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Abstract

In machine learning method, the number of training samples is an exceedingly important factor determining the
learning system’s robustness. In our previous researches (Liu et al., J. Syst. Eng. Electron. 27.2:333–342, 2016; Liu et al.,
IET Commun. 11.7:1000–1007, 2017), the extreme learning machines (ELMs) have proven to be an effective and
time-saving learning method for pattern classification and the signal modulation recognition. ELMs are utilized to
supervised learning issues principally on signal modulation recognition. In this thesis, ELMs are extended for
semi-supervised tasks that are based on the manifold regularization, therefore greatly enlarging ELMs’ applicability.
This article evolves countermeasures to the less training samples which mitigate the modulation recognition efficacy
and demonstrates the robustness of semi-supervised learning for signal classification in AWGN and Rayleigh-fading
channels.
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1 Introduction
With the evolution of the modernistic communication
technologies, the automatic recognition of modulation
signal is an significant issue in fast-growing diversi-
fied applications like satellite communications, scientific
probes, and military communications [1–4]. From former
study consequences [5–8], automatic modulation classi-
fication (AMC) is an implement to identify unknown or
partially known signals by applying a brief sequence of
the signal. Early AMC facilities worked as an ordinary
demodulator to recover AM and FM automatically, but
the algorithms becamemore sophisticated with the digital
waveforms’ emergence. there are two popular and effec-
tive statistical implements for sorting digital modulation
schemes: the higher-order statistics (HOS) method and
the maximum likelihood method. So far, the signal sort-
ing algorithms are generally parted into two categories:
feature-based methods and likelihood-based methods.
For the feature-based approaches, the classifier is the

most vital part of the modulation recognition process.
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And the classification algorithm has received widespread
attention of many scholars and has been applied to
many practical engineering, such as the single-layer feed-
forward networks (SLFNs), which was intensively scruti-
nized during the past times. The most existent algorithms
for training SLFNs adopt gradient methods for optimizing
the weights in the training process, the two famous ways
are back-propagation algorithm [8] and the Levenberg–
Marquardt algorithm [9]. During the training process
[10], the method takes the backward elimination or for-
ward selection mechanisms dynamically to generate the
network. The support vector machines (SVMs) [11, 12],
supposed to be one of themost successful means for train-
ing the SLFNs network, is a maximum margin classifier
derived under the framework of structural risk minimiza-
tion (SRM). On account of its balanced generalization and
simplicity of performance, the method SVMs was widely
studied and utilized to various kinds of fields. Huang et al.
[13, 14] recently raise a new way to train the SLFNs net-
work, this method is called extreme learning machines
(ELMs). In the ELM process, the output weights between
the output layer and the hidden layer were exclusively
modernized , while the parameters of the input weights
and biases of the hidden layer were randomly created.
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By seting the prediction error squared loss, output train-
ing weights go into a regularized least square (or ridge
regression) issue which can efficiently be solved in closed
form. It has been illustrated that yet without moderniz-
ing the hidden layer parameters, the SLFN with randomly
generated hidden neurons and tunable output weights
maintains its universal approximation power [15–17].
All the methods mentioned above are verified in many

fields for the modulation recognition. But they all need
enough training data, which is called supervised learn-
ing classifiers. In the signal modulation recognition, get-
ting tags for completely supervised learning is time-
consuming and expensive, while a lot of unlabeled data are
easy and tinny to collect. In this paper, ELMs are extended
to deal with the modulation recognition when the train-
ing data is not adequate. Unlike from the existing works,
we cover signal classification challenges in following
parts:

• In comparison with the other modulation approaches,
this paper concentrates on less sample data situation.
The superiority of this algorithm lies in hidden nodes’
random choices and analytically ascertains output
weights, which leads to lower complexity.

• Unlike the existing works, this paper pays more
attention to the channel environment. In the
time-varying channel, frequency departure and time
delay are significant parameters affecting the
communication system performance. In this article,
all study consequences are acquired in low SNR
(− 10 dB–10 dB ) and Rayleigh fading channel: the
maximal time delay was set 10−3 s. The shift of the
maximum Doppler frequency is 25 Hz and multipath
fading conditions with complex channel
environments.

• Feature-based means are more time-saving means for
modulation recognition. The higher order moments
(HOMs) and cumulants (HOCs) are utilized as the
extraction features in this paper. All the picked
features can guarantee that the later classifier can get
the data in the real-time.

The remainder of this thesis is arranged as follows: Section
defines model of the system and provides the relevant
works. Part portrays the proposed modulation identifi-
cation algorithm, section details the analysis process of
the performance . Viewpoints and conclusions for the
research work are eventually presented in part.

2 Preliminaries
In this section, first of all, we define the time-varying
Rayleigh fading channel model. In the channel model, the
Gaussian noise and Rayleigh fading channel are consid-
erable in our analysis. We add zero-mean white Gaussian
interference to the transmitted signal. To demonstrate
the robustness and dependability of the method, we set
the lowest SNR to −10 dB and the time delay configu-
ration up to 10−3 s in multipath enviroment associated
with Rayleigh fading. The enviroment channel model is
supplied through the impulse response:

h(t; τ) =
N∑

l=1
al(t)ejθl(t)∂(τ − τl) . (1)

N stands for the number of path, and the path delay is
τl . al(t) satisfies with the distribution of Rayleigh, and
the θl(t) is [0, 2π ] followed uniform random phase over,
respectively. As the received signal will suffer a small-
scale Doppler shift exclusively for the terrestrial personal
and mobile communication condition, τl is assumed to be
fixed over code acquisition time.

3 Methods
Our plan is to separate signals of the networks based
on the pattern recognition and machine learning. This
method is divided into two subsystems, namely, the fea-
ture extraction part and the classification part. The pro-
posed signal classification method, Process Map, is illus-
trated in Fig. 1. The multisignal flows reach the receiver
through the Rayleigh fading or Gaussian channel. In the
receiver, varying frequency signals are reduced tomedium
frequency or less, resulting in overlapping of the spectrum

Fig. 1 The process map
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[18]. The receiver should have the signal separated with-
out any prior information. The machine learning part is
with the duty to intelligently draw a lesson from the sig-
nal attributes. In the part of machine learning process, the
ELM algorithm is applied for sorting.

3.1 Features extraction
One important part of modulation identification was
how to choose the suited identification features. Previ-
ous works have revealed the following rule: higher-order
cumulants (HOCs) and higher-ordermoments (HOMs) of
the received signal are one of the most fantastic applicants
for signal identification, assuming the signal xwithN sam-
ples; the HOM with order k is defined by the following
equation.

Mkm(x) = E[ xk−m(x∗)m] (2)

E[ •] is the total expectation formula. Also, if the signal x
is zero-mean, the cumulants of order k is followed by:

Ckm(x) = Cum

⎡

⎣x, . . . , x︸ ︷︷ ︸
k−m

x∗, . . . , x∗
︸ ︷︷ ︸

m

⎤

⎦ (3)

The relations between the higher moment and cumulants
can be expressed as follows:

Cum[ x1, . . . , xn]=
∑

φ

(α − 1)! (−1)α
∏

ν∈φ

E(
∏

i∈ν

xi)

(4)

where φ covers all list of all partitions of 1, . . . , n; v runs
through the list of all blocks of the partion φ. Taking the
fourth order for example, if the signal x, y, z, and w are
zero-mean, the cumulant is defined:

Cum[ x, y, z,w]= E(xyzw) − E(xy)E(zw)

−E(xz)E(yw) − E(xw)E(yz)
(5)

Based on Eqs. (3–5), if signal y is zero-mean with N sam-
ples, the moments and the cumulant can be expressed as
in [19].

3.2 Extreme learning machines
As in the paper [19, 20], signal modulation recognition
using ELMmethod includes the following steps:

• Step1: Given a training set {X,Y} = {xi, yi}Ni=1 ,
activation function g(x) and hidden node number Ñ .

• Step2: Randomly assign input weight wi and bias
bi, i = 1, ....,N .

• Step3: Calculate the hidden layer output matrixH.
• Step4: Calculate the output weight β = HTT, where

T = [ t1, ..., tN ]T .
• Step 5: The network is applied in test learning

process to get the performance.

3.3 Semi-supervised extreme learning machines
Semi-supervised machine learning is found in the follow-
ing two assumptions:

• Both the labeled data Xl and the unlabeled data Xu
are drawn from the same marginal distribution ρx.

• If two signal samples x1 and x2 are similar to each
other, then the conditional probabilities P(y|x1) and
P(y|x2) should be close as well.

To compel this presumption on the signal samples, the
framework of the manifold regularization was proposed
to make the following cost function minimum:

Lm = 1
2

∑

i,j
wij||P(y|xi) − P(y|xj)||2 (6)

wij is the similarity between two patterns xi and xj ; W =
[wij] is usually sparse. Because of the difficulties to get
the conditional possibility, the following approach Eq. (6)
should be adapted as the expression:

L̂m = 1
2
∑

i,j
wij||ŷi − ŷj||2 (7)

where ŷi and ŷj are the predictions with respect to pattern
xi and xj , respectively. It is direct to simplify the above
expression in a matrix shape:

L̂m = Tr(ŶTLŶ) (8)

where Tr(·) stands for the trace of a matrix,D is a diagonal

matrix with its diagonal elements Dii =
l+u∑
j=1

wi,j, and L =
D − W is graph Laplacian.
In the semi-supervised setting, we have few labeled data

and a lot of unlabeled data. the labeled data is denoted in
the training set as {Xl,Yl} = {xi, yi}li=1, and unlabeled data
is set as Xu = {xi}ui=1, l and u stand for the number of
labeled and unlabeled data, respectively.
The suggested SS-ELM involves the manifold regular-

ization to leverage unlabeled data to improve the classi-
fication precision while labeled signal samples are scarce.
By changing the general ELM formulation [20], we furnish
formulation of SS-ELM as:

min
β∈Rnh×n0

1
2
||β||2 + 1

2

l∑

i=1
Ci||ei||2 + λ

2
Tr(FTLF) (9)

h(xi)β = yTi − eTi , i = 1, · · · , l (10)

fi = h(xi)β , i = 1, · · · , 1 + u (11)
where L ∈ R(l+u)×(l+u) is the graph Laplacian came
from both labeled and unlabeled signal samples, and F ∈
R(l+u)×n0 is the output network matrix, which its i row is
equal to f(xi) and λ is the trade-off parameter.
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Similar to the weighted ELM algorithm (W-ELM) pre-
sented in [18], in this paper, consider different punishment
coefficient Ci on the forecast errors with regard to pat-
terns from different categories. Assume that xi is close to
class ti, which has Nti training kinds, then we associate
ei with a punishment of Ci = C0/Nti , where C0 as in
traditional ELMs is a user-defined parameter.
We replace the restrictions into the objective function

and re-write the above formulation in the matrix state:

min
β∈Rnh×n0

1
2
||β||2 + 1

2
||C 1

2 (Ŷ − Hβ)||2

+λ

2
Tr(βTHTLHβ)

(12)

where Ŷ ∈ R(l+u)×n0 is the augmented training samples
and its first l rows are equal to Yl and the rest equal to 0,
and C is a (l + u) × (l + u) diagonal matrix with its first l
diagonal elements [C] ii = Ci and the rest equals to 0.
Again, the objective function gradient can be computed

with regard to β :

∇LSS−ELM = β + HTC(Ŷ − Hβ) + λ • HTLHβ (13)

By arranging the gradient close to zero, the solution for
the SS-ELM is obtained by:

β* = (Inh + HTCH + λHTLH)−1HTCŶ (14)

on the condition that labeled samples are fewer than the
hidden neurons; also, this is the ordinary situation in SSL,
take the following alternative solution:

β* = HT (Il+u + CHHT + λLHHT ) - 1CŶ (15)

where Il+u is the identity matrix with the dimension l+u.
In conclusion, signal recognition that is based on SS-

ELM consists of the following steps:
Input:
Labeled patterns{Xl,Yl} = {xi, yi}li=1,
Unlabeled patterns Xu = {xi}ui=1,
Output: the mapping function of SS-ELM:f : Rni → Rno

• Step 1: Construct the graph Laplacian L from both Xl
and Xu.

• Step 2: Initiate an ELM network of nh hidden
neurons with random input weights and biases and
calculate the output matrix of the hidden neurons
H ∈ R(l+u)×nh .

• Step 3: Choose the trade-off parameter C0 and λ.
• Step 4: if nh � N

Compute the output weights β using 14
or else
compute the output weights β using 15

return the network function f(x) = h(x)β .

4 Experimental result and discussion
In this part, we take the following configurations into
account: signals transmit though AWGN or Rayleigh fad-
ing envioments with the SNR varing from−10 dB to 10 dB
stepped by 2 dB in interval. For Rayleigh fading chan-
nel, the channel maximum Doppler frequency is 15 Hz,
the time delay is 10−4 s. The symbol rate was 200 bps.
The carrier frequency was set 20 KHz, and sampling fre-
quency is 40 KHz. The number of unlabeled sample varies
in the different application scenarios. All inputs have been
normalized to the range of [− 1, 1].
In the simulations configuration, ELM is composed of

100 hidden nodes, making the algorithm furnish brilliant
generalization performance at fast learning speed.
In what comes along, we will present three mod-

ulation types in the simulation procedure, that is
φ1 = {BPSK, 4PSK, 8PSK}, φ2 = {4ASK,8ASK}, φ3 =
{16QAM, 64QAM}, and φ4 = {φ1,φ2,φ3} . All the results
are based on 1000 Monte Carlo trials for each modulation
scheme. The probability of identification is given in per-
centage and estimated by Nt

Ntotal
× 100 , where Ntotal is the

total number of trials and Nt is the number of trials for
which the modulation is correctly identified.

4.1 Performance results of HOC and HOM
In the SISO system, the HOMs and HOCs are employed
by using the hierarchical modulation identification to
attain wonderful results. It was illustrated that modula-
tion identification probability is a nonlinear function that
is been connected with the SNR, the number of symbols,
and themodulation types. It is understandable that raising
the number of symbols will increase the performance. Pay
attention that identification probability is an increasing
function of SNR while bringing a known modulation pool
into consideration and an enough quantity of symbols for
SISO system [21]. Theoretic values of a number of HOCs
and HOMs are provided in Table 1. In Table 1, we can
come to realize how they can discriminate the different
modulation schemes. These theoretic values are figured
for dissimilar digital modulation constellations below unit
variance symbols’ restraints and noise free instance.

4.2 Classification performance for each communication
scheme in AWGN and Rayleigh fading channel

For φ1,φ2, and φ3, we show the performance results of
the identification probability in the AWGN and Rayleigh
fading channel in a single-path environment. For the
intra-class recognition, we generate signal feature sets
for the experiment. For φ1, we generate 300 groups of
labeled samples and 900 groups of unlabeled samples to
train the SEM-ELM neural network to get the param-
eters needed for the subsequent testing. In the testing
process, we also randomly select 1200 groups to test the
neural network. For φ2 and φ3 separately, we generate
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Table 1 Theoretical value of some HOMs and HOCs without
noise

BPSK QPSK 8PSK 16QAM 64QAM 4ASK 8ASK

C21 1 1 1 1 1 0.58 0.53

M40 1 − 1 0 0.68 0.619 0.89 0.73

M20 1 0 0 0 0 0.58 0.53

C40 2 1 0 0.68 0.619 0.12 0.13

M42 1 1 1 1.32 1.38 0.89 0.73

M21 1 1 1 1 1 0.58 0.53

C42 − 2 − 1 − 1 − 0.68 − 0.62 − 0.12 − 0.13

C42/C21 − 2 − 1 − 1 − 0.68 − 0.62 − 0.12 − 0.46

M63 1 1 1 1.96 2.23 1.77 1.28

C63 4 4 4 2.08 1.79 − 0.53 − 0.39

C63/C21 4 4 4 2.08 1.79 − 2.73 − 2.56

200 groups labeled samples and 600 groups of unlabeled
samples to form the training data. Respectively, in the test-
ing process, we choose 800 groups of samples to test the
performance. Figures 2, 3, and 4 separately show the per-
formance for the scenarios of φ1,φ2, and φ3, respectively.
As could be observed: (1) The SNR has a negative impact
on the modulation recognition accuracy. As the SNR
increases, modulation identification probability become
more acceptable. For the PSKS, modulation identification
probability reached its upper bound at 8 dB, more than
93%. While the FSKS and QAMS were slightly worse, that
is owing to the channel environments destroyed the orig-
inal signal structure. (2) The SS-ELM method, serving

as perspective method, shows a strong robustness when
the SNR is more than 4 dB in all the signal modulation
recognition.

4.3 Classification performance for mixed communication
schemes in AWGN and Rayleigh fading channel

The SS-ELM algorithm performance for each kind of sig-
nals attains substantial results when the SNR is greater
than 6 dB. These consequences are checked from our
former performance analysis of Figs. 2, 3, and 4. In this
subsection, we organized blind signals recognition for
the mixed signals. Other than the procedure noted in
the “Classification performance for each communication
scheme in AWGN and Rayleigh fading channel” section,
in the blind recognition method, the data sets are picked
randomly from the feature sets. In machine learning train-
ing process, the labeled sample is 100 groups, and the
unlabeled is 700 groups. Figure 5 reveals the full class
modulation identification results in the AWGN channel,
and Fig. 6 demonstrates the algorithm property in the
Rayleigh fading channel. In Figs. 5 and 6, we can estab-
lish the following conclusions: (1) In comparison with
the “Classification performance for each communication
scheme in AWGN and Rayleigh fading channel” section,
the blind recognition probability for the mixed schemes
demonstrate performance degradation’s indications, spe-
cially while the SNR is below 4 dB. (2) In the mixed signal
modulation recognition, the learning performance is con-
nected with the SNR closely; with the SNR’s rise, the
correct probability become better and better, when the
SNR is 10 dB, the identification precision gets up to an

Fig. 2 φ1 in the AWGN and Rayleigh fading channel



Fu and Liu EURASIP Journal onWireless Communications and Networking          (2020) 2020:8 Page 6 of 9

Fig. 3 φ2 in the AWGN and Rayleigh fading channel

satisfactory level, achieving 95% in AWGN and 92% in the
Rayleigh fading channel.

4.4 The number of labeled samples effect for blind signal
recognition

In the semi-supervised system, the number of the labeled
samples may influence the communication performance
reliability greatly. In this section, we do check the SEMI-

ELM algorithm with varying number of the labeled data.
The simulated environment include the objective sig-
nal is φ1 = {BPSK, 4PSK, 8PSK} ; set the labeled data
NUM = 50, 100, 200, 250, 300, 350, and 400; the train-
ing data sets is 1200; the unlabeled data is 1200 NUM;
in the testing process, we set the testing sample setting
to 1200 to test the semi-supervised ELM classifier. The
SNR is SNR = 0, and the results are presented in Fig. 7.

Fig. 4 φ3 in the AWGN and Rayleigh fading channel
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Fig. 5 φ4 in the AWGN channel

In Fig. 7, we can conclude (1) when SNR = 0 dB, for
φ1 = { BPSK, 4PSK, 8PSK}, the SNR has a litte effect
on the signal modulation recognition, but the recognition
accuracy has some relations with the number of labeled
samples. When the labeled sample occupy 1/3 of all the
training data, the probability of the system identification
will reach 98%, which is an acceptable outcome. (2) When

the labeled data is less, such as 50, the identification accu-
racy is about 90%; the main reason is that the channel
affects the unlabeled data structure. (3) Above all, the
number of the labeled samples has some relation with the
modulation recognition result, when have difficulty to get
enough labeled training datas, the SS-ELM might be a
good choice.

Fig. 6 φ3 in the Rayleigh fading channel
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Fig. 7 The number of labeled sample effect for blind signal recognition

5 Conclusions
In this paper, we explore the machine learning’s utiliza-
tion and pattern recognition for the signal classification
when facing less training samples. The features extraction
came from the HOCs and HOMs. The SS-ELM algorithm
outperforms all researched scenarios with rapider con-
vergence and a lower computational complexity with no
iterative tuning. The proposed algorithms are examined
through different number of labeled samples to ratify the
reliability. Subsequently, the implied algorithm is exam-
ined through AWGN and Rayleigh fading channels, and
they show a very impressive skill of recognizing different
modulation schemes with high preciseness in lower SNR
time-varying channel. The succeeding work will focus on
the unsupervised extreme learning machines for more
brilliant generalization in the signal identification.
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