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Abstract

Using packet classification algorithms in network equipment increases packet processing speed in Internet of
Things (IoT). In the hardware implementation of these algorithms, ternary content-addressable memories (TCAMs)
are often preferred to other implementations. As a common approach, TCAMs are used for the parallel search to
match packet header information with the rules of the classifier. In two-stage architectures of hardware-based
packet classifiers, first the decision tree is created, and then the rules are distributed among its leaves. In the second
step, depending on the corresponding leaves, the second part of the rules, which includes the range of source and
destination ports is stored in different blocks of TCAM. Due to inappropriate storage of port range fields, the
existing architectures face the problem of wasting memory and growing power consumption. This paper proposes
an efficient algorithm to encode the port range. This algorithm consists of three general steps including layering,
bit allocation, and encoding. A greedy algorithm in the first step places the ranges with higher weights in higher
layers. Next, an auction-based algorithm allocates several bits to each layer depending on the number of the
ranges in that layer. Finally, in each layer, depending on the weight order of the ranges, the bits are given values
for the intended range. The evaluation results show that unlike previous methods of storing range fields, the
proposed method not only increases the speed of the classification but also uses the capacity of TCAM in the
second stage more efficiently.

Keywords: Packet classification, Ternary content-addressable memory (TCAM), Range field, Greedy layering, Bit
auctioning, Layer encoding, Efficiency

1 Introduction
A wide range of packet processing devices in IoT including
routers [1], anomaly detection systems [2], and monitoring
systems [3], treat analysis systems [4], characterizing traffics
in smart cities [5], and quality of service provisioning in
software-defined networking [5, 6] are considerably acceler-
ated by packet classification paradigm.
The novel IoT hardware systems necessarily depend on

an underlying processing engines that can process a large
volume of data in an efficient, effective, and flexible way at
network speed. Such a system should, in particular, be

able to adapt to changes in the environment and keep a
reasonable quality of service when; for example, the traffic
for a specific network rout increases intensely due to a
substantial request from corresponding users [5, 7].
Recently, with the advent of software-defined net-

works (SDN) such effective network systems has be-
come vital [8]. The idea behind SDN is to transfer the
control of networks from localized fixed-behavior
controllers distributed over a set of switches to a cen-
tralized and programmable controller that can respond
to any change in network flows in a timely manner.
The key process behind such an accelerated controls of
SDN is the packet classification which classifies the
flows of internet packets into a set of predefined flows
by the network speed [9].
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In packet classification, the type of each packet is ana-
lyzed by the implemented classification algorithm through
software-based or hardware-based methods depending on
the information contained in the various fields which were
added to the packet header in the source machine. In this
analysis, the information in the specified fields of the
headers is matched with rules with different priorities, and
ultimately, the best matching rule is selected. Finally, a
type or flow label corresponding to the selected rule is
assigned to the packet.
Among the packet classification algorithms, tree algo-

rithms have received considerable attention in the field
of network processors due to their high power and flexi-
bility for implementing prioritized rules. These algo-
rithms can be implemented using both hardware and
software. Hardware implementations are widely referred
to as TCAM-based methods, and software implementa-
tions are called SRAM-based methods [10]. Other
hardware-based schemes are intended for implementing
on the various platforms, such as application specific in-
tegrated circuits (ASICs) and field programmable gate
arrays (FPGAs) [11–13]. The superiority of TCAM-
based methods lies in their high search speed, and their
disadvantage is their inefficient memory storage as well
as low flexibility in applying the rules to the packets.
In TCAM-based methods, performing a parallel search on

all the inputs requires high power consumption [14–27].
Therefore, several methods have been proposed based on
the categorization of the TCAM inputs to reduce power
consumption [10, 14–16, 18, 20–23, 27, 28]. Through
categorization, we can activate or deactivate certain inputs
during the search and improve the efficiency of
TCAM [19, 21, 27, 29, 30]. To reduce power con-
sumption, manufacturers of TCAMs have proposed a
technique for partial activation of TCAM and search-
ing the activated regions. In this process, the internal
structure of TCAM chip is divided into fixed blocks;
therefore, a variable number of TCAM blocks can be
activated at any time. A review of the literature shows
that the potential of the idea of reducing power con-
sumption by means of categorization has not been
fully utilized. One of the problems of these methods
is the storage of the fields of the rules region. For ex-
ample, in the rules of a classifier, the source, and des-
tination ports are expressed as a range of numbers.
Ranges cannot be stored directly in TCAM; instead,
rows in TCAM should be determined corresponding
to the expressed range, and the other fields should be cop-
ied after storing each number from the acceptable port
range into the corresponding field of that TCAM [17, 31].
This inefficient method of storing range fields will increase
memory consumption and, consequently, increase power
consumption during the search process. To solve this
problem, range encoding schemes are used to encode each

range and map it onto a set of TCAM inputs. This paper
proposes an algorithm for storing range fields in TCAM
with the aim of reducing the wasting of memory as
well as power consumption in the architecture of
hardware-based packet classifiers which make use of
tree algorithms [18, 32–34]. This innovation will re-
sult in optimal use of TCAM memory. Since other
tree methods consume a large amount of memory for
storing range fields in TCAM [34], the proposed
method makes possible more efficient memory usage
and power consumption by reducing the number of
rows required for the storage of ports range.
The structure of the paper is organized as follows. In

what follows, we shall have a look at previous works in
the field of range encoding. In the third section, the pro-
posed method for range encoding is described in detail
through some examples. Section 4 addresses the imple-
mentation and evaluation of the proposed method, as
well as the analysis of the results. Section 5 contains
some concluding remarks and suggests possible direc-
tions for future research.

2 Related work
As noted in the introduction, a major challenge in
using TCAM is power consumption. Therefore, much
research has been conducted on reducing power con-
sumption in TCAMs.
In [36], Francis et al. suggested a special method for

building a routing table based on TCAM. They proposed
two designs for low-power TCAM-based forwarding en-
gines, i.e., bit selection architecture and the Trie-based
architecture. Underlying both architectures is the div-
ision of the routing table into smaller parts so that every
search would cover only one part of the table. Kai et al.
[30] used this idea to control power consumption.
Srinivasan et al. [37] used an old technique to solve the

problem of range encoding. In this technique, the range
fields are defined by a set of prefixes, each of which can be
stored into a row of TCAM. In general, for w bits, there will
be at least (2w-2) prefix modes. Here is a simple proof.
Consider the range [1, 2w-2]. The smallest set to cover this
range is [4 ..., 0w-11, 10*, 110*, ..., 1w-10]. Taylor showed in
[10, 34] that a rule consisting of two groups of 16-bit range
fields could have at least (2 × 16-2)2 inputs. In practice,
however, an examination of the actual databases described
by Taylor in [10] indicates that some rules require TCAM
inputs with factors higher than seven. The previous works
related to the improvement of range field storage can be
divided into two main groups: (1) database-independent
range encoding algorithm and (2) database-dependent
range encoding algorithm. A database-dependent range
encoding algorithm is dependent upon how the ranges are
distributed in their database and, therefore, depends on the
type of the database related to the range field.
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In contrast, the encoding of specific ranges using a
database-independent algorithm does not depend on
and vary with, the type of the database. Using the tech-
nique of fence encoding, Lakshminarayanan et al. [37]
developed an algorithm called database-independent
range pre-encoding (DIRPE). In this algorithm, ranges
are expressed as sets of ternary values in the form of
1XX1X0 instead of being transformed into prefix sets.
Also, unused bits in TCAM can be used to encode tern-
ary strings. By unused bits, we mean the bits that remain
unused when storing the rule fields due to the fixed
number of bits in each row of TCAM. The performance
of DIRPE is a function of the number of unused bits
available to TCAM. A decrease in the number of avail-
able unused bits will reduce the efficiency of DIRPE
encoding.
In comparison, the SRGE algorithm (short range gray

encoding) which was proposed in [20] is an efficient,
database-independent encoding scheme. This scheme
does not require extra bits. Bremler-Barr and Hendler
[20, 21] proposed SRGE as an independent range en-
coding algorithm based on their observations. They
found that encoding the ranges that are available in
queues in real databases would be much more efficient
when using the Gray code. This design is the first algo-
rithm that has a general effect on narrowing the ranges
and, more particularly, works well in smaller ranges
without the use of extra bits.
The first algorithm for the dependent encoding of

ranges was proposed by Liu [35]. The basic idea of
this method is to use extra bits for bit-mapping. In
this work, one bit is specified for every selected range
r. Additionally, there are values in the range fields
which find exact matches. If the number of these

values is taken as m, then the number of required
extra bits is logmþ1

2 . Figure 1 illustrates the details of
this technique by displaying how this algorithm works
on six range fields from the range fields of six sample
rules. Given this, if the range r receives i bits, the ith extra
bits for all TCAM inputs that contain the range i will take
a value of 1; the rest of the extra bits in this input will take
null value. In searching a key, if it is within the range r,
then the ith bit will be set to 1; otherwise, it will be set to
0. This basic scheme eliminates extra inputs of the ranges.
However, this solution cannot be very useful because the
redundancy of the range is eliminated by the number of
extra bits. Lakshminarayanan discovered that the number
of ranges in today’s classifications of databases is approxi-
mately 300 [37]. The number will predictably increase in
the future. The growth rate of the number of ranges is in-
creasing due to the increased use of TCAM in intrusion
detection systems and in proportion to the addition of
new range fields such as packet length.
To solve the scalability problem, a region partitioning

algorithm was suggested in [35]. An example of how this
algorithm functions in five different regions from a sin-
gle field of five rules is illustrated in Fig. 2. In the parti-
tioning of the regions, the ranges are divided into several
sub-ranges. To determine the sub-ranges, a layering al-
gorithm must be used. The example given in Fig. 2 con-
sists of three sub-ranges. Each sub-range is encoded
with several bits. The number of bits needed to encode
each sub-range depends on the number of ranges in that
sub-range and increases with an increase in the number
of sub-ranges. In practice, however, the outcome of this
algorithm is relatively complicated, and every sub-range
of a range requires a separate TCAM input. In [38], a
set of encoding schemes based on layering is proposed,

Fig. 1 An example of encoding using the basic scheme of dependent encoding proposed by Liu [35]
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which is referred to as encoding of the parallel packet clas-
sification. Of course, the algorithm does not explicitly ad-
dress layering. The purpose of this method is parallel
search of the fields. P2C is an improvement of the method
presented in [39] which describes the relationships among
the ranges and reduces the need for memory consump-
tion. In the same vein, Chang and Su [24] developed range
algorithms based on the Gray code. Their project im-
proves the P2C algorithm by using binary reflected Gray
codes. Their algorithm considers the initial ranges ob-
tained by the classifier. They indeed focused on minimiz-
ing extra bits without considering the number of available
bits in each TCAM input. Che et al. [40] developed a
scheme called DRES based on the notion of bit-mapping.
This scheme is a dynamic range selection algorithm for
regions to which extra bits are assigned. The scheme is
based on two simple but effective ideas. First, the ranges
are expressed as a set of ternary values in the form of
1XX1X0 instead of a set of prefixes. Second, unused extra
bits in TCAM can be used to encode ternary strings. This
algorithm is a greedy algorithm and allocates extra bits to
ranges with the highest prefix width.
Rottenstreich and Keslassy [42] proposed a database-

dependent encoding scheme. In this method, each range
of W bits can be encoded with W inputs of TCAM. The
abovementioned encoding algorithm is based on the fact
that any action that is applied to a packet by a rule is
dependent on a default action. This action is predeter-
mined and usually applies to packets that do not match
any rule. Similar studies were conducted by Cohen and
Raz [22]. In their algorithm, it is not necessary to parti-
tion the ranges into distinct sub-ranges, but the ranges
can be partitioned into overlapping sub-ranges. The al-
gorithm could gain an extension coefficient of 2W-4 at
the worst case for every range of W bits.
An algorithm for independent encoding of ranges was

proposed in [21]. This algorithm consists of three sections.
In the first section, layering of the ranges is performed.
Layering can be done in four ways. The first method is to
calculate the maximum size of independent sets by a
greedy algorithm using a graph. In the second method,
layering is performed by calculating the maximum size of

colorable sets using a graph and the chromatic number.
The third method performs layering via calculating the
maximum weight of independent sets by assigning weights
to the ranges. Finally, the fourth method is based on the
calculation of the maximum colors of colorable sets. As
stated in [21], the results of the four methods are identical,
suggesting that the methods can be interchangeably used
for independent encoding of ranges. In the next section of
the algorithm, bits are assigned to each layer for encoding.
The number of these bits is determined by the number of
ranges in each layer. Finally, the encoding operation is
done. What distinguishes this scheme from DRES is that
DRES allocates one bit to each range while the scheme in
[40] may allocate a varying number of bits depending on
the number of layers and the number of ranges in each
layer. Obviously, in DRES algorithm, the number of allo-
cated bits is directly related to the number of independent
ranges whereas the number of allocated bits in [21] for N
ranges is approximately log2N.
In [19], Yadi et al. introduced a plan called SmartPC

to reduce power consumption. In this design, selected
TCAM blocks are activated through pre-classifying in-
structions to reduce power consumption. The limitation
of this method is to group the rules into separate blocks.
Some solutions were proposed in [17, 41] to overcome
this limitation. In these solutions, decision tree is used
to classify the rules, and TCAM blocks are mapped onto
the leaves of the decision tree. Both solutions are a com-
bination of software-based classification (using decision
tree) and hardware-based classification (using TCAM).
Analytical results in [17, 41] suggest that these solutions
work well to reduce the number of blocks required by
TCAM, as well as, power consumption. Figure 3 shows
the two-stage architecture of a packet classifier as pro-
posed in [17, 41]. The difference between these two
schemes is in the tree algorithm used to distribute the
rules in the second stage of classification. On receiving
an input packet, the classifier uses part of the fields of
the header to search Index TCAM. In this figure, source
IP address is used along with destination IP address (i.e.,
64 bits) to search Index TCAM. The reason for using

Fig. 2 An example of encoding using the region division encoding algorithm [20, 21]
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these two fields in the initial search is that they provide
better distinction among the input packets. Next, the
identifier obtained by the process of matching in Index
TCAM is used as an input to activate TCAM blocks. It
should be noted that, in Fig. 3, each TCAM block in the
second stage of classification corresponds to a leaf in the
decision tree.
In both schemes, some TCAM blocks are allocated to

packets that are not classified in the first stage. These
blocks are activated simultaneously with specific blocks
that correspond to the decision tree leaves. Finally, from
among the matching rules from several activated blocks,
the best matching rule is specified using an encoder and
transmitted to the output of the classifier. One of the
basic problems in this architecture is the complexity of
the memory needed to store range fields during the sec-
ond stage of classification. In the architecture of network
processors, the high storage capacity of TCAM (in com-
parison with SRAM) is a valuable resource. In the pro-
posed method, the goal is the optimal use of TCAM
memory. As an implicit result, the proposed approach
reduces power consumption in the TCAM chip by redu-
cing the number of inputs required by TCAM to store
range fields in the second stage of classification.

3 The proposed method
In this paper, we present a solution for encoding ranges
in a two-stage classifier of Internet packets in the frame-
work of a TCAM-based architecture, which is discussed
in [17, 41]. The proposed approach provides a more
convenient use of memory in the second stage of classi-
fication by encoding the range fields. In this section, the
suggested architecture is introduced as an encoding al-
gorithm. In the architecture of a TCAM-based classifier
which uses a decision tree to map the rules onto mem-
ory blocks, storage of range fields is a great challenge
that has not been sufficiently addressed in the literature.
By using an encoding algorithm to store range fields, the
proposed solution reduces the number of TCAM inputs
in the second stage of packet classification and decreases
power consumption.

3.1 The architecture of the proposed classifier based on
the encoding algorithm
The architecture of the classifier in Fig. 3 has been
modified using the encoding algorithm and described in
Fig. 4 as our proposed architecture. Characteristic of the
proposed architecture is that TCAM blocks in the sec-
ond stage can accommodate more rules, making it pos-
sible to use the blocks more efficiently. In the diagram
shown in Fig. 4, the source and destination IP addresses
must first be stored as element indexes in TCAM. When
a packet enters the classifier, the source and destination
IP address fields of the packet header are compared with
the index of the elements of TCAM. During the first
stage of the search, the source and destination port fields
are encoded to be used for searching in the second stage.
Matching at the first stage is based on the priority of the
rules. Based on the best match found, an address is ob-
tained to access one unit from the SRAM. According to
the classification performed in the preprocessing stage, a
numerical value has been stored in this unit by using the
tree algorithm. This value shows the number of the
TCAM block in which the encoded source, and destin-
ation port numbers of the rules are stored.
In the second stage of the search, the encoded fields of

the source and destination ports of the packet header
are compared with the valid elements of the selected
TCAM block. If matches are found, the best matching
rule is selected as the output. It should be noted that in
this architecture while examining the selected block of
TCAM, another block is also examined. This block is
called the public block. In the public block, the informa-
tion of the source and destination port of those rules is
written, which have been repeated in the sub-regions
created by cutting the two-dimensional geometric space
corresponding to the source and destination IP ad-
dresses. The most important reason for dealing with
such rules during the cutting process is that a bit may
be selected for cutting which is of no value (or X) in the
mentioned rule. It is obvious that, in the subsets created
by cutting, this rule will fall into two subsets [43]. As a
result, when storing rules in TCAM blocks, these rules

Fig. 3 The architecture of TCAM-based hardware classifier [41]
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should be written into two blocks of TCAM. Therefore,
these rules are written into the public block to avoid this
problem and use memory optimally. Now, we are famil-
iar with the architecture of the hardware packet classi-
fier, we shall explain the proposed algorithm for
encoding range fields.

3.2 The proposed encoding algorithm for storing range
fields in TCAM
In general, rules that have a range field cannot be repre-
sented by a single TCAM input. It is therefore necessary
to have a scheme for encoding the range fields so that
they could be stored in TCAM. This encoding scheme
maps the fields of any range r onto a set of TCAM in-
puts, resulting in what is called the coverage r. The en-
coding algorithm is shown in the flowchart in Fig. 5.
This algorithm consists of three general steps: (1)

layering; (2) bit allocation; and (3) encoding. In the first
step, which is marked in blue in the Fig. 5, range fields
are divided by their weight. The weight of a field is equal
to the difference between the beginning and end points
of the field. This algorithm is a greedy algorithm in
which, for layering, the value of the intended field is
checked in all rules. In this algorithm, ranges with higher
weights should be placed in higher layers. For this pur-
pose, fields are arranged in descending order. After pla-
cing the range with the highest weight in the first layer,
the next range must be layered. For this purpose, the
second range is compared with the range that was lo-
cated in the first layer. If there is an intersection between
the ranges of the two fields, the new range will be placed
in the second layer; otherwise, it will be put in the first
layer. This procedure is performed for the values of the
range fields of all the rules of the classifier.

In the second step, marked in yellow in Fig. 5, several
bits are allocated to each layer depending on the number
of the ranges in that layer. Bit allocation operation in
this algorithm is like an auction. For this purpose, Eq.
(1) is used:

Auction i½ � ¼
X2assigned i½ �þ1−1

j¼2assigned i½ � W L i½ � j½ �ð Þ ð1Þ

where W(L [i] [j]) is the weight of the jth range from the
ith row which is arranged in terms of range weights.
Also, assigned [i] specifies the number of bits allo-
cated to each row. In the second stage, the auction
starts. Using this equation for all rows, the value of
auction is calculated, and one bit is allocated to the
row with the highest auction value. Next, this rela-
tionship is reused and recalculated for all rows, and
the next bit is allocated to the line that obtains the
highest weight. This procedure continues until there
is no other bit for allocation. No bit is allocated to
ranges with a weight of zero.
In the third step, which is marked in red in Fig. 5, the

encoding operation begins. In each layer, depending on
the weight order of the ranges, the bits are given values
for the intended range. Afterward, the ranges with a
weight of zero should be encoded. For this purpose, all
the bits allocated to a memory row are divided into two
groups. The first group consists of the bits that specify
the range fields, and the second group is used to encode
bits with a weight of zero. The values of the bits in the
first group are determined by performing a search in the
layers and encoding operation. The bits in the second
group are encoded with regard to the place of the ranges
in each layer, beginning from number 1.

Fig. 4 Architecture of the proposed classifier
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3.3 An example of the proposed encoding algorithm for
storing range fields
Table 1 lists a set of binary rules, including the two fields
of source and destination port ranges. In the present
work, 16 bits are used to encode the range of source
ports and 16 bits to encode the range of destination
ports. For encoding, the layering of ranges begins first.
In this phase, the ranges of rules in the source and des-
tination port fields are examined individually. For the
sake of simplicity, the decimal values of the ranges of
source and destination ports along with their weight are

shown in Table 2. To this end, after separating the
unique ranges of source and destination, the rules
should be sorted by weight in descending order. As can
be seen in the table of rule sets, the unique ranges of the
source port field of the rules include [0, 53], [1024,
65535], [23939, 24032], [0, 65535], [52, 53], and [48, 53]
and the unique ranges of the destination port field of the
rules include [20, 21], [32, 37], [0, 65535], [0, 22] , [80,
88], [23936, 24032], [52, 53], and [48, 52]. To encode the
above ranges, all these modes are first sorted by their
weight. Next, the layering operation begins. Figure 6 a

Fig. 5 Flowchart of the algorithm for encoding source and destination ports

Table 1 A set of binary rules including the two fields of source and destination port ranges

Rule number Beginning of the source port End of the source port Beginning of the destination port End of the destination port

1 0000000000000000 0000000000110101 0000000000010100 0000000000010101

2 0000010000000000 1111111111111111 0000000000100000 0000000000100101

3 0101110110000000 0101110111100000 0000000000000000 1111111111111111

4 0000000000000000 1111111111111111 0000000000000000 0000000000010110

5 0000000000110100 0000000000110101 0000000000000000 1111111111111111

6 0000000000110000 0000000000110101 0000000000000000 1111111111111111

7 0000000000000000 1111111111111111 0000000001010000 0000000001011000

8 0000000000000000 1111111111111111 0101110110000000 0101110111100000

9 0000000000000000 1111111111111111 0000000000110100 0000000000110101

10 0000000000000000 1111111111111111 0000000000110000 0000000000110101
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and b illustrate the layering of the ranges of the source
port field and destination port field of the rules of the
classifier, respectively. After layering, the ranges in each
layer are sorted again by weight. In the second step, bit
allocation begins. To do this, the auction value is calcu-
lated for all layers according to Eq. (1). The first bit in
the range of source and destination ports is given to the
first layer. Finally, the number of bits allocated to the
source port ranges is 6 in a way that one bit is allocated
to layer 1, two bits to layer 2, two bits to layer 3, and

one bit to layer 4. The number of bits allocated to the
destination port ranges is also 6 bits: one bit allocated to
layer 1, three bits to layer 2, and two bits to layer 3.
Encoding begins in the third step. For this purpose,

each range is encoded according to its place in descend-
ing weight order, and the bit which is allocated to the
layer in which it is placed will receive a value according
to its order. Other bits allocated to other layers will re-
ceive a null value. Table 3 shows the unique range of
source and destination ports as well as their encoding.

Table 2 The decimal values of the range of source and destination ports along with their weights

Rule number Source port range Source weight Destination port range Destination weight

1 [0, 53] 53 [20, 21] 1

2 [1024, 65535] 64511 [32, 37] 5

3 [23936, 24032] 96 [0, 65535] 65535

4 [0, 65535] 65535 [0, 22] 22

5 [52, 53] 1 [0, 65535] 65535

6 [48, 53] 5 [0, 65535] 65535

7 [0, 65535] 65535 [80, 88] 8

8 [0, 65535] 65535 [23936, 24032] 96

9 [0, 65535] 65535 [52, 53] 1

10 [0, 65535] 65535 [48, 53] 5

Fig. 6 Layering the range of the ports according to the rules in Table 1 a source port ranges; b destination port ranges
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3.4 Encoding the input packet
The information extracted from the header fields of the
input packet should be encoded in order to search in
TCAM blocks. For this purpose, the stored values are
given to the encoder module as the source and destin-
ation ports of the input packet. In this module, the
source and destination ports of the input packets are
encoded. These ports are encoded independently from
each other. In doing so, the source port and the des-
tination port of the input packet are separately com-
pared with the range of the unique ports of the rules.
If the packet is within the rule range of a layer, the
code of the corresponding rule will be copied into
the intended location to be encoded. If the packet
does not match, and cannot be covered by any of the
rules of a layer, the bits associated with that layer will
be set to 0 in the packet code.
Suppose a packet with the source port 123 and the

destination port 22 enters the encoder module ac-
cording to the rules in the Table 1. Given that 123
lies within the range of the first layer [0, 65535], the
first bit of the source port code of this packet be-
comes 1. Since this packet does not match any of the
ranges in the other layers of source port ranges, the
remaining bits of the source port code of the packet
are set to 0. Thus, the encoded code of the source
port range is 1000000000000000. The destination port
of this packet is also compared with the destination
port ranges in the layers created in Fig. 6. Given that
22 is within the range [0, 65535], the value of the bit
associated with the first layer in this packet becomes
1. Also, in the second layer, the packet matches the
range [0, 22]. Therefore, the value of the bits associ-
ated with the second layer in this range is 010, which
is stored in the location of the bit codes associated
with the second layer. Because the destination port
number does not overlap with the ranges in the next
layers, the rest of the bits are set to 0. Therefore, the
encoded code for the destination port of the packet
will be 1010000000000000. Now, the encoded value of

the source and destination ports can be used to find
matches in that block of TCAM memory whose num-
ber was obtained from SARM in the first stage of
classification by using source and destination port
addresses.

4 Implementation and evaluation
In this section, first the implementation of the pro-
posed algorithm is explained. For this purpose, after
introducing the tools used to generate the packets,
and the rule sets for the experimental classifier, the
programming language, and code structure are intro-
duced. Finally, the evaluation parameters are intro-
duced, and the results of the implementation of the
proposed algorithm are analyzed.

4.1 Rule set generation tools and evaluation parameters
The experimental rule sets and packets required for the
evaluation of the proposed algorithm and architecture
were generated using ClassBench suite, which was devel-
oped in [43]. ClassBench tool is a simulator for produ-
cing synthetic filters with desired distributions in the
geometric space of filters. This tool produces dummy
packets corresponding to the produced filters. Indeed, it
creates filters with distributive parameters that are given
to it as input. The presence of this simulator satisfies the
need for real and heterogeneous filters of Firewalls, IP-
Chains, and Access Control Lists. In the majority of the
studies [44–48], the ClassBench tool has been used for
producing the required data structure due to a need for
filters and packets that are close to reality in terms of
structural characteristics and statistical distribution.
Three general types of rule set can be generated by

ClassBench, including Access Control List (ACL), Fire-
wall (FW), and IP chain (IPC). Each rule set is named
according to the type and size of the generated set. For
example, ACL1K refers to the set of access control list
rules that contain about 1000 rules. It should be noted
that in the evaluations using this tool, sets of 100, 500,
1000, and 2000 rules from all the three abovementioned

Table 3 Encoding the range of unique source and destination ports of the rule set of Table 1

Range of the unique source
ports

Encoding of the source ports
range

Range of the unique destination
ports

Encoding of the destination ports
range

[0, 65535] 1XXXXXXXXXXXXXXX [0, 65535] 1XXXXXXXXXXXXXXX

[1024, 65535] X01XXXXXXXXXXXXX [23936, 24032] X001XXXXXXXXXXXX

[23936, 24032] XXX01XXXXXXXXXXX [0, 22] X010XXXXXXXXXXXX

[0, 53] X10XXXXXXXXXXXXX [80, 88] X011XXXXXXXXXXXX

[48, 53] XXX10XXXXXXXXXXX [32, 37] X100XXXXXXXXXXXX

[52, 53] XXXXX1XXXXXXXXXX [48, 52] X101XXXXXXXXXXXX

- - [20, 21] XXXX01XXXXXXXXXX

- - [52, 53] XXXX10XXXXXXXXXX
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types were created. For each set, the number of generated
packets was ten times greater than the number of gener-
ated rules. Also, to use the rules generated by ClassBench
using C ++ codes, the numbers corresponding to the four

fields of source IP address, destination IP address, source
port, and destination port were converted to binary num-
bers. Finally, the binary file created was used for simula-
tion. The proposed algorithm was implemented using

Fig. 7 a The number of layers for the source port and the destination port in ten different rule sets, b the number of bits used to encode the
source port and the destination port in ten different rule sets
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VHDL language based on the IEEE 1994 standard and in
ISIM development environment v13.1.
In this work, the allowed number of bits for encoding

was 16 bits for both the range of source ports and the range
of destination ports. To encode and save range fields and
encode the incoming packets, an encoder module was used.
This module initially performs the necessary processes on
the range of source and destination fields. These processes
include the encoding steps. Next, to encode each range field
before being written into the block specified in the first
stage of classification, the field is sent to the encoder mod-
ule, and the output of the module is written in a specified
TCAM block. Furthermore, this module is activated in
RAM while the source and destination IP addresses are be-
ing searched and encodes the source and destination ports
of incoming packets by means of the algorithm described
in the previous section. It should be noted that, in the sec-
ond stage of classification, the encoded values of the source
and destination ports that were produced by the encoder
module are used to search the selected block specified by
the output index of the first stage (as well as the public
block of rules) and to find the rule that best matches the
source and destination ports of the input packet.

The parameters used to assess the encoder module in-
clude the number of the layers of source and destination
ports, the number of bits used for encoding source and
destination ports, the number of unique ranges with a
weight of zero in the source and destination, and the
number of unique ranges with a weight of non-zero in
the source and destination.

4.2 Implementation of the two-stage architecture and the
encoding algorithm
Figure 7a shows the number of layers for source and
destination ports of ten rule sets of varying sizes gener-
ated by ClassBench. In this figure, the minimum number
of layers for the source port is one, and the maximum
number of layers is three. As shown in Fig. 7b, the mini-
mum number of bits needed to encode source ports is
one, and the maximum number is five. In Fig. 7a, the
minimum and the maximum number of the layers of the
source port is one and five, respectively. Also, the mini-
mum and the maximum number of bits needed to en-
code the destination port, which is shown in Fig. 7b, is
one, and 12, respectively. In these results, the maximum
number of bits used for encoding belongs to the ACL500

Table 4 Extension ratio in TCAM blocks in the second stage of classification

Rule set Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Public block

ACL100 1.181818 1.3 1.181818 1.4444444 1 1.1818182 1.3 1.625 1.529412

FW100 1.625 1.083 1 2.16 1.083 1.083 1.444444 13 1.130435

ACL500 1.625 1 1.065574 1 1.625 1.3 1.25 2.241379 1.566265

FW500 1.27451 1.3 1.25 1.3 1.2264151 1.3 1.3829787 1.444444 1.940299

ACL1K 1.226415 1.2745098 1.444444 1.1711712 1.0743802 1.1818182 1.1504425 1 130

FW1K 1.25 1.2380952 1.238095 1.25 1.2380952 1.2380952 1.25 1.25 1.940299

IPC1K 1 1.2380952 1.056911 1.3541667 1.0655738 1.1403509 1.2149533 1.313131 3.023256

ACL2K 1.209302 1.319797 1.25 1.1981567 1.0833333 1.1872146 1.1453744 1.287129 8.965517

FW2K 1.244019 1.2440191 1.244019 1.25 1.2380952 1.2380952 1.25 1.244019 1.89781

IPC2K 1.420765 1.4364641 1.368421 1.4364641 1.3978495 1.3541667 1.4285714 1.444444 2.20339

Table 5 The minimum and maximum values of the extension ratio and the memory required for encoding

Rule
set

Minimum value of the
extension ratio

Maximum value of the
extension ratio

Minimum amount of SRAM memory
required for encoding (KB)

Maximum amount of SRAM memory
required for encoding (KB)

ACL100 1 1.625 43.45211 43.49935

FW100 1 13 61.32269 61.89263

ACL500 1 2.241379 51.1507 51.69123

FW500 1.226415 1.940299 75.74132 77.20763

ACL1K 1 130 52.95357 54.47285

FW1K 1.238095 1.940299 79.6737 81.67321

IPC1K 1 3.023256 98.49408 106.0673

ACL2K 1.083333 8.965517 38.23026 38.83012

FW2K 1.238095 1.89781 25.58792 25.66043

IPC2K 1.354167 2.20339 25.55715 25.61868
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rule, which is 12 bits for the destination port and one bit
for the source port. Extra bits are also used to encode
zero-weight fields.
Analysis of the obtained results would suggest that, in

this method, a range field can be stored using a single row
of TCAM while previous methods [17, 41] had problems
with this task and had to allocate a separate row to each
range field according to the difference between its begin-
ning and end points. This issue is shown in the Table 4.

This table shows the extension ratio of the encod-
ing of different blocks by the proposed method. The
extension ratio is equal to the maximum capacity of a
block divided by the number of rules of that block.
In Table 5, the minimum extension ratio is shown for
each rule set between its blocks. The minimum ex-
tension ratio in Table 5 is 1, meaning that a max-
imum of one row from TCAM blocks is allocated to
each rule. A larger ratio means that the block is used

Fig. 8 The number of ranges in the source and destination ports of ten different rule sets a ranges with a weight of zero; b ranges with
non-zero weights
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less frequently. Table 5 also shows the minimum and
maximum SRAM memory required for encoding. This
value is calculated from Eq. (2):

SRAM Size ¼ 65536� log2
s½ � þ log2

s½ �ð Þ
þs�d�TCAM input size Þ= 8�1024ð Þ

ð2Þ

In this equation, s is the number of unique rules for
the source port range, and d is the number of unique
rules for the destination port range.
Figure 8a shows the number of ranges with a weight

of zero for the source and destination ports separately.
The maximum number of these ranges in the source
port belongs to IPC1k, and the minimum number, which
is 0, belongs to ACL100, ACL500, ACL1k, and ACL2k.
Also, Fig. 8a shows the number of ranges with a weight
of zero for the destination port. The maximum number
of these ranges in the destination port belongs to
ACL1k, and the minimum number, which is 0, belongs
to FW2k rule set. In addition, according to Fig. 8b, the
maximum number of unique ranges with a weight of
non-zero in the source port belongs to IPC1k, and the
minimum number, which is 1, belongs to ACL100,
ALC500, ACL1k, and ACL2k. Also, as shown in Fig. 8b,
the maximum number of unique ranges with a weight of
non-zero in the destination port belongs to ACL1k, and
the minimum number belongs to FW2k, and IPC2k.
Due to existence of the maximum source port ranges

in IPC 1 k, it is expected that the maximum number of
unique source ranges would be created for this rule set,
respectively. Similarly, due to existence of the maximum
destination port ranges in ACL 1 k, it is expected that
the maximum number of unique destination ranges
would be created for this rule set, respectively.

Figure 9 indicates that the maximum number of
unique source ranges belongs to IPC 1 k and the mini-
mum number belongs to ACL100, ACL500, ACL1k, and
ACL2k. Also, Fig. 9 shows that the maximum number of
unique source ranges belongs to ACL1k and the mini-
mum number belongs to FW2k.
Simulation results show that encoding can significantly

reduce power consumption due to the range fields. In
previous methods such as [37, 41], no solution was pro-
posed for optimal use of memory in the second stage of
classification. The advantage of this method is that it
does not reduce the speed of the classification while
making optimal use of TCAM capacity in the second
stage. This optimal use will also reduce power consump-
tion. The previous methods of storing range fields had
serious problems, and sometimes limited block capacity
could prevent many rules from being written.

5 Conclusion
In this paper, a new port-encoding method is proposed
that can be exploited in any two-stage TCAM-based
packet classifier. The proposed encoding method can be
used for optimizing memory usage in the second stage
of any two-stage TCAM-based packet classifier, which
maps the rule sets to decision trees. The proposed
method includes three steps: the greedy layering of
ports, allocating bits for distinct layers according to a
novel auctioning process, and range encoding. The main
benefit if the proposed method is the optimal use of the
capacity of TCAM blocks as well as the reduction of
their power consumption. In this work, VHDL was used
for simulation purposes. The rules and packets needed
to evaluate the algorithm were generated by ClassBench
suite. The key criteria for evaluating the proposed archi-
tecture were the number of layers of the source port and
destination ports and the number of bits used to encode

Fig. 9 The number of unique ranges for source and destination ports of ten different rule sets
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these layers. The simulation results show that, by encod-
ing the range of source and destination ports, they can
be stored in a single TCAM row. It can be inferred from
the results that the proposed method proved to be more
efficient than previous methods in using memory in the
second stage of classification. This superiority corre-
sponds to lower power consumption in TCAM blocks
which hold the range value of classifier rules.
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