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Abstract

In massive MIMO (mMIMO) systems, large matrix inversion is a challenging problem due to the huge volume of users
and antennas. Neumann series (NS) and successive over relaxation (SOR) are two typical methods that solve such a
problem in linear precoding. NS expands the inverse of a matrix into a series of matrix vector multiplications, while
SOR deals with the same problem as a system of linear equations and iteratively solves it. However, the required
complexities for both methods are still high. In this paper, four new joint methods are presented to achieve faster
convergence and lower complexity in matrix inversion to determine linear precoding weights for mMIMO systems,
where both Chebyshev iteration (ChebI) and Newton iteration (NI) are investigated separately to speed up the
convergence of NS and SOR. Firstly, joint Chebyshev and NS method (ChebI-NS) is proposed not only to accelerate
the convergence in NS but also to achieve more accurate inversion. Secondly, new SOR-based approximate matrix
inversion (SOR-AMI) is proposed to achieve a direct simplified matrix inversion with similar convergence characteristics
to the conventional SOR. Finally, two improved SOR-AMI methods, NI-SOR-AMI and ChebI-SOR-AMI, are investigated
for further convergence acceleration, where NI and ChebI approaches are combined with the SOR-AMI, respectively.
These four proposed inversion methods provide near optimal bit error rate (BER) performance of zero forcing (ZF) case
under uncorrelated and correlated mMIMO channel conditions. Simulation results verify that the proposed ChebI-NS
has the highest convergence rate compared to the conventional NS with similar complexity. Similarly, ChebI-SOR-AMI
and NI-SOR-AMI achieve faster convergence than the conventional SOR method. The order of the proposed methods
according to the convergence speed are ChebI-SOR-AMI, NI-SOR-AMI, SOR-AMI, then ChebI-NS, respectively. ChebI-NS
has a low convergence because NS has lower convergence than SOR. Although ChebI-SOR-AMI has the fastest
convergence rate, NI-SOR-AMI is preferable than ChebI-SOR-AMI due to its lower complexity and close inversion result.

Keywords: Massive MIMO, Matrix inversion, Neumann series, Successive over relaxation, Chebyshev iteration,
Newton iteration

1 Introduction
Massive MIMO (mMIMO) is one of the most promis-
ing technologies for the 5th generation (5G) communi-
cation systems [1]. mMIMO recent applications include
machine type communications, drone communications,
control circuits in nuclear reactors, and nuclear physics
applications. Its channel hardening property ensures mit-
igating the effect of noise and interference as the number
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of antennas increase [2]. Hence, linear precoding meth-
ods can approximately achieve optimal performance in
mMIMO systems [3]. However, there are challenging
problems in practical implementation of mMIMO sys-
tems such as largematrix inversion resulted from the large
number of users and antennas.
Large matrix inversion is an important practical issue

that affects the precoder design and performance. A
good precoder depends on matrix inversion approxima-
tion characteristics such as low complexity and good
approximation accuracy. Generally, precoding methods
are divided into linear and non-linear ones. Non-linear
precoding methods such as constant enveloper (CE), dirty
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paper coding (DPC) [4], vector perturbation (VP), lattice
aided, and Tomlinson-Harashima precoding (THP) are
unfriendly to hardware implementation due to their high
complexity [5]. Hence, linear precoders such as matched
filter (MF), zero forcing (ZF), regularized zero forcing
(RZF), phased ZF (PZF), andminimummean square error
(MMSE) are favorable although they need the inversion
of channel matrix containing all users [6]. Direct, itera-
tive, and expansions methods are three main categories
to calculate large matrix inverse for linear precoding.
Direct methods suffer from high complexity as it depends
mainly on transferring the matrix to be inverted into a
multiplication of simple matrices like QR and Chelosky
decomposition [7]. Iterative methods belong to the fam-
ily of solving linear equations such as Richardson method
[8], conjugate gradient (CG) method [9], successive over
relaxation (SOR) [10], symmetric successive over relax-
ation (SSOR) [11], and Gauss-Seidel (GS) method [12].
They have acceptable performance in mMIMO systems.
However, these approaches provide indirect matrix inver-
sion approximation as they calculate a product containing
matrix inversion and quadrature amplitude modulation
(QAM) symbol vectors. In addition, matrix inversion
is required separately for specific calculations such as
sum rate computations and rapid matrix modifications
[13, 21]. The matrix inverse can be directly updated (col-
umn added and column deleted) to save the matrix inver-
sion time and complexity. Hence, these methods require
more complexity for these specific calculations as the
symbol vector is divided. Chebyshev iteration (ChebI) and
Newton iteration (NI) provide fast convergence charac-
teristics while their complexity depends on the number
of iterations involved [14, 15]. However, both iterative
methods require complex calculation of initial input to
ensure convergence. The third category, expansion meth-
ods, transfers the inverse of a matrix into a series of matrix
vector products like Neumann series (NS) [16]. Although
NS has slow convergence rate, it not only can approx-
imate matrix inversion separately but also owns simple
hardware implementation property [17, 18]. In [19], the
authors utilize NI to achieve faster convergence than ordi-
nary NS. This inspired us to replace the quadrature order
NI with cubic order ChebI to achieve not only more accu-
rate inversion results but also faster convergence. NS and
SOR are recent two research directions to reduce the com-
plexity of matrix inversion in linear precoding. However,
their convergence speed should be improved. This moti-
vates us to speed up their convergence using cubic order
ChebI.
Although the large precoding gain can be obtained

by making use of large number of antennas, interfer-
ence become dominant factor rather than additive noise.
Hence, under these circumstances, ZF precoder is a rea-
sonable choice compared to other precoding methods. So

our focus in this paper is on ZF precoding technique for
mMIMO systems to reduce its complexity. In this paper,
four new joint methods are proposed to achieve faster
convergence with reasonable complexity in matrix inver-
sion to determine linear precoding weights for mMIMO
systems, where the first iteration result of Chebyshev iter-
ation (ChebI) and Newton iteration (NI) approaches are
employed to reconstruct both NS and SOR methods. A
high probability of convergence is achieved that can offer
useful guidelines for practical mMIMO systems. Themain
contributions of this paper are five folds.

– Firstly, we propose a new joint Chebyshev iteration
and Neumann series (ChebI-NS) method that not
only achieves faster convergence but also provides
more accurate matrix inversion approximation than
previous NS methods.

– Secondly, we propose a new SOR-based approximate
matrix inversion (SOR-AMI) method that directly
approximates matrix inversion by separating the
QAM symbol vector from the whole iteration pro-
cess. The new method, which is very useful for
further calculations, achieves the same convergence
rate as SOR method with lower complexity.

– Thirdly, to further improve convergence characteris-
tics of SOR-AMI, we propose joint NI and SOR-AMI
method (NI-SOR-AMI), where we adopt one NI iter-
ation to get an efficient searching direction for the
following SOR-AMI iterations to achieve a fast con-
vergence rate.

– Fourthly, another method to accelerate the conver-
gence of SOR-AMI is to make use of cubic order
ChebI instead of quadrature order NI. Hence, joint
ChebI and SOR-AMI method (ChebI-SOR-AMI) is
the fourth proposed technique that achieves faster
convergence rate.

– Finally, the above four proposed methods are com-
pared with existing methods in order to prove their
faster convergence with reasonable near-ideal ZF
1 performance of downlink (DL) mMIMO system.
Based on these results, we discuss the effectiveness
of the proposed approaches.

The rest of this paper is organized as follows. Section 2
discusses the system model, mMIMO channel model, and
preliminaries about NS expansion, SOR, proposed SOR-
AMI method, NI, and Chebyshev iterations. Section 3
describes the four new proposed joint matrix inversion
methods. Section 4 presents computational complexity
analysis. Simulation results are introduced in Section 5.
Finally, Section 6 concludes the work.

1In ideal ZF, exact value of Gram matrix is used. Thus, the result corresponds
to case where Gram matrix inverse is obtained with sufficient accuracy.
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Notations: Upper-case and lower-case boldface letters
denote matrices and vectors, respectively. (.)T , (.)H , (.)−1,
(.)(n), and (.)† present transpose, conjugate transpose
(Hermitian), inversion, nth iteration number, and pseudo
inverse, respectively. C ∼ N

(
μ, σ 2IK

)
denotes the circu-

larly symmetric complex Gaussian distribution with mean
μ and co-variance matrix σ 2IK where IK is the identity
matrix of size K. ||.|| and ||.||2 define the 1-norm and
2-norm, respectively.

2 Systemmodel and preliminaries
In this section, we will carefully describe our system
model followed by mMIMO channel model. Also, related
matrix inversion approaches such as NS, SOR, NI , and
ChebI are briefly introduced.

2.1 Systemmodel
Figure 1 shows a DL centralized mMIMO system with N
antennas equipped at the base station (BS) and serves K
<< N single antenna users [1]. If the DL transmitted sig-
nal vector after precoding is x ∈ CN×1, the received signal
vector y ∈ CK×1 for K users can be expressed as:

y = √
ω Hx + n, (1)

where n ∈ CK×1 is the additive white Gaussian noise vec-
tor with zero mean and unit variance. ω is a normalization
factor to determine signal to noise power ratio (SNR), i.e.,
SNR is given as SNR = ω

σ 2=1 = ω, where σ 2 denotes addi-
tive noise variance. H ∈ CK×N is the DL channel matrix2.
Furthermore, H =[h1,h2, ....,hk]T , where hk ∈ C1×N is
the channel vector between the BS and the kth user mod-
eled as an independent and identically distributed (i.i.d)
random vector. x is precoded using the ZF precoder and
defined as:

x = Ps = βH†s = βHH (
HHH)−1 s = βHHW−1s,

(2)

where s ∈ CK×1 is the symbol vector of 64 QAM symbols
from K users for transmission [1], P ∈ CN×K is the ZF
precoding matrix,W ∈ CK×K is the Gram matrix defined
as HHH , and β is a normalization parameter defined as√

K
tr(W−1)

[22], where tr
(
W−1) defines the trace ofW−1.

In this paper, we assume perfect channel state information
(CSI) at the BS by utilizing the time domain training pilot
[23]. In time division duplex (TDD) mMIMO systems, the
BS uses the user pilots to estimate the uplink channel.
Hence, the DL CSI is achieved using channel reciprocity
property in TDD systems.

2Two channel models are considered in the next subsection: (i) uncorrelated
Rayleigh channel, namedHun ∈ CK×N, with Gaussian distribution of zero
mean and unit variance, and (ii) spatial correlated channel, named
Hco ∈ CK×N, as in [23].

It is obvious from (2) that the main complexity for
ZF precoding is the inversion of K × K matrix W. The
Gram matrix W is Hermitian positive definite as in
Eq. (3).

uHWu = uH
(
HHH)

u = uHH
(
uHH

)H , (3)

where u is an arbitrary K × 1 non-zero vector.
The columns of the channel matrixH are asymptotically

orthogonal and thusH is a full rank matrix [1]. uH equals
zero vector only when u is a zero vector. Hence, we have
uH(uH)H > 0 for all non-zero vectors indicating that W
is a positive definite matrix.

2.2 mMIMO channel model
This paper considers not only uncorrelated Rayleigh chan-
nel but also spatially correlated ones. The elements of
uncorrelated channel, Hun ∈ CK×N, are independent and
identically distributed (i.i.d.) complex Gaussian random
variables (RVs) with zero mean and unit variance. On the
other hand in the spatially correlated MIMO channel Hco
[24], the Kronecker channel model [25], in which Hco ∈
CK×N, can be modeled as:

Hco = R
1
2
rxHunR

1
2
tx, (4)

where Rrx ∈ CK×K and Rtx ∈ CN×N are the correlation
matrices for the receive and transmit antennas, respec-
tively. Since we assume single antenna user, then Rrx = I
[26]. Note that if also Rtx equals identity matrix, the left
hand side of Eq. (4) will be the uncorrelated channel Hun.
The (p, q) element of exponentially correlated transmit
correlation matrix Rtx is given as [25]:

Rtx(p, q) = (
ζ ej �

)q−p , (5)

where 0 ≤ ζ ≤ 1 denotes the correlation magni-
tude between adjacent transmit antennas and � is the
phase.

2.3 Neumann series (NS) method
According to the Neumann series expansion [17], the
required Gram matrix to be inverted, W ∈ CK×K, is
approximated as a sum of matrix polynomials.

W−1 =
+∞∑

n=0
(IK − φW)nφ, (6)

where φ ∈ CK×K preconditioning matrix and IK is
the K × K identity matrix. Assumptions of φ and
the proposed approach to determine it are given in
Section 3.1.
The main condition of Eq. (6) to be fulfilled is

lim
n→∞(IK − φW)n = 0K , (7)
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Fig. 1Massive MIMO system model in downlink, where K and N denote number of single antenna users and number of antennas per BS,
respectively. This figure describes the utilized system model which is one BS with N antennas that serve K single antenna users

where 0K is a zero matrix of size K × K. For practical use,
the inverse ,W−1, is approximated according to the value
of L which is the maximum number of iterations3

W−1 ≈ Ŵ−1 =
L∑

n=0
(IK − φW)nφ, (8)

where L is the iteration number and Ŵ−1 is the approxi-
mated inverse.

2.4 SORmethod
The SOR method aims to iteratively solve the Gram
matrix inversion problem as a linear equation Wg = s,
where g is an unknown vector solution of length K × 1.
The matrixW is decomposed into

W = D + L + U, (9)

where D, L, and U = LH are the diagonal compo-
nent, lower triangular component, and upper triangular
component of Hermitian positive definite matrixW.
If Wg = s, i.e., g = W−1s, the nth estimation of W−1s

is obtained by substituting Eq. (9) into the SOR method
equation as follows [10]:

g(n) = (D + αL)−1
(
αs + ((1 − α)D − αU)g(n−1)

)
,

(10)

where n defines the number of iterations, g(n) is the nth
iteration of g which also equals the SOR nth estimation
of W−1s, and α is the relaxation parameter. The utilized

3Mainly, L is the number of expanded terms. However, in this paper, L equals
the number of iterations(i) so as to compare NS convergence with other
methods. The maximum value of L = 4, i.e., 4th iteration as it provides a good
trade-off between complexity and performance [20].

optimal relaxation parameter in this paper according to
[10] equals

αopt = 0.404 e
(−0.323N

K
)
+ 1.035. (11)

Note that SOR method computes a product that con-
tains the matrix inverse, i.e., g(n) is the nth estimation of
W−1s.

2.5 Newton iteration (NI)
Newton iteration method can be employed to calculate
W−1 in an iterative way [14]. Assume thatZ(0) is the initial
estimation inverse ofW−1 and

||IK − WZ(0)|| < 1. (12)

Hence, the (n+ 1)th iteration estimation ofW−1 using NI
is obtained by substituting f (Z) = Z−1−W in NI function
Z(n+1) = Z(n) − f (Z(n))

f ′
(Z(n))

, where f ′
() is first derivative func-

tion of a function whose argument is amatrix as defined in
[14, 15]. The final NI formula that calculates the (n + 1)th
estimation ofW−1 is expressed as [14, 15]:

Z(n+1) = Z(n)
(
2I − WZ(n)

)
, (13)

where n denotes the number of iterations. If n is large,
Eq. (13) is converged to the Gram matrix inverse, i.e.,
W−1.

2.6 Chebyshev iteration (ChebI)
Chebyshev iteration is a third order convergence algo-
rithm [15]. Similar to NI, substitute the function f (Z) =
Z−1 − W into Chebyshev three terms function Z(n+1) =
Z(n) − f (Z(n))

f ′
(Z(n))

− f ′′
(Z(n))

2f ′
(Z(n))

(
f (Z(n))

f ′
(Z(n))

)2
to get the matrix inver-

sion using ChebI, where f ′′
() is the second derivative
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function. Note that the third term of Chebychev Z(n+1)

helps ChebI to provide more accurate results than NI.
The (n + 1)th Chebyshev iteration expression of W−1 is
expressed as [15]:

Z(n+1) = Z(n)(3I − WZ(n)(3I − WZ(n))). (14)

If number of iterations is sufficient, Eq. (14) is converged
to the matrix inverse, i.e.,W−1.

3 Proposedmethods
In this section, we will discuss four proposed methods
to speed up large matrix inversion calculation. We will
start with the first proposal (i.e., ChebI-NS), and then,
we will move to the second proposal (i.e., SOR-AMI). To
achieve further improvement, we also propose improved
SOR-AMI methods as the third and fourth proposal (i.e.,
ChebI-SORAMI and NI-SOR-AMI).

3.1 Joint Chebyshev iteration and Neumann series
method (ChebI-NS)

The initial NS value, φ in Eq. (6), greatly affects the con-
vergence. The method of selecting φ plays an important
role in NS acceleration. There are three assumptions to get
φ where two of them depend on the special properties of
the matrices while the third one focus on getting the ini-
tial from other iterations like NS and ChebI. The popular
assumption of φ is the matrix inversion of K × K diagonal
matrix D whose entries are the main diagonal elements of
the GrammatrixW, i.e.,D−1 [17]. The matrixD−1 can be
calculated as follows [18]:

D−1 = diag
(

1
w1,1

, ....,
1

wk,k
, .....,

1
wK,K

)
, (15)

where wk,k is the kth diagonal element of Gram matrixW.
The second assumption of φ is

(
IK

N+K

)
which also repre-

sents a diagonal matrix [1]. This is due to that the largest
and smallest eigenvalues of GrammatrixW depends onN
and K. As the number of N and K grows, the eigenvalues
of the gram matrix converges to a fixed distribution [17].
The third assumption is to utilize the first iteration output
of NI, Z(1) as in Eq. (13) with n = 0 to initialize NS [19].
Initializing NS with ChebI instead of NI not only provides
accurate inversion approximation but also speeds up NS
convergence. The advantages of ChebI over NI such as fast
convergence and more accurate approximation motivated
us to initialize NS with the output of the first iteration of
ChebI instead of NI.
In this paper, ChebI is applied first to provide a suitable

φ to speed up the convergence of NS. The joint ChebI-NS
approach main steps to estimateW−1 are:
Step 1 Obtain the inverse of the diagonal matrix of

Gram matrixW, i.e, D−1 as in Eq. (15).

Step 2 Apply one Chebyshev iteration (i.e., n=0 in
Eq.(14) with initial input Z(0) = D−1 as follows:

Z(1) = Z(0)
(
3I − WZ(0)

(
3I − WZ(0)

))

= D−1 (
3I − WD−1 (

3I − WD−1)) .
(16)

Step 3 Apply the obtained first ChebI, Z(1), as an initial
to the Neumann series as follows:

W−1 ≈ Ŵ−1 =
L∑

n=0

(
IK − Z(1) W

)n
Z(1). (17)

An approximated solution, Ŵ−1, is obtained for finite
number of iterations.

Lemma 1 For DL mMIMO systems, the Neumann series
with initial value fromChebyshev iteration , φ = Z(1), have
a high probability convergence when [16]

η ≈ N
K

> 5.83. (18)

Proof See Appendix A.

Equation (18) has a practical applications in mMIMO
systems as it identifies the suitable number of BS antennas
to the number of single antenna users in mMIMO sys-
tems. For example, η = 8 and η = 16 produce two typical
downlink mMIMO configuration N × K = 256 × 32 and
256 × 16 [12]. According to [16, 19], these values ensures
high probability of convergence of 0.999 due to the large
values of η.

3.2 SOR-based approximate matrix inversion method
(SOR-AMI)

Our main idea is provided in the following Lemma

Lemma 2 W−1 can be approximated to R(n) when n →
∞ using iterative SOR method as follows:

R(n) = (D + αL)−1
(
αIK + ((1 − α)D − αU)R(n−1)

)
,

(19)

where R(0) is the initial input and chosen to be the diago-
nal component, i.e., D−1, R(n) is the nth direct estimation
of W−1. An approximated solution, Ŵ−1, is obtained for
finite number of iterations.

Proof See Appendix 6.

The SOR-AMImain steps, to directly estimateW−1, are
as follow:
Step 1 Calculate the initial input R0 = D−1 from

Eq. (15).
Step 2 Apply the obtained R0 on the SOR-AMI method

as in Eq.(19).
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SinceW is Hermitian positive definite, the SORmethod
is convergent [10]. Hence, as W−1s is approximated by
g(n)(n → ∞),W−1 can be approximated byR(n)(n → ∞).
The SOR-AMI method based on Eq. (19) can be utilized
to directly calculateW−1. According to Eq. (26), it has the
same convergence of SOR iterative method.

3.3 Improved SOR-AMI methods
The convergence of SOR-AMI is accelerated by making
use of the fast convergence property of NI and ChebI
which is revealed at the beginning of the iteration for SOR-
AMI method. Hence, ChebI-SOR-AMI and NI-SOR-AMI
are discussed below, respectively.

3.3.1 Joint Chebyshev iteration and SOR-AMImethod
(ChebI-SOR-AMI)

The joint algorithm main procedures, to directly estimate
W−1 using ChebI-SOR-AMI, are as follows:
Step 1 Apply one Chebyshev iteration with initial input

Z(0) = D−1 as in Eq. (16).
Step 2 Use the obtained first ChebI, Z(1), to apply on

the SOR-AMI method as follows:

Z(n) =(D+αL)−1
(
αIK +((1 − α)D − αU)Z(n−1)

)
, n ≥ 2.

(20)

SinceW is Hermitian positive definite, the ChebI-SOR-
AMI method is convergent as SOR-AMI has the same
convergence of traditional SOR method. Equation (20)
calculates W−1 after initializing SOR-AMI method with
one iteration of ChebI , i.e.,Z(n) ≈ W−1. As the number of
iterations approaches infinity, i.e., (n → ∞), Eq. (20) con-
verges to the exact matrix inverse, i.e., W−1. An approx-
imated solution, Ŵ−1, is obtained by finite number of
iterations.

3.3.2 Joint Newton iteration and SOR-AMI (NI-SOR-AMI)
Similar to ChebI-SOR-AMI method, NI-SOR-AMI
depends on applying one NI as initial input to SOR-
AMI. The main steps, to estimate W−1 directly using
NI-SOR-AMI, are as follow:
Step 1 Apply one Newton iteration with initial input

Z(0) = D−1 as follows:

Z(1) = Z(0)
(
2I − WZ(0)

)
= D−1 (

2I − WD−1) (21)

Step 2 Apply the first NI, Z(1), obtained from step 1 to
SOR-AMI method similar to Eq. (20).
Similar to ChebI-SOR-AMI, NI-SOR-AMI is convergent

and W−1 can be approximated by Z(n)(n → ∞) resulted
from step 2. Similarly to the previous, an approximated
solution, Ŵ−1, is obtained for finite number of iterations.
The main advantage of this method is its reduced com-
plexity compared with ChebI-SOR-AMI method. Next

section discusses the complexity analysis of the proposed
methods.

4 Complexity analysis
In this paper, we evaluate the computational complexity
analysis of the proposed methods in terms of required
number of complex multiplications which is more pop-
ular and complicated. The channel coherence interval
Tc, defined as the product of coherence time and coher-
ence bandwidth, is under consideration for fair complexity
comparison. There are two types of approaches that can
solve (2). The first type that include our four proposed
methods is to directly computeW−1 every channel coher-
ence interval. Thus, W−1 can be calculated regardless
of Tc, while it requires other auxiliary processing which
increases the total complexity as Tc increases. On the
other hand, the other type is to calculate the precoding
weight recursively as a product of W−1s such as SSOR
method. Thus, overall complexity is increased as Tc (i.e.,
the number of symbols per Tc) increases.
The complexity of ZF precoding within Tc is O(K3 +

TcNK). The NS complexity for different initial φ val-
ues and more than two iterations (i.e., n > 2) is O(K3)
compared to the exact matrix inversion. NS implements
matrix multiplication and matrix addition which are
favorable in hardware as no divisions are required [1, 18].
From Eq. (14), one ChebI requires two matrix additions
and three matrix multiplications. However, one NI com-
plexity is reduced by one matrix addition and one matrix
multiplications according to Eq.(13). When φ = D−1 or
φ = IK

N+K , the complexity of Eq. (8) is O(K2) for the
first iteration (i.e., n = 1) and O(K3) for further itera-
tions (i.e., n ≥ 2). Note that for ChebI-NS, the complexity
increases at i = 2 due to the added multiplications because
of applying one ChebI.
For the SOR-AMI method, the complexity is O(K2 +

TcNK) as only two matrix multiplications are required .
This means that SOR-AMI convergence is faster than NS
and also has lower complexity especially at large iteration
numbers. The computational complexity of NI-SOR-AMI
is slightly lower than ChebI-SOR-AMI by one matrix
multiplication and one matrix addition.
The overall complexities of the proposed methods in

addition to NS, NI-NS [19], and SSOR [11] are shown
in Table 1 considering the channel coherence interval
Tc. Small Tc values do not greatly affect our proposed
methods complexity because it is defined as complexity
per the number of symbols during Tc. Hence, it greatly
reduces SSOR method complexity. For large Tc values,
if the product of TcNK is larger than K3, then the com-
plexity is increased with Tc increment; otherwise, it has
small effect compared to K value. SOR-AMI complexity
is lower than SSOR and in the same time it directly com-
putes W−1. ChebI-NS complexity O(K3) is close to its
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Table 1 Complexity analysis (N number of BS antennas, K number of users, i iteration number, Tc channel coherence interval)

Method i = 2 i = 3 i = 4

NS 3K2 − K + TcNK K3 + K2 + TcNK 2K3 + TcNK

ChebI-NS 3K3 + 2K2 + TcNK 4K3 + K2 + TcNK 5K3 + TcNK

NI-NS [19] 2K3 + 2K2 + TcNK 3K3 + K2 + TcNK 4K3 + TcNK

SOR-AMI 2K2 + TcNK 3K2 + TcNK 4K2 + TcNK

ChebI-SOR-AMI 3K3 + TcNK + 2K2 3K3 + TcNK + 3K2 3K3 + TcNK + 4K2

NI-SOR-AMI 2K3 + TcNK + K2 2K3 + TcNK + 2K2 2K3 + TcNK + 4K2

SSOR [11] Tc(6K2 + 3K + NK) Tc(8K2 + 3K + NK) Tc(10K2 + 3K + NK)

traditional NS methods. Note that SSOR method esti-
mates the matrix inversion using two SOR iterations in
both the forward and reverse order. Also, SSOR calculates
the matrix inverse indirectly, i.e.,W−1s, while other meth-
ods compute it directly that is highly recommended for
fast matrix inverse updates [21]. The proposed SOR-AMI
method has the lowest complexity compared to other
methods. Initializing SOR-AMI with either NI or ChebI
slightly increases its complexity but provides faster con-
vergence results to achieve close inversion results at low
iterations.

5 Results and discussion
To evaluate the effect of the proposed method, we con-
ducted computer simulation. System model is the same as
in Section 2.1. In the three proposed methods (i.e., ChebI-
NS, ChebI-SOR-AMI, and NI-SOR-AMI), the initial val-
ues of Newton and Chebyshev iterations are the diagonal
component of W. To evaluate the proposed methods, the
Frobenius norm error and bit error rate (BER) as per-
formance metrics. Un-coded system is assumed during
simulation. Also, the average BER of all users are calcu-
lated during simulation. The MSE is defined as follows.

Ferror = ‖W−1 − Ŵ−1‖F , (22)

where W−1 and Ŵ−1 are defined as ideal inverse of the
Gram matrix and approximated solution by the three
abovementioned proposed methods. The ZF precoding
with exact matrix inversion of W is added to our results
as the benchmark. Two configurations N × K = 256 × 32
and N × K = 128 × 16 are considered. The utilized mod-
ulation scheme is 64 QAM. The parameters of correlated
channel model are set to ζ = 0.1 and � = 60◦ phase shift.
Figure 2 shows the Monte Carlo simulation results for

the Frobenius norm error between exact Gram matrix
inverse and its approximated inverse against number of BS
antennas, N, for NI-NS, ChebI-NS, SOR-AMI, NI-SOR-
AMI, and ChebI-SOR-AMI methods under uncorrelated
channel conditions after 10,000 MC trials and for sec-
ond, third, and fourth iterations, respectively. The MSE

is plotted against N to measure the inversion error for
each proposed scheme. Our error calculations neglects
the modulation effect as our main focus is on the error
resulted from precoding matrix inversion approximation.
At the second iteration, The error of SOR-AMI method is
the largest followed byNI-NSmethod that have the largest
2-norm error at the following two iterations. According to
Lemma 1, when N is known, the number of users K can
be easily calculated and there will be a high convergence
probability of the inversion. As small N values, the error
decreases because of the small matrix inversion dimen-
sions. The figure illustrates the merits of initializing NS
and SOR-AMI with ChebI. The three terms Chebyshev
iteration is more accurate than NI in spite of increased
computational complexity by one matrix addition and
multiplication. Also, Because SOR-AMI convergence is
faster than NS convergence, the MSE for the three based
SOR-AMI methods are lower than ChebI-NS and NI-NS
methods.
For ease of illustration and discussion, the next three

figures divide the results into three parts. Figure 3 com-
pares the proposed ChebI-NS with other NS-based meth-
ods. Figure 4 do the same but for SOR-AMI, ChebI-SOR-
AMI, NI-SOR-AMI with SOR based methods. Finally,
Fig. 5 compares the all four proposed methods with each
other. Figure 3a shows the BER against SNR of NI-NS,
diagonal-based NS, new ChebI-NS, and NS with initial
IK
N+K under uncorrelated channel conditions withN×K =
128 × 16 at the second iteration. Figure 3b and c are for
third and fourth iterations, respectively. From the three
sub-figures, the new ChebI-NS algorithm has the superior
performance close to ZF followed by the NI-NS method
at the third and fourth iteration and has close perfor-
mance to NI-NS at the second iteration. Figure 3 d, e, and f
show the same analysis performed under correlated chan-
nel conditions with ζ = 0.1 and 60◦ phase shift for the
second, third, and fourth iteration, respectively. It is worth
noting that at the second iteration, i.e., Fig. 3a, the NI-
NS [19] converges slightly faster than ChebI-NS, but the
reverse occurs under correlated channel conditions, i.e.,
Fig. 3c. Their performance is still not close to the opti-
mal ZF. Hence, theirmatrix inversion results lack accuracy
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Fig. 2MSE of ChebI-NS, NI-NS, SOR-AMI, ChebI-SOR-AMI, and NI-SOR-AMI methods versus number of BS antennas (N) for uncorrelated channel at
the second, third, and fourth iterations, respectively. This figure computes the MSE of four approximate matrix inversion techniques for uncorrelated
channel conditions under second, third, and fourth iterations, respectively. a iteration, i = 2. b iteration, i = 3. c iteration, i = 4

due to low utilized iterations. In the third and fourth
iteration, i.e., Fig. 3b, c, e, and f, ChebI-NS is the nearest
method to optimal performance. Because NS has a slow
convergence rate, it requires more than two iterations
for more accurate matrix inversion. Therefore at these
conditions, the new ChebI-NS method gains a superior
performance more than other NS approaches ensuring its
fastest convergence.

Figure 4 shows the second and fourth iteration of the
BER against SNR of new proposed SOR-AMI, NI-SOR-
AMI, ChebI-SOR-AMI, and SSOR with N × K = 265 ×
32 under uncorrelated channel, Fig. 4 a and b, and cor-
related channel, Fig. 4c and d, respectively. From the
figure, the new Cheb-SOR-AMI algorithm has the supe-
rior performance close to ZF followed by the NI-SOR-
AMI method. The results at second iteration , i.e., Fig.4a
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Fig. 3 BER performance comparison between different joint NS methods with ChebI-NS method in mMIMO system with N = 128 and K = 16 under
uncorrelated and correlated channel, respectively. This figure compares ChebI-NS with other previous NS methods for iterations i = 2, 3, 4 under
both correlated and uncorrelated channel conditions. a Uncorrelated channel, i = 2. b Uncorrelated channel, i = 3. c Uncorrelated channel, i = 4.
d Correlated channel, i = 2. e Correlated channel, i = 3. f Correlated channel, i = 4

and c, indicate that both ChebI-SOR-AMI and NI-SOR-
AMI converge fast to the optimal performance; however,
at the fourth iteration, all methods have close performance
to ZF.
Figure 5 presents a performance comparison among

the new proposed methods under uncorrelated channels,
Fig. 5a and b, and correlated channels, Fig. 5c and d, for
the second and fourth iterations, with N = 128 and K= 16,
respectively. In correlated channel results, the BER error
floor for the proposed methods show a good convergent
trend similar to uncorrelated channels. ChebI-SOR-AMI
has much better performance than other methods. SOR-
AMI convergence speed is faster than NS; hence, SOR-
AMI-based methods provide accurate results at lower
iterations. Also, at low iterations, we recommend utiliz-
ing NI-SOR-AMI than ChebI-SOR-AMI as it has close

result with reduced complexity. ChebI-NS has low per-
formance due to the slower convergence of NS than SOR
method. However, ChebI-NS is preferable for designers
due to the ease of NS hardware implementation. Also, our
proposed methods are robust to channel correlation more
than existing NS, and SOR methods.

6 Conclusion
In this paper, we have investigated the slow conver-
gence of both NS and SOR methods in linear precoding.
For this purpose, we have proposed four joint methods
to calculate ZF linear precoding weights for mMIMO
systems, i.e., ChebI-NS, SOR-AMI, NI-SOR-AMI, and
ChebI-SOR-AMI. ChebI-NS has been proposed to
speed up the convergence of NS and also to give more
accurate approximation. Unlike traditional SOR method,
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Fig. 4 BER performance comparison between SSOR, NI-SOR-AMI, and ChebI-SOR-AMI method N × K = 256 × 32 mMIMO system for uncorrelated
and correlated channel conditions. This figure compares SOR-AMI, ChebI-SOR-AMI, and NI-SOR-AMI with conventional SOR and SSOR methods
under correlated and uncorrelated channel conditions for the second and fourth iterations. a Uncorrelated channel, i = 2. b Uncorrelated channel,
i = 4. c Correlated channel, i = 2. d Correlated channel, i = 4

Fig. 5 BER performance comparison between the new proposed methods with N × K = 128 × 16 mMIMO system for uncorrelated and correlated
channel conditions. This figure compares between the proposed methods in this paper under correlated and uncorrelated channel conditions for
the second and fourth iterations respectively. a Uncorrelated channel, i = 2. b Uncorrelated channel, i = 4. c Correlated channel, i = 2. d Correlated
channel, i = 4
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SOR-AMI method directly calculates the matrix inver-
sion without multiplying the symbol vector. Joint ChebI-
SOR-AMI and NI-SOR-AMI are based on applying fast
converging Chebyshev/Newton iteration as initial step
of SOR-AMI method. Simulation results illustrate that
the proposed methods give not only accurate results
but also fast convergence under both uncorrelated and
correlated channel conditions. ChebI-NS method is the
fastest among NS-based methods. NI-SOR-AMI is more
preferable than ChebI-SOR-AMI as it achieves close
performance to ChebI-SOR-AMI with lower complex-
ity. Although NS convergence is lower than SOR-AMI,
it is preferable in hardware implementation. Hence,
ChebI-NS is important to accelerate the convergence of
such a prominent method. Further investigations of the
proposedmethods with other linear precoders likeMMSE
and RZF is under consideration as future work.

Appendix A Proof of Lemma 1
First, we will approve the convergence of ChebI-NS,
i.e.,

∑∞
n=0

(
IK − Z(1)W

)n Z(1) then from the convergence
approval, the theory is proofed.
According to Eq. (6), the condition of convergence of

ChebI-NS is limn→∞(IK − Z(1)W)n = 0K .
Let matrix A = IK − Z(1)W.
Since, ρ(IK − Z(1)W) < 1 ↔ |λi(A)| < 1,
where λi(A) denotes the ith eigenvalue of A, 1 � i � k,

ρ(IK − Z(1)W) = ρ(A) < 1,
where ρ(A) is the spectral radius of A i.e., λmax(A) the
largest absolute value of A eigenvalues
Substituting the value of Z(1) from Eq. (16) into the

matrix A yields

A = IK − Z(1)W = IK − D−1(3I − WD−1(3I − WD−1))W

= (IK − D−1W)3.
(23)

Let B = IK − D−1W then
∑∞

n=0 (IK − D−1W)nD−1

converges to |λi(B)| < 1 which have a high probability
convergence as in Lemma 1 [16].
Since, A = B3 and λi(A) = λi(B)3

then
∑∞

n=0 (IK − Z(1)W)nZ(1) converges as
↔ ∑∞

n=0 (IK − D−1W)nD−1 converges too.
This approves the convergence of ChebI-NS.
From equations (11- 17) in [16], a high probability con-

vergence condition for∑∞
n=0 (IK − D−1W)nD−1 equals η > 1

(
√
2−1)2 , i.e., η >

5.83. Thus, since we approved the convergence of ChebI-
NS, the same high probability convergence for ChebI-NS
is achieved when η > 5.83 [16]. Hence, the proof is
finished.

Appendix B Proof of Lemma 2
Substituting R(0) = D−1 into g(0) = D−1s yields the
following:

g(0) = R(0)s. (24)

Hence, for kth iteration, g(k) = R(k)s. Substituting this
result in SOR method i.e. Eq. (10), R(k+1) is obtained as

g(k+1) = (D + αL)−1
(
α s + ((1 − α) D − αU)g(k)

)

= (D + αL)−1
(
αs + ((1 − α)D − αU)R(k)s

)
= R(k+1)s.

(25)

Hence, based on the mathematical induction, we can
obtain the following:

g(n) = R(n)s, (n ≥ 0). (26)

Equation (26) ends the proof.
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