DDoS)
type of attack. During the attack, the malicious users
demonstrate a risk-seeking behavior and they over-invest
their available transmission power to the UAV-based



Vamvakas et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:286 Page 4 of 20

communication, driving the UAV’s bandwidth to failure,
thus the service of the normal users is denied. We pro-
pose an intrusion detection process that considers users’
behavioral characteristics and transmission power levels
to identify the malicious users. Additionally, by intelli-
gently exploiting the successive interference cancellation
(SIC) technique at the UAV-receiver that characterizes the
NOMA technology, we propose a novel intrusion ejection
methodology.
The main contributions of this research work, as sum-

marized as follows:
(A) We introduce a holistic approach based on the

prospect theory and the theory of the tragedy of
the commons, to capture and model normal and
malicious users’ risk-aware behavioral characteristics
in representative prospect-theoretic utility functions.
Specifically, novel and generic enough prospect-
theoretic utility functions are introduced, which do
not simply represent the trade off between the num-
ber of transmitted bits to the corresponding con-
sumed power, but on the contrary reflect normal
and malicious users’ risk-aware choices and priori-
ties in the NOMA-based UAV-assisted wireless net-
work. The bandwidth’s fragility in the UAV-based
communication is examined by examining the band-
width’s exploitation by the normal users, and its over-
exploitation by the malicious users (Section 2).

(B) Based on the above modeling, a user-centric power
control problem is formulated as a maximization
problem of each normal andmalicious user’s expected
prospect-theoretic utility, and it is treated as a
non-cooperative game among the users [38]. The
goal of each user (either normal or malicious) is
to accordingly determine its optimal transmission
power investment in the two available communi-
cation alternatives, i.e., UAV-based and MBS-based
communication. The existence and uniqueness of
a pure Nash equilibrium (PNE) is shown and the
convergence of the users’ power strategies to the
unique PNE is proven (Section 3). A distributed low-
complexity algorithm that converges to the unique
PNE is also devised (Section 4).

(C) Capitalizing on the proposed prospect-theoretic
resource management framework, a risk-aware and
transmission-based intrusion detection process is
introduced. Subsequently, a novel intrusion ejec-
tion methodology is proposed based on the salient
characteristics of the non-orthogonal multiple access
(NOMA) technology and the successive interference
cancellation (SIC) technique (Section 5).

(D) A series of detailed simulation experiments are per-
formed to evaluate the performance and inher-
ent attributed of the proposed user-centric risk-
aware operation framework, in terms of its capability

to effectively utilize the available system and user
resources (i.e., bandwidth and power), while succeed-
ing in identifying potential abnormal or malicious
user behaviors. The evaluation metrics refer to the
users’ transmission power investment, achievable
data rate, fragility of the UAV’s available bandwidth
due to malicious attacks, and impact of users’ risk-
aware and malicious behavior on the system’s opera-
tion (Section 6).

Finally, Section 7 concludes the paper.

2 UAV-assisted wireless network: operation
overview andmodel

2.1 Systemmodel and the tragedy of the commons
We study the uplink communication of a UAV-assisted
wireless network consisting of |NN | normal users and
|NM| malicious users, where their corresponding sets are
NN = {1, . . . , i, . . . , |NN |} and NM = {1, . . . , i, . . . , |NM|},
respectively, andN = NN ∪NM. Each user i, i ∈ N exploits
both the MBS and UAV connectivity, while exhibiting
risk-aware behavior. The UAV-based communication is
characterized by greater portion of available bandwidth
compared to the MBS-based communication. Due to the
UAV’s proximity to the users and respectively improved
channel gain, the users tend to communicate over the
UAV in order to achieve higher data rates, while trans-
mitting at low power levels, thus, extending their battery
life. However, the UAV has an upper limit capacity in
terms of available bandwidth. Thus, if an increased num-
ber of users transmit over the UAV, its corresponding
bandwidth becomes over-exploited, and consequently the
UAV presents an increased probability of failure in serving
the users, primarily due to the increased levels of inter-
ference at the reception of the users’ signals. Based on
this observation, the bandwidth that is available in the
UAV-based communication is considered as a CPR, and
its over-exploitation and probability of failure is captured
by the theory of the tragedy of the commons [37]. On the
other hand, the bandwidth that is available at the MBS-
based communication is considered as a safe resource,
and the user may achieve a more limited but guaranteed
level of QoS given its personal characteristics, i.e., channel
conditions, transmission power.
It should be also noted here that in this paper we assume

that the UAV is provided with sufficient power supply to
support the UAV-based communication network within
the considered time window of operation. Given that
in practice however, the UAV has limited power sup-
ply, its battery should be recharged in order to enable
the continuous operation of the UAV-based communica-
tion network. Nowadays, there have been deployed sev-
eral types of UAVs that are characterized by long flight
endurance, such as the Boeing Insitu ScanEagle with flight
endurance over 20 h [39] and Aerovel Flexrotor with
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flight endurance of more than 30 h [40]. Also, several
techniques to recharge the UAVs on the fly have been
already proposed by complementing the on-board battery
source of the UAV using advanced thin-film photovoltaic
cells made of copper-indium-gallium di-selenide semi-
conductor materials [41]. Additionally, optimal flight path
planning techniques have been proposed where the UAV
determines a priori the optimal flight path taking into
account the recharging stations located on or near the
flight path [42].
Considering the described dual communication envi-

ronment, each user i, has a maximum transmission power
PMax
i , which it invests to both the UAV-based and MBS-

based communication to satisfy its goals (i.e., QoS prereq-
uisites if a normal user, or its negative impact if amalicious
user). Given the complexity of the dual UAV/MBS com-
munication environment, a centralized resource man-
agement approach would introduce increased signaling
overhead and would require a centralized entity to obtain
and maintain a global view and control of the com-
munication system. Thus, a distributed resource man-
agement approach is followed in this paper enabling
both the normal and malicious users to determine in
an autonomous manner their transmission power invest-
ment to the UAV-based communication PUAVi and to the
MBS-based communication PMBS

i ,∀i ∈ N = NN ∪ NM.
The percentage of normal and malicious user’s i power
investment to its transmission to the UAV is assumed to
be xi, xi ∈[ 0, 1], thus, PUAVi = xiPMax

i , and accordingly,
PMBS
i = (1 − xi)PMax

i .
Given the considered communication environment, the

malicious users perform a distributed denial of service
(DDoS) attack by simply investing high transmission
power levels to their UAV-based communication, thus,
over-exploiting the UAV’s available bandwidth and intro-
ducing high levels of interference to the reception of the
normal users’ signals at the UAV. The outcome of the

malicious users’ attack is the failure of the UAV’s avail-
able bandwidth to serve the normal users. A conceptual
illustration of the structure of a dual communication envi-
ronment with both an MBS and a UAV, as well as normal
and malicious users, is shown in Fig. 1.

2.2 Utility functions of risk-aware users based on
prospect theory

In the examined UAV-assisted wireless network, the
normal and malicious users exhibit risk-aware behavior
regarding their decisions of investing their transmission
power to the UAV-based and MBS-based communica-
tion. The users’ risk-aware behavior in terms of their
decision-making stems from the fact that the individu-
als assess uncertain outcomes under a loss averse attitude
(instead of neutral) in real-life communication environ-
ments. Thus, the users’ utility (i.e., perceived satisfaction)
in the event of a loss (i.e., UAV’s bandwidth failure) is
served as of greater magnitude compared to the gains
of equal extent given a reference point. This reference
point is considered as the ground truth of user per-
ceived utility scale, and it is not necessarily common for
all the users. Furthermore, the users tend to overweight
events, e.g., UAV’s bandwidth failure, with small proba-
bilities, and underweight events with higher probabilities,
thus, instructing the formulation of the utility function
following the probability weighting effect. These princi-
ples of describing the risk-aware behavior of the users
in the UAV-assisted wireless network are provided by
the prospect theory [34]. Accordingly, the users’ cogni-
tive risk-aware behavior is transformed in representative
prospect-theoretic utility functions as follows:

Vi(yi) =
{

(yi − y0,i)ai , if yi > y0,i
−κi(y0,i − yi)δi , otherwise

(1)

where yi(xi, xT ) is the user’s i, i ∈ N = NN ∪ NM actual
utility, xT = ∑|N |

i=1 xi denotes the total power investment

Fig. 1 UAV-assisted wireless network consisting of risk-aware users
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of all users to the UAV-based communication, |N | =
|NN | + |NM| is the total number of users in the exam-
ined network including both the normal and themalicious
users, and y0,i the reference point. The reference point
is defined as the corresponding user’s achieved energy-
efficiency point, if the user was exploiting only the safe
resource, i.e., if it was transmitting its data only to the
MBS by solely investing all of its transmission power to
the MBS-based communication [43]. Thus, the reference
point is given as follows:

y0,i �
WMBS/NMBS

PMBS
i

log2
(
1 + γMBS

i

)
,∀i ∈ N (2)

where WMBS is the available bandwidth at the MBS-
based communication, NMBS is the number of normal
and malicious users transmitting to the MBS, PMBS

i =
PMax
i presents the user’s transmission power (if the user

was solely investing its available power to the MBS-based
communication), and γMBS

i denotes the signal to inter-
ference plus noise ratio (SINR), as measured at the MBS
receiver, given as follows:

γMBS
i = hMBS

i PMBS
i∑

j>i h
MBS/UAV
j PMBS/UAV

j + σ 2
(3)

where hMBS
i is the user’s communication channel gain

to the MBS, and the interference sensed by user i dur-
ing its transmission considering the NOMA technology
is

∑
j>i h

MBS/UAV
j PMBS/UAV

j , and σ 2 is the variance of the
noise power. The communication system of the exam-
ined UAV-assisted wireless network is assumed to operate
under the NOMA technology that utilizes the successive
interference cancellation (SIC) technique at the receiver,
which decodes first the signals from the users with better
channel gains. Assuming, without loss of generality, that
the channel gains pertaining to user i are sorted, then the
SIC technique first decodes the signals received from the
best channel. Thus, the users with better channel gains
experience interference from users with worse channel
conditions, while the transmissions of lower channel gain
users receive less interference by removing the already
decoded signals [44].
Given the definition of the reference point in Eq. 2

and the users’ prospect-theoretic utility function as intro-
duced in Eq. 1, it is concluded that the users’ perceived
satisfaction (Eq. 1) is determined with respect to the ref-
erence point (Eq. 2), which acts as the ground truth of the
user’s actual utility yi(xi, xT ). The users’ risk-aware behav-
ior is further captured by the personalized parameters
αi, δi, κi, i ∈ N = NN ∪ NM. Specifically, the risk-seeking
behavior of a normal or malicious user in losses and its
risk averse behavior in gains is reflected by small values
of the parameter αi,αi ∈ (0, 1]. Furthermore, small val-
ues of parameter δi, δi ∈ (0, 1] imply higher decrease of

user’s prospect-theoretic utility for small values of yi and
close to the reference point y0,i. Without loss of gener-
ality, we assume αi = δi. Additionally, the loss aversion
parameter κi, κi ∈[ 0,+∞) reflects the impact of losses
compared to gains on user’s prospect-theoretic utility. If
κi > 1, the user i weighs the losses more than the gains,
while if 0 ≤ κi ≤ 1, the user weighs more or equal the
gains than the losses, thus presenting an aggressive gain
seeking behavior.
At this point, we would like to provide some insight

about the physical meaning of the prospect-theoretic util-
ity, as defined in Eq. 1. The fundamental principle of
prospect theory is that a user will receive greater dis-
satisfaction from the loss of yi(xi, xT ) amount of actual
utility compared to the pleasure that it will enjoy by gain-
ing the same amount. This concept represents the users’
loss aversion behavior in realistic dynamic interdependent
environments. The user’s loss aversion behavior is mathe-
matically expressed via the asymmetry in the slope of the
prospect-theoretic utility function around the reference
point, as presented in Fig. 2. It should be also highlighted
that prospect theory has already been applied in diverse
scientific and research fields involving decision-making
under uncertainty, e.g., finance, insurance, labor markets,
and crowd sourcing. Furthermore, prospect theory has
been applied in several cases of the broader network-
ing and communication era, such as smart grid networks
[45], communications systems [46], and transportation
networks, [47, 48]. In a nutshell, prospect theory has been
widely established as a powerful tool to model humans’
behavior and decision-making under risk and uncertainty.
Based on Eqs. 1 and 2, it is noted that the user’s

prospect-theoretic utility is expressed in terms of achieved
energy-efficiency. Taken into account that the normal
and malicious users exploit the dual communication

Fig. 2 Prospect-theoretic utility
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environment consisting of the MBS and UAV receivers,
their perceived actual utility yi(xi, xT ) is expressed as the
summation of the perceived satisfaction by the MBS-
based communication, i.e., first term of Eq. 4, and the
corresponding satisfaction by the UAV-based communi-
cation, i.e., second term of Eq. 4. Therefore, the user’s
actual utility is defined as follows:

yi(xi, xT ) = y0,i(1 − xi) + EixiR(xT ) (4)

where Ei is the achieved energy-efficiency by the UAV-
based communication and is defined as follows:

Ei = WUAV/NUAV

PUAVi
log2

(
1 + γUAV

i

)
(5)

whereWUAV is the UAV’s bandwidth,NUAV is the number
of normal and malicious users transmitting to the UAV,
and γUAV

i is the SINR of user i as measured at the UAV
receiver and is given as follows.

γUAV
i = hUAVi PUAVi

σ 2 + ∑
j>i h

MBS/UAV
j PMBS/UAV

k

(6)

where hUAVi is the channel gain of user i communicating
with the UAV. The function R(xT ) in Eq. 4 represents the
rate of return of the UAV-based communication to the
normal and malicious users, which is a decreasing con-
cave function with respect to xT = ∑|N |

i=1 xi, as the more
the users exploit the UAV’s available bandwidth, the less
the UAV is able to meet the users’ QoS prerequisites. For
demonstration purposes, in this work the rate of return
R(xT ) of the CPR is formulated as follows.

R(xT ) = 2 − exT−1 (7)

As discussed above, the UAV’s bandwidth may fail to
address all the normal and malicious users’ service
requests. Thus, the UAV’s bandwidth, acting as a CPR,
has a probability of failureP(xT ) (CPR’s fragility) to serve
the users who transmit to the UAV, which is increasing
with respect to users’ aggregate power investment xT . In
the following, we consider P(xT ) = x2T while xT is con-
sidered normalized. At this point, it is highlighted that
the malicious users have the intention to over-invest their
transmission power to the UAV-based communication via
performing a DDoS attack in order to drive the UAV’s
bandwidth to failure, thus, none of the normal users would
enjoy the UAV’s services.
If the CPR does not fail due to the over-exploitation

and the transmission power over-investment by the users,
then each user perceives an actual utility given by Eq. 4.
In this case, the actual perceived utility is greater than
the reference point y0,i, i.e., yi > y0,i. Therefore, via sub-
tracting the reference point (Eq. 2) from the actual utility
(Eq. 4), and shaping the result according to the first branch
of Eq. 1, we have

Vi(xi) = xaii
[
EiR(xT ) − y0,i

]ai (8)

For the simplicity of the notation, we normalize the
rate of return function, so that y0,i = 1 and denote
Ri(xT ) � (EiR(xT ) − 1)ai , where Ri(xT ) is concave,
decreasing, twice continuously differentiable, and posi-
tive. Thus, Vi(xi) = xaii Ri(xT ). In the opposite case, where
the CPR becomes over-exploited and fails to serve the nor-
mal and themalicious users’ service requests, then no user
receives any satisfaction from its transmission to the UAV.
Therefore, the rate of return from the UAV is extremely
small, and the second term of Eq. 4 is 0, while the user per-
ceives satisfaction only by its transmission to theMBS, i.e.,
first term of Eq. 4. In this case, the actual utility is yi ≤ y0,i,
thus, by subtracting the actual utility from the reference
point and reshaping the result based on the second branch
of Eq. 1, we have Vi(xi) = −κixαi

i .
Following the above detailed argumentation, we can

rewrite the normal and malicious user’s prospect-
theoretic utility function as follows.

Vi(xi) =
{
xiaiRi(xT ) , if yi > y0,i
−κixaii , otherwise (9)

The UAV’s bandwidth (CPR) probability of failure is
P(xT ), thus, the probability that the CPR survives and
serves the users’ service requests is (1 − P(xT )). As a
result, considering the UAV’s bandwidth probability of
failure, Eq. 9 can be written equivalently as follows.

Vi(xi) =
{
xiaiRi(xT ), with prob. (1 − P(xT ))

−κixaii , with prob. P(xT )
(10)

For convenience, all key involved notations are summa-
rized in Table 1.

3 Fragile CPR games
3.1 Problem formulation
Given the above modeling, the normal users empow-
ered by prospect theory are able to sense the increasing
probability of UAV’s bandwidth collapse in the incident
of a DDoS attack. Towards safeguarding their transmis-
sion in uncertain conditions prevailing within the UAV
network, normal users aim to maximize their expected
prospect-theoretic utilities, defined below:

E(Vi) =

⎧⎪⎪⎨
⎪⎪⎩

xiaiRi(xT ) (1 − P(xT )) − κixaii P(xT )

for normal users, i ∈ NN
xiβiRi(xT ) (1 − P(xT )) − λixβi

i P(xT )

for malicious users, i ∈ NM

(11)

where ai, κi and βi, λi are the personalized risk-aware
parameters following the principles of prospect the-
ory, as defined in Section 2.2, for the normal and
malicious users. For notational convenience, we define
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Table 1 List of parameters

Symbol Description

� Network radius [m]

N, |N| Set of all users, cardinality of the set

xi User specific investment to UAV (%)

NUAV Users transmitting via the UAV

NMBS Users transmitting via the MBS

NN , |NN| Set of normal users, cardinality of the set

NM , |NM| Set of malicious users, cardinality of the set

WMBS MBS bandwidth [Hz]

WUAV UAV bandwidth [Hz]

γi Signal to Interference plus noise ratio

PMBS
i Transmission power via MBS [W]

PUAVi Transmission power via UAV [W]

xT Aggregate users investment to UAV-based communication

hi Channel gain

R(xT ) Rate of return function

Ri(xT ) PT related rate of return

P(xT ) UAV’s bandwidth probability of failure

ai ,βi Sensitivity parameters

κi , λi Risk aversion parameters

Fi(xT ) Effective rate of return

J (xT ) User specific optimal non zero investment

Ri User data rate [bps]

Bi(x−i) User best response

Xi User power investment strategy set

Fi(xT ) = Ri(xT ) (1 − P(xT )) − κiP(xT ) and F ′
i (xT ) =

Ri(xT ) (1 − P(xT ))−λiP(xT ) as each normal and mali-
cious user’s effective rate of return, respectively. Thus, the
expected prospect-theoretic utility can be re-written as
follows:

E(Vi) =
{
xiaiFi(xT ) for normal users, i ∈ NN
xiβiF ′

i (xT ) for malicious users, i ∈ NM

(12)

Fragile common pool resource (CPR) games have
emerged as a convenient class of games capturing invest-
ment in both safe and fragile resources, with the latter
prone to collapse if over-exploited. Users have an initial
endowment enabling them to invest by splitting it to each
resource (i.e., power investment to allocate their trans-
mission power to the MBS and the UAV). A fundamental
characteristic of fragile CPR games is incorporating the
probabilistic resource failure of the CPR (i.e., UAV’s band-
width) if the aggregate user investment surpassed system’s
capacity to address demand.
A fragile CPR game is assumed to satisfy the following

properties:

• The probability of failure P(xT ) is a convex,
strictly increasing, and twice differentiable function
of the normalized total investment xT =[ 0, 1) and
P(1) = 1.

• The rate of return Ri(xT ) in Eq. 7 is monotonic

decreasing, i.e., ∂Ri(xT )
∂xT < 0, concave

(
∂2Ri(xT )

∂x2T
< 0

)
,

twice continuously differentiable, and positive ∀xT ∈
[ 0, 1].

• The strategy set of each user i is defined as Xi =
[ 0, 1] ,∀i ∈ N .

Stemming from the ability of fragile CPR games to
reflect how rivalrous and non excludable resources can be
allocated among competing users, in this work we denote
G =[N , {Xi}i∈N , {Vi}i∈N ] as the corresponding security
aware power investment for efficient network spectrum
sharing (SAPIENSS) game in UAV-assisted communica-
tion networks under DDoS attack, where as mentioned
before N denotes the index set of both normal and mali-
cious users.
Each of the normal users aims at the maximization of

its expected prospect-theoretic utility jointly targeting for
the optimal allocation of its power investment across the
MBS and the UAV, while at the same time adjusting its
band preference based on the probability of failure of the
UAV’s available bandwidth. Thus, the corresponding opti-
mization problem is formulated as the maximization of
each normal user’s expected prospect-theoretic utility, as
follows:

maxE(Vi) = max
{
xaii Fi(xT )

}
, ∀i ∈ NN

s.t. xi ∈[ 0, 1] (13)

On the other hand, malicious users follow a different
prospect-theoretic behavior through the sensitivity and
risk aversion parameters, with their expected prospect-
theoretic utility maximization model as follows:

maxE(Vi) = max
{
xβi
i F ′

i (xT )
}
, ∀i ∈ NM

s.t. xi ∈[ 0, 1]
(14)

The solution of the SAPIENSS game G determines a pure
Nash equilibrium (PNE), where both the normal and the
malicious users have determined their power investment
to the MBS-based and UAV-based communication, while
each user type aims at achieving its own personal goals,
i.e., satisfy their QoS prerequisites for the normal users
and deny the service of the normal users by the mali-
cious users who over-invest their transmission power to
the UAV-based communication.
For the examined game G , PNE is a stable power invest-

ment vector x∗ = {x∗
i } where no user can witness an

improved utility from its transmission, i.e., Vi
(
xi∗, x∗−i

) ≥
Vi(xi, x∗−i), ∀xi ∈ Xi. On the other hand, the inability of
the game to converge to a PNE would suggest an unstable
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state for the network which would be associated to the col-
lapse of the UAV’s bandwidth with no normal user being
able to transmit properly via the UAV network, since only
the users who invested in communicating with the MBS
will be able to transmit, however at the expense of very
low returns (i.e., low data rates and inferior channel gains)
in comparison to the UAV-based communication.
Let Bi be the best response correspondence of each

user i, i ∈ N where Bi(x−i) = argmaxE(Vi(xi, x−i)),
Bi : X −i ⇒ Xi, where X −i represents the aggre-
gate investment from all users (both normal andmalicious
users), excluding user i. User’s selected strategy for its joint
transmission via both the MBS and the UAV is reflected
through its best response, where a value Bi(x−i) = 0
would imply that the user did not invest in communicat-
ing with the UAV and opted to transmit only with theMBS
preferring to minimize any risks by utilizing only the safe
resource. On the other hand, the case where a user opts
to communicate only through the UAV-based communi-
cation without considering the fragility of the resource,
mirrors a malicious user’s desire to claim more aggres-
sively the bandwidth from the UAV due to its favorable
channel conditions compared to the MBS and thus per-
form a DDoS attack. This increased power investment
of the malicious users to the UAV-based communication
will lead to the UAV’s bandwidth collapse with certainty
due to excessive aggregate demand compared to its overall
capacity. Thus, the users that exhibit abnormally aggres-
sive behavior towards claiming data rate from the UAV
can reveal malicious user actions aiming to disrupt UAV
network’s operation, an incident which can be of high
criticality, especially in events where public safety is jeop-
ardized, e.g., public safety networks (PSNs).

3.2 Solution
In this section, we examine the existence and uniqueness
of a PNE point for the SAPIENSS game G . Without loss
of generality and for simplicity of the proof, we assume
ai = βi, κi = λi, and Fi = F ′

i .

Theorem 1 The effective rate of return Fi function is
decreasing, concave and positive in the modified strategy
space X ′

i , ∀ai < 0.5.

Proof We examine the behavior of Fi, via calculating its
first order derivative:

∂Fi(xT )

∂xi
= ∂Ri(xT )

∂xi
(1 − x2T ) − 2xTRi(xT ) − 2κixT

(15)

Since the rate of return Ri(xT ) is positive, i.e., Ri(xT ) >

0 and decreasing, i.e., ∂Ri(xT )
∂xT < 0, xT > 0 and κi ≥ 0, then

all factors of Eq. 15 are negative, and hence the effective
rate of return Fi is decreasing, i.e., ∂Fi(xT )

∂xi < 0.
Similarly, for the second order derivative:

∂2Fi(xT )

∂x2i
= ∂2Ri(xT )

∂x2i
(1 − x2T ) + θ(xT ) − 2κi (16)

where θ(xT ) = −4xT ∂Ri(xT )
∂xi − 2Ri(xT ). Due to the fact

that Ri(xT ) is concave (i.e., ∂2Ri(xT )

∂x2T
< 0) and aggregate

investment xT ≤ 1 since it is normalized, and by proving
that θ(xT ) < 0 in Xi, ∀ai < 0.5, each factor of Eq. 16
is negative. Subsequently, the effective rate of return Fi is
also concave, thus ∂2Fi(xT )

∂x2i
< 0.

Towards examining the sign of Fi, we apply Bolzano’s
Theorem within Xi =[ 0, 1] which is an important
specialization of Intermediate Value Theorem [49]. We
observe that Fi(0) > 0 and Fi(1) < 0, hence there
exists a value ζ ∈ Xi, such that Fi(ζ ) = 0. As a result,
Fi is positive in the reduced strategy space X ′

i =[ 0, ζ ],
X ′

i ⊂ Xi.

Theorem 2 (Existence of PNE) For the Fragile CPR
SAPIENSS game G , there exists a value ξ ∈ X ′

i which is a
critical point for E(Vi).

Proof Towards proving the existence of a PNE, we inves-
tigate the first order condition for E(Vi), as follows.

∂E(Vi)

∂xi
= xiai−1
(xi) = 0 (17)

where 
(xi) =
(
xi ∂Fi(xT )

∂xi + aiFi(xT )
)
. Similarly to

Theorem 1, we apply Bolzano’s Theorem for ∂E(Vi)
∂xi in the

modified space X ′
i . For xi = 0, 
(0) > 0, since Fi >

0,∈ X ′
i . Assuming a very small positive value ε → 0,

ε > 0, the same holds for 
(ε) > 0 and subsequently
∂E(Vi)

∂xi |xi=ε > 0. Next, for a relatively larger value ζ within
X ′

i ,
∂E(Vi)

∂xi |xi=ζ < 0, since 
(ζ) < 0 due to the fact that
Fi(ζ ) = 0 from Theorem 1 and that ∂Fi(xT )

∂xi < 0, since
Fi is decreasing, then ∂E(Vi)

∂xi |xi=ζ < 0. As a result, accord-
ing to Bolzano’s Theorem, due to the change in the sign
of ∂E(Vi)

∂xi , there exists at least one ξ , ξ ∈ X ′
i such that

∂E(Vi)
∂xi |xi=ξ = 0 and the first order condition is satisfied,

indicating that ξ is a critical point of E(Vi).

Theorem 3 (Uniqueness of PNE) The critical point ξ ∈
X ′

i is a unique PNE for the SAPIENSS game G .

Proof In order to prove that the above determined crit-
ical point is a unique PNE for SAPIENSS game G , we
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examine the concavity of E(Vi). The second order deriva-
tive of E(Vi) is given as follows:

∂2E(Vi)

∂x2i
= ai(ai − 1)xiai−2Fi(xT )

+ 2aixiai−1 ∂Fi(xT )

∂xi
+ xiai

∂2Fi(xT )

∂x2i

(18)

From Eq. 18, since we assume that ai < 0.5, xi > 0 ∈ X ′
i ,

and Fi is positive, decreasing and concave in X ′
i , then all

terms of ∂2E(Vi)
∂x2i

are negative, and E(Vi) is concave, so that
the critical point ξ ∈ X ′

i is a unique global maximum and
a unique PNE for SAPIENSS game G is identified.

3.3 Convergence
In this section, we prove the convergence of the normal
and malicious users’ decisions to the above unique PNE.
According to [50], concerning the class of fragile CPR
games, convergence is established sufficiently via proving
that users’ best response dynamicsBi(x−i)monotonically
decrease with users’ aggregate investment xT to the CPR.

Theorem 4 The Best Response (BR) strategies of SAPI-
ENSS game G are monotonically decreasing in xT .

Proof Let J (xT ) = −ai Fi(xT )
∂Fi(xT )/∂xi

be defined as the
optimal non zero investment of each player i, i ∈ N , where
J (Bi(x−i) + x−i) = Bi(x−i), when Bi(x−i) > 0. It
is easily shown that ∂J (xT )

∂xi < 0, thus, J is monoton-
ically decreasing in xi. Let now x1 = Bi(x−1), x2 =
Bi(x−2), with x−1, x−2 ∈ X ′−i. If Bi is increasing, then
for x2 > x1, then Bi(x−2) > Bi(x−1). However, since
J is decreasing, for x2 > x1, I (Bi(x−2) + x−2) =
Bi(x−2) < Bi(x−1) = J (Bi(x−1) + x−1), which is con-
tradicting. Subsequently, we conclude that best response
Bi is decreasing in xT , and the users’ strategies converge
to the game’s G unique PNE.

4 Distributed algorithm
In this section, we present the distributed and low com-
plexity algorithm for the practical implementation of the
SAPIENSS game. The algorithm is executed in an iterative
manner where the normal and malicious users config-
ure their topological and behavioral characteristics and
in each step they are allowed to adjust their transmis-
sion power levels between the MBS and the UAV towards
maximizing their expected prospect-theoretic utility. The
algorithm is able to identify intrusive behavior within
the network by tracking abnormally high transmission
power and interference with regards to the UAV-based

communication (see Section 5 and numerical results in
Section 6.3.2).
SAPIENSS algorithm ultimately operates under two

potential outcomes: The first is the optimal power invest-
ment allocation of all users between the MBS and the
UAV, reflecting a successful transmission from the nor-
mal users in the UAV network (also considering the case
that defensive actions against attackers were applied). The
above suggests that game’s PNE was determined implying
a stable outcome for the resource allocation process where
no user wishes to deviate with regards to its perceived
QoS satisfaction from its transmission. On the contrary,
the algorithm may alternatively conclude to the failure
of communication between the UAV and the normal
users due to excessive investment from the users in the
UAV-based communication, potentially due to malicious
behavior of attackers. The system is able to track harm-
ful user behavior during the transmission (which can also
be confirmed by the prospect-theoretic modeling of the
users’ behavior); however, if no actions are taken or if the
overall demand is significantly higher compared to the
available bandwidth from the UAV, then SAPIENSS algo-
rithm announces the cease of UAV’s operations. In this
case, only the users who partially transmitted via the MBS
will be able to exchange information with in the overall
considered communication environment.

4.1 Operation details
Users initiate their transmission with a randomly selected
power investment value xi within the physical limitations
of the network, with the algorithm being able to converge
to the PNE or to conclude the collapse of UAV’s band-
width due to a performed attack. Given the principles of
the NOMA access technique, SIC methodology is applied
based on users channel gains in the UAV network and the
overall interference is calculated.
Based on the initial power investment, the normal

and malicious users split their transmission among the
MBS and the UAV and calculate their expected prospect-
theoretic utilities accordingly. UAV is considered to be
active during this stage, with the above process being iter-
ated until system converges to stable transmission power
allocation between the MBS and the UAV. In the event
that malicious behavior is identified via the calculation
of overall interference in the communication environ-
ment, SAPIENSS algorithm detects this status, and noti-
fies accordingly the system administrator in case that
counter defensive actions should be taken (see Section 5).
If no specific actions are taken and the system fails to
address the issue of excessive demand compared to the
UAVs’ bandwidth availability, the algorithm changes the
operation status of the UAV to inactive and concludes its
execution. The detailed implementation steps of SAPI-
ENSS algorithm are summarized below.



Vamvakas et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:286 Page 11 of 20

Algorithm 1 SAPIENSS: security aware power
investemnt for efficient network spectrum sharing in
UAV-based communication networks
Require:

Number of users|NN |; constants κi, ai, λi, βi; users
position coordinates;WUAV ,WMBS, Boundinterference

1: ite ← 1; UAV (ite)
active ← 1; convergence(ite) ← 0

2: Apply SIC for NOMA band
3: Assign initial random x(ite)

i
4: while convergence(ite)=0 and UAV (ite)

active=1 do
5: Calculate PUAV

i ,PMBS
i ;

6: UAV and MBS broadcast the overall interference
and each user calculates its own sensed interference

7: if interference> Boundinterference then
8: Apply defense mechanisms (Go To Step 1) or

take no action*
9: end if

10: Calculate utility E(Vi)(ite) according to Eq. 12
11: for all xi ∈[ 0, 1] do
12: x∗

i =argmaxxiE(Vi)
13: if E(Vi) > E(Vi)(ite) then
14: x(ite+1)

i ← x∗
i and E(Vi)(ite+1) ← E(Vi)

15: end if
16: end for

17: Calculate normalized xT =
∑|N |

1 x(ite+1)
i

|N |
18: if

∑
RUAV
i > WUAV then

19: UAV (ite+1)
active ← 0

20: end if
21: if x(ite+1)

i − x(ite)
i < ε then

22: convergence(ite+1) ← 1
23: end if
24: ite ← ite + 1
25: end while
26: return

User investment xi and UAVactive if UAV still active
* more details in Section 5 and 6.3.2

SAPIENSS algorithm functions under a decentralized
approach where the main decision steps affecting the
transmission power (i.e., MBS or UAV) as well as the
resource allocation process lie at the users’ level. This
decentralized execution of actions and the reduced data
exchange between the users and the system administra-
tor (e.g., only the overall interference is broadcasted by the
MBS and UAV), contribute to the fast convergence of the
algorithm to the PNE of the game or the identification of
the UAV collapse within only a few iterations.
Moreover, the user-centric design allows users to dif-

ferentiate their transmission priorities according to their
QoS requirements or their behavioral modeling. Hence,

the algorithm can also quickly track users who are
attacking the UAV network without spending additional
resources via calculating the intracell interference. The
simplified arithmetic calculations and the absence of
maintaining historical data minimize the computational
and storage requirements as well as data overhead, reduc-
ing the complexity of the involved calculations. The algo-
rithm was run in an Intel(R) Core(TM) i7-7500U CPU at
2.70 GHz 2.90 GHz laptop with 8.00 GB RAM, with its
average run time per user being approximately 0.3 msec,
a figure close to realistic timeslot duration (e.g., 0.5 ms),
allowing the implementation of SAPIENSS algorithm in
practical application scenarios. The aforementioned con-
vergence of the SAPIENSS algorithm is guaranteed by
the Best Response dynamics approach that is followed
to determine the PNE [51]. Moreover, it should be clari-
fied that the proposed framework and the corresponding
SAPIENSS algorithm are fully distributed and each user
makes an autonomous decision of its power investment
to the UAV-based and the MBS-based communication.
Thus, the SAPIENSS algorithm scales with respect to the
number of users within the examined network, as there
is no centralized decision-making entity which imposes
additional signaling overhead and communication delay
in the system.

5 Intrusion detection and ejection
Exploiting the SAPIENSS distributed algorithm presented
is Section 4, in this section, we introduce a sophisticated
joint intrusion detection and ejection process. As men-
tioned before, the UAV-receiver is able to measure the
overall sensed interference by all the users, i.e., normal
and malicious users. If the measured interference exceeds
a predefined acceptable level of interference to success-
fully perform the decoding of the received signals, then
the SAPIENSS algorithm raises an alarm flag that a failure
is observed, potentially due to the presence of malicious
behavior or extremely selfishly acting users, where both
cases conclude to the failure of the UAV to serve the users.
This mechanism consists a simple intrusion detection
process that autonomously operates at the UAV’s receiver
without requesting any human intervention.
After detecting a potential malicious behavior, an effi-

cient mechanism should exist to protect the UAV network
from concluding to a probability of UAV’s bandwidth fail-
ure close to one, thus, the UAV being unable to serve the
normal users’ QoS requests. Therefore, an intrusion ejec-
tion methodology is proposed to isolate the suspicious
malicious user and enable the smooth operation of the
UAV network. The proposed approach is based on the
principles and characteristics of NOMA technology and
SIC technique. It is highlighted that the SIC technique
decodes first the signals of the users with better channel
conditions, thus the users with worse channel conditions
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are able to cancel the interference stemming from the
transmissions of the users with better channel condi-
tions. Therefore, it is evident that if the malicious users
have the worse channel conditions in the wireless net-
work, then they can cause the maximum damage. Based
on this observation and exploiting the capabilities of the
SIC technique, we argue that as the UAV decodes the
received signals, it can identify the signal with the greater
contribution to the overall sensed interference. Thus, for
the specific transmitter (i.e., potential malicious user), the
UAV-receiver sets a virtual malicious user’s channel gain,
which is close to infinity. Following this strategy, the mali-
cious user’s signal will be decoded first at the receiver,
thus, based on the SIC technique, the contribution to the
overall interference provided by the potential malicious
user’s signal is cancelled. Therefore, the transmissions and
communication of the rest of the normal users in the
examined UAV network are protected. Detailed numer-
ical results showing the operation and efficiency of the
proposed methodology are presented in Section 6.3.2.

6 Numerical results and discussion
6.1 Simulation scenario
In this section, we provide a series of numerical results
to evaluate the operational features and the performance
of the proposed SAPIENSS algorithm. For demonstration
purposes, we consider a UAV-assisted wireless network
supporting |N | = 20 continuously backlogged users, con-
sisting of a standardMBS and a mobile UAV which hovers
close to the users, both operating under the NOMA trans-
mission technology. The MBS-based wireless network
provide coverage over an area of radius � = 6 km, while
the UAV covers an area of approximately 2.5 kmwithin the
network. We assume that the users are gathered around
a specific area of the network with their ID denoting
increasing distance from both the MBS and the UAV. The
UAV positions itself closer to the users towards provid-
ing more favorable channel conditions, in comparison to
theMBSwhich is impacted by inferior channel gains espe-
cially for the distant users. Additionally, the total available
bandwidth is 4 MHz, 80% of which is offered by the UAV
and the rest provided by the MBS. Given the technical
and physical limitations of the system, we set the maxi-
mum feasible transmission power PMax

i = 0.2 W, while,
unless otherwise explicitly stated, the user is assumed
to request services up to 256 kbps for the basic evalua-
tion scenario. For demonstration and comparison mainly
purposes, indicative numerical results for additional user
service rates up to 512 kbps are presented as well.
Focusing further on the security perspective of our pro-

posed approach, we consider operational scenarios where
we assume that a number of users exhibit malicious
behavior with their main objective to disrupt the func-
tion of the UAV communication part. In particular, we

investigate how malicious or intrusive user behavior can
be identified, as well as how the system can cope with such
attacks by establishing and utilizing effective defensive
mechanisms. In the examined scenarios, the malicious
users abuse the UAV bandwidth by transmitting at abnor-
mally high transmission power levels which deteriorate
the quality of transmission for all other normal users espe-
cially via increasing the overall interference, while also by
claiming a higher portion of the available UAV’s band-
width, implicitly restricting or limiting other users from
having access to this part of the bandwidth.
In the next sections, we present different stages of the

operation of the UAV-assisted wireless network starting
with a baseline scenario where the system operates with-
out any disruptions from intruders, and subsequently we
examine how the system adjusts to cases of user attacks,
how their behavior can be identified both from the practi-
cal and the theoretical perspective of the model as well as
how the UAV network can sustain such incidents protect-
ing the rest of the normal users with regards to ensuring
reliable transmission conditions.

6.2 Normal operation
As an initial reference scenario, we consider a snapshot of
the system where the UAV is positioned above a homo-
geneous population of users with respect to their trans-
mission preferences and risk perceptions (κi = 40 and
ai = 0.05) with absence of malicious users. As instructed
by the system model, the users are given the option to
transmit via both the MBS and the UAV by determining
their power investment portion xi to the UAV, while at
the same time are aware of the rising risk of the UAV’s
bandwidth collapse in case of excessive cumulative by all
users investment. The significant portion of the band-
width reserved by the UAV acts as an additional motive to
users to communicate with the UAV, in comparison to the
lower data rates which can be delivered if users select to
transmit with the MBS, despite the fact that in the latter
option they will receive a guaranteed QoS.
Specifically, Fig. 3 depicts user power investment xi to

the UAV bandwidth per user ID (increasing ID values cor-
respond to increasing distance from the UAV and MBS
position). We observe that due to the relatively high value
of the loss aversion parameter κi the users are conserva-
tive enough towards transmitting via the UAVmagnifying
the probability of the potential risk of the collapse of
its bandwidth. As a result, the maximum investment in
the UAV bandwidth is below 50%, while the users also
select to invest a significant portion of their transmis-
sion power to the safe communication with the MBS.
Moreover, we observe that users closer to the MBS and
the UAV select a very low investment to the UAV since
their favorable channel conditions allow them to obtain
satisfactory data rates without devoting a high portion
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Fig. 3 User power investment xi vs user ID: case of absence of malicious users

of their transmission power to the collapse prone UAV-
based communication. The same applies for the very
distant users (i.e., 19 and 20) who sense almost no inter-
ference since it has been significantly cancelled due to the
application of the NOMA SIC technique. On the other
hand, middle distance users are simultaneously affected
by worsening channel conditions and rising interference
levels, and subsequently they are attracted to invest more
transmission power to the UAV communication, since it
is expected to provide higher return - than the respective
return of the the use of the safe resource of theMBS-based
communication—for the same power investment.
The above analysis is also confirmed by the results in

Fig. 4, illustrating the achievable data rates of each user
from both its communication with the UAV and the MBS.
As explained before, the close or the distant users manage

to obtain high data rates from the UAV (blue bars) without
excessive investment, whilst middle distance users achieve
lower data rates since their transmission conditions (i.e.,
channel gain and interference) hinder meeting their QoS
targets. On the other hand, all users obtain almost the
same data rate (small variations are only observed) from
their transmission via the MBS (red curve). The lower
magnitude of MBS’s bandwidth and the higher distance of
the MBS from the users (compared to the UAV distance
from the users) results in the delivery of significantly lower
data rates, which however are considered as a safe and
guaranteed return, due to the controlled access scheme
of the operation of the MBS, and the strict bandwidth
monitoring policies.
Similar behaviors are noted and same observations are

drawn, as demonstrated in the following Figs. 5 and 6,
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Fig. 4 User data rate vs user ID: case of absence of malicious users
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Fig. 5 User power investment xi vs user ID (bandwidth 8 MHz, target data rate 512 kbps)

where the corresponding user power investment xi to the
UAV bandwidth per user ID, and the achievable data rates
of each user from both its communication with the UAV
and the MBS parameters are depicted respectively, for the
case that the users are requesting a service of user data
rate of 512 kbps, while the total available bandwidth is
assumed 8 MHz. This outcome is quite well aligned with
the holistic nature of our framework, in the sense that it
can adapt its operation to the system-specific parameters
(i.e., total available spectrum), as well as users’ requested
services. In addition, if we still maintain the limited avail-
able bandwidth of 4 MHz as in the original scenario, while
on the other hand, we target at the user higher data rates
of 512 kbps, then the corresponding results are presented
in Figs. 7 and 8, respectively. In this case, the users with
favorable transmission conditions (the ones closest to the

UAV due to good channel gains or far away due to low
interference) consume the majority of the available spec-
trum, since their achievable data rate is double than the
original case presented in the paper (where 256 kbps was
the targeted rate). As a result, the investment parameter
follows a different trend than in the original case. In par-
ticular, users close to the UAV invest low power which
suffices to meet their target, while the users farthest from
the UAV, communicate with satisfactory data rates but
have to invest to the full in the CPR, since the users
closer to the UAV have already consumed a the largest
fraction of the spectrum. The intermediate users are on
the other hand so heavily impacted by the highest data
rates of the close or most distant users, that practically
do not manage to transmit via the CPR due to the high
competition stemming from the increased data rates.
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Fig. 6 User data rate vs user ID (bandwidth 8 MHz, target data rate 512 kbps)
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Fig. 7 User power investment xi vs user ID (bandwidth 4 MHz, target data rate 512 kbps)

6.3 Malicious user behavior
Next, we discuss the case that the users with ID 11, 12,
and 13 are presenting malicious behavior (i.e., |NM| = 3),
with their objective being the disruption of the UAV-based
wireless communication. The latter is achieved through
transmitting with abnormally high transmission power
levels to the UAV causing interference and claiming sig-
nificant bandwidth resources otherwise available to the
rest of the normal users (i.e., |NN | = 17), whose behav-
ior is considered unmodified compared to the previous
scenario. Specifically, users with ID 11–13 are assumed
to eliminate their risk aversion parameter (i.e., λi = 0)
and at the same time present a threefold increase of their
sensitivity parameter towards the CPR (i.e., βi = 0.15). As
shown in Fig. 9, the power investment of users with ID 11–
13 rises to the upper value (i.e., xi = 1), implying that they

solely try to communicate through the UAV. Under this
scenario, we assume the case that the UAV’s bandwidth
sustains the attack both in terms of the higher interference
levels and bandwidth distribution among the users. In
Fig. 10, it is clearly observed that users with ID 11–13 due
to their considerably risk seeking behavior managed to
significantly increase their data rates in the CPR (i.e., the
UAV-based communication), while they stopped trans-
mitting via the MBS. The negative impact to the rest of
the normal users has been mostly visible for users with
ID 6–10 since they are the ones sensing the additional
interference from the malicious users while also they have
to manage their low quality channel gains. On the other
hand, normal users still investing in the safe resource
(i.e., the MBS-based communication) experienced a small
increase in their attainable data rates through the MBS,
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Fig. 8 User data rate vs user ID (bandwidth 4 MHz, target data rate 512 kbps)
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Fig. 9 User power investment xi vs user ID: case of presence of malicious users 11–13

since the malicious users with ID 11–13 stopped trans-
mitting via the MBS, thus they reduced the competition
in this part of the network. The observed increase in
the normal users’ achievable data rate through the MBS
is approximately 17.6%, as obtained by comparing the
results presented in Figs. 4 and 10.
Subsequently, we consider another scenario with an

intensified and of wider scale attack, performed by mul-
tiple malicious users. In particular, users with ID 10-18
are considered malicious (i.e., |NM| = 9), where all of
them completely invest in the UAV-based communica-
tion, hence driving the commonly shared UAV’s band-
width to collapse due to excessive demand and rising
interference levels. This has immediate impact on the
achieved energy-efficiency of the system, representing the
transmitted data bits per Joule of consumed energy, mea-
sured in [bits/Joule]. In Fig. 11, we compare the energy-
efficiency of each user for increasing distance from the

UAV and the MBS. In the case where the system oper-
ates normally without any DDoS attack (green curve),
we notice the trend explained before, with close and dis-
tant (from the receiver) users to have significantly higher
energy-efficiency levels due to their favorable transmis-
sion in comparison to the middle distant users. On the
other hand, in the incident of the intensive DDoS attack
against the UAV bandwidth (red curve), the energy-
efficiency is significantly reduced due to the failure of the
UAV’s bandwidth to serve the users requests. In this case,
the malicious users do not manage to transmit at all, while
the rest of normal users manage to obtain some returns
only from their communication with the MBS.

6.3.1 Detection ofmalicious users
The detection of the malicious users’ behavior towards
protecting the proper operation of the UAV-based com-
munication can be achieved both through the SAPIENSS
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Fig. 10 User data rate vs user ID: case of presence of malicious users 11–13
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Fig. 11 Energy-efficiency vs user ID: case of intensive attack due to presence of malicious users 10–18 and collapse of UAV bandwidth

algorithm, as well as from the theoretical system model
based on the principles of prospect theory. In particular,
Fig. 12 compares each user invested transmission power
to the UAV-based communication, when the system oper-
ates normally (green curve) with the case where the users
with ID 11–13 present malicious behavior. It is shown that
in the case that the UAV bandwidth is under attack, the
malicious users transmit to the UAV choice with maxi-
mum power (i.e., PMax

i = 0.2 W), which acts as a clear
indication of their malicious behavior. The above result is
well aligned with the overall behavioral modeling adopted
in this work, allowing heterogeneous user preferences
and risk perceptions. By studying the values of loss aver-
sion and sensitivity parameters, malicious user behavior
is reflected by their risk seeking attitude with regards to
aggressively claiming bandwidth from the UAV. In Fig. 13,
the behavioral deviation of normal and malicious users
is easily noticed via the elimination of risk aversion from
the latter, (κi > 0, λi = 0) and the increase in sensitiv-
ity (ai = 0.05, βi = 0.15), implying an aggressive stance
of attackers ignoring the impact of UAV’s bandwidth fail-
ure, which could result in an interruption of the UAV
communication. On the other hand, normal users are

implicitly concerned for the potentiality of system collapse
so they tend to overweight the probability of failure of
the UAV’s bandwidth and subsequently adopt a more con-
servative behavior when transmitting via the UAV-based
communication.

6.3.2 Defensemechanisms
In the following, we discuss an indicative counter mea-
sure when suspicious user activity is identified, in order to
demonstrate the potential use of the proposed approach
as an enhanced joint intrusion detection and ejection
mechanism, towards ensuring the proper network oper-
ation and highest possible bandwidth availability to its
users. As argued in the previous subsection, one of the
basic operational characteristics of the malicious users
in this work, which can be easily recognized is the con-
siderably higher transmission power towards the UAV-
based communication. The above feature can be used as
an instant autonomous detection and intrusion ejection
method. Towards this direction, in Fig. 14, we show the
outcome and impact of the application of the proposed
intrusion detection and ejection methodology described
in Section 5. In particular, in this case, the SAPIENSS
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Fig. 12 Detecting malicious user behavior: Transmission power vs user ID
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Fig. 13 Detecting malicious user behavior: Prospect-theoretic parameters vs user ID

algorithm identifies the potentially malicious users dur-
ing its implementation steps, in case their transmission
power is abnormally high compared to their closer neigh-
bors, and further cancels the impact of their transmission
on the rest of the users. In more detail, in the red curve,
the original attack scenario is shown where the users with
11–13 are considered as malicious, since all the rest of
the users transmit to the UAV with less than the half
of their transmission power. Accordingly, the SAPIENSS
algorithm in its next iteration ignores the transmission of
those users and following the principles of the NOMASIC
technique, as described in Section 5, manages to mitigate
their caused interference. This is shown in the green curve
of Fig. 14, where we observe that the UAV has cancelled
the interference caused by them to the rest of the normal
users, thus the malicious users appear to the rest of the
users like they do not transmit at all. Interestingly enough,
this impacts positively the rest of the users of the network,
since users with ID 7–10 reduce their investment to the
UAV-based communication since their sensed interfer-
ence has decreased according to the NOMA technology,
while the users with ID 14–20 increase their investment
to the UAV due to the reduced competition after the
transmission cancellation of the users with ID 11–13.

7 Conclusions
In this paper, a novel framework towards ensuring the
efficient and smooth operation of a UAV-assisted wireless

network consisting of both normal and malicious risk-
aware users is proposed. User devices are assumed capa-
ble of splitting their transmission power in two differ-
ent communication alternatives—that is UAV-based and
MBS-based communication links. The UAV’s bandwidth
is considered as common pool of resources (CPR), acces-
sible by everyone, offering potentially high rate of return,
but being susceptible to failure due to its potential over-
exploitation. In contrast, the MBS’s bandwidth is consid-
ered as a safe resource offering to the users a more limited
but guaranteed level of service, due to the fact that though
it has less available total bandwidth, it operates under
a more controlled access and monitoring scheme. The
theory of the tragedy of the commons is used to capture
the probability of failure of the CPR, while the prospect
theory is adopted to study the normal andmalicious users’
risk-aware behavior in the UAV-assisted network.
Representative prospect-theoretic utility functions have

been introduced to reflect the users’ power investment
to the dual communication environment and a corre-
sponding non-cooperative power control game among the
users is formulated and solved. The existence and unique-
ness of a pure Nash equilibrium point is shown and a
distributed algorithm is introduced to converge to the
PNE point. Based on the normal and malicious users’
risk-aware behavioral characteristics, their corresponding
transmission power investments as an outcome of the
power control game, and the operational principles of the
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NOMA technology and the SIC technique, a novel intru-
sion detection and ejection methodology is introduced.
The performance and inherent attributes of the proposed
user-centric risk-aware operation framework, in terms of
its capability to effectively utilize the available system and
user resources (i.e., bandwidth and power), while succeed-
ing in identifying potential abnormal or malicious user
behaviors is assessed, under several different operation
scenarios.
It should be noted that the problem addressed in this

paper considered only one MBS and one UAV. Part of
our current work is to extend this framework by consid-
ering the use of multiple UAVs, while at the same time
taking into account the problem of UAV optimal plac-
ing as a mitigation action of the impact of malicious
users. Also, though in our work we have assumed that
the UAV is provided with sufficient power supply to sup-
port the UAV-based communication network within the
considered time window of operation, the consideration
of the UAV’s battery life availability and flight duration
within the overall proposed users’ risk-aware resource
management in UAV-assisted communication networks,
is indeed a very interesting and challenging topic, and part
of our current and future research. Finally, our current
and future work contains the extension of the introduced
framework and users’ realistic behavior modeling, in sev-
eral other emerging wireless communication and comput-
ing systems within the 5G and Internet of Things (IoT)
era, including mobile edge computing (MEC), where the
users decide their optimal data offloading to the MEC
server and/or processing the data locally.

8 Method
This paper studies the problem of orchestrating and
securing the dual communication in cognitive risk-aware
UAV-assisted wireless networks, where users can select
to communicate both with an MBS and UAV, with the
first considered as a safe resource and the latter sus-
ceptible to failure if its bandwidth is over-exploited. The
unrestricted access nature of the UAV’s bandwidth by the
users, may attract malicious users to infiltrate it and tar-
get to hinder its operation by transmitting at very high
power levels. The proposed approach was formulated
under the principles of prospect theory and the theory
of the tragedy of the commons, allowing to model divert-
ing risk preferences, while studying how system perfor-
mance is impacted by individual users’ behaviors and the
counter active mechanisms, i.e., intrusion detection and
ejection, towards protecting its uninterrupted operation.
A series of numerical experiments investigated different
operational scenarios confirming the importance of safe-
guarding the network against interference and bandwidth
over-exploitation and/or abuse. The simulation code was
written in MATLAB.
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